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INDUSTRIAL NOISE FROM A POINT SOURCE

R. M

Institute of Acoustics, A. Mickiewicz University, 60-769 Poznan, Matejki 48,
Poland

(Received 31 March 1998, and in final form 24 July 1998)

A simple method is presented that requires measurements at only two positions.
It can be used for the prediction of the time-averaged sound level, LAT , above a
plain and homogeneous ground surface, in open space with no obstacles nearby.
Upward and downward conditions are addressed, in addition to geometrical
spreading and ground effect. The method makes it possible to predict LAT at the
receiver, located beyond the shadow zone that is caused by upward refraction.
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1. INTRODUCTION

Weather conditions, principally wind, have major effects on noise propagation in
the atmosphere. The present study demonstrates how to predict the time-averaged
sound level, LAT , at horizontal distance from the source, d, and at height above
the ground surface, z, when the results of noise measurements at two points,
O(d1, z1) and O(d2, z2), are available (see Figure 1).

Related (but not equivalent) analyses of the outdoor noise propagation problem
have been reported in Piercy and Daigle [1], Anderson and Kurze [2], and ISO
Standard 9613 [3]. The methods presented therein take into account the influence
of weather. In the present study three categories of propagation conditions are
introduced and the number of free parameters of the model is minimized.
Consequently, the prediction method becomes relatively simple and useful for
practical purposes (see Example IV in section 4).

Suppose that during the time period t (e.g., 2 h), a stationary source (e.g.,
cooling tower, ventilation fan, transformer, jackhammer, or cement mixer)
produces noise. The time-average sound level LAT , during the time period T (e.g.,
15 hours of a day) is

LAT =10 log {(t/T)S+10L	 AT/10}, (1)

where L	 AT is the time-averaged sound level of background noise. Upon introducing
the A-weighted sound pressure, pA , the relative time-averaged A-weighted squared
sound pressure can be written as

S=
1
t g

t

0

p2
A (t)
p2

0
dt, p0 =20 m Pa. (2)
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Figure 1. Location of measuring microphones (d1, z1) and (d2, z2).

During the time period t, when the source is active, one can expect at least three
categories of propagation conditions [4]: straight rays due to a homogeneous and
calm atmosphere; downward bending of rays due to wind blowing from the source
to the receiver and/or temperature increase upward; upward bending of rays due
to wind blowing from the receiver to the source and/or temperature decrease
upward. For the time intervals t0, t1, and t2, corresponding to these conditions
(see Figure 2), equation (2) takes the form

S=(t0/t)S0 + (t1/t)S1 + (t2/t)S2, (3)

where

S0 =
1
t0 g

t0

0

p2
A0

p2
0

dt, S1 =
1
t1 g

t1

0

p2
A1

p2
0

dt, S2 =
1
t2 g

t2

0

p2
A2

p2
0

dt. (4)

To avoid complications and to show clearly only the main ideas, one can apply
very restrictive assumptions: a non-directional point source generates a stationary
broadband noise; noise propagates freely above a plain and homogeneous ground
surface; and geometrical spreading and ground effect are modified mainly by
refraction.

Figure 2. The A-weighted squared sound pressure, p2
A , for homogeneous and calm atmosphere,

t0, downward refraction, t1, and upward refraction, t2, which is drawn for illustrative purposes.
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2. HOMOGENEOUS AND CALM ATMOSPHERE

Consider first the ground effect. The squared sound pressure in the nth
frequency band, high above the ground with a non-dissipative and homogeneous
medium, is

p2
n =Wnrc/4pr2, (5)

where Wn denotes the corresponding sound power, rc expresses the characteristic
impedance of air, and r is the source–receiver distance. To describe the
propagation of industrial noise, it is assumed that the point source, S, and the
receiver, O, are close to the ground surface (see Figure 3), so that

z+H�d. (6)

Under such conditions one can write

p2
n =(Wnrc/4pr2)Gn (d, z, H, Zn ), (7)

where the ground factor, Gn , is given by [5, 6] as,

Gn =1+(r2/r2
1)[q2

1 + q2
2]+2(r/r1)[q1 cos (2pfnDr/c)+ q2 sin (2pfnDr/c)], (8)

The sum, q= q1 + iq2, expresses the spherical wave reflection coefficient,
Dr= r1 − r denotes the difference between the path lengths of the direct and
reflected waves (see Figure 3), and Zn is the ground impedance in the nth frequency
band. The validity of the above expression has been fully confirmed [7]. From
equation (7) one arrives at the sound level,

L(0)
A =LWA −10 log {2pd2/d2

0}+10 log {GA}, d0 =1 m, (9)

where LWA is the A-weighted power level, and the A-weighted ground factor is
quantified by

GA =
1
2

s
n

10(LWn −LWA +DLn )/10Gn (d, z, H, Zn ), (10)

Figure 3. Source–receiver geometry (SO) is determined by the horizontal distance, d, and heights,
z, H, or the grazing angle, C.
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with DLn defining the A-frequency weighting. The results presented in Figure 9 of
reference [8] indicate that the ground factor, Gn , is a function of the grazing angle
(see Figure 3),

C=tan−1 [(z+H)/d]. (11)

Thus, equation (10) can be rewritten as

GA =GA ([z+H]/d). (12)

Close to the source one obtains,

lim
d:0

GA =GA (0)= b. (13)

Note that b=2 for hemispherical spreading. The calculation shows that far away
from the source, the ground attenuation decreases by 6 dB per doubling of the
distance [6, 7], so one can write

lim
d:a

GnAd−2. (14)

The above result has been justified experimentally in equation (1) of reference [9].
Combining equations (12) and (14) yields

lim
d:a

GA =(1/g0)([z+H]/d)2. (15)

(Note the superscript 0 for the homogeneous and calm atmosphere).
The most simple function that meets both conditions given by equations (13)

and (15) is

GA = b[1+ g0(d/[z+H])2]−1, 0E dEa, (16)

where g0 is the ground coefficient and the source and/or receiver has to be above
ground, z+Hq 0. Finally, the sound level for homogeneous and calm
atmosphere can be approximated by (equations (9, 16))

L(0)
A =10 log {Q0}−10 log {2pd2/d2

0 [1+ g0d2/(z+H)2]}, (17)

where the source parameter, Q0, and the ground coefficient, g0, have to be
estimated from measurements (see below). In section 3 the influence of refraction
and turbulence on the ground coefficient is demonstrated. Because the source is
stationary and the atmosphere is calm, the sound level, L(0)

A , equals the
time-averaged sound level, L(0)

At .
Equation (17) is based on the well established theory of Weyl and Van der Pol

[5] and fits the results of noise measurements above different ground surfaces. For
illustration, the values of L(0)

A (equation (17)) are plotted versus the horizontal
distance, d, with Q0 =1010 and z=H=1 m in Figure 4. For g0 =0·0003, one has
a 7·5 dB drop per doubling of the distance, 50:100 m. This is typical for ground
covered with grass or other vegetation [10]. With g=0·0009, one has a 9 dB drop
of the sound level per doubling of the distance (e.g., ground covered with snow).

In the present study, the source parameter, Q0, and the ground coefficient, g0,
are considered free parameters. How are values estimated from noise measurement
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Figure 4. The sound level, L(0)
A versus horizontal distance d, for different values of ground

coefficient, g (equation (17)).

at the site of interest? Equation (17) holds when the atmosphere is homogeneous
and calm, so the time-averaged sound level at the point O(di , zi ) is given by

L(i)
At =10 log {Q0}−10 log {(2pd2

i /d2
0 )[1+ g0d2

i /(zi +H)2]}. (18)

Making use of two measurements at the points, O(d1, zi ) and O(d2, z2) (see
Figure 1), one arrives at

g0 = (m−1)(z1 +H)2(z2 +H)2/[(z1 +H)2d2
2 −m(z2 +H)2d2

1 ], (19)

where

m=(d1/d2)210(L(1)
At −L(2)

At )/10. (20)

By substituting g0 into equation (18) one obtains the source parameter, Q0. Both
g0 and Q0 depend upon the power spectrum of the source. Hence, one can expect
different values of g0 and Q0 for cooling towers, ventilation fans, transformers, etc.,
and different ground coverings (grass, sand, etc.).

Example I. Noise produced by a cement mixer was measured at the distances
d1 =25 m and d2 =50 m with the microphones at the same height, z1 = z2 =1 m,
above the ground covered by grass. The effective source height was H1 2 m.
During the one hour that measurements were made, the atmosphere was calm (no
wind) and the sky was cloudy (neither thermal turbulence nor temperature
gradient within a few meters above the ground). With t=3600 s, the results of
the measurements were: L(1)

At =65·1 dB and L(2)
At =58·8 dB. The background noise

level was fluctuating around 45 dB. By using equations (18–20), the values
g0 =3·26×10−4 and Q0 =1·29×1010 were obtained.

3. INFLUENCE OF REFRACTION

Due to weather variations influencing refraction, the dependence of the sound
level, LA , upon the horizontal distance, d, changes with time. To describe this
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effect, it is assumed that the ground coefficient becomes a function of time,
g0:g(t), and equation (17) takes the form

LA (t)=10 log {Q}−10 log {2pd2/d2
0 [1+ g(t)/g̃]}, (21)

where

g̃=(z+H)2/d2. (22)

This equation will be applied for both downward and upward refraction.

3.1.  

When sound propagates downward (e.g., wind blowing from the source to the
receiver), within the time period t1 (see Figure 2), frequently the values of g(t) are
less than the ground coefficient for a homogeneous and calm atmosphere, g0, and
LA (t)qL(0)

A (equations 17, 21). For example, if the rays bending toward the ground
compensate for the ground attenuation, then g=0. One cannot exclude sound
focusing with LA:a, which corresponds to g:−g̃. Despite downward
propagation ‘‘on average’’, there is some probability that LA (t)QL(0)

A , which is
described by gq g0. Suppose the density function of the random variable, g, for
the downward refraction is f1(g). To calculate the relative time-averaged
A-weighted squared sound pressure (equation 4), one can make use of the equality
[11],

1
t1 g

t1

0

p2
A1(t)
p2

0
dt=g

a

−g̃

p2
A1(g)
p2

0
f1(g) dg, (23)

and arrive at (equation (21))

S1 =Q1
d2

0

2pd2 g
a

−g̃ $1+
g

g̃%
−1

f1(g) dg. (24)

The mean value theorem of integral calculus [12] yields

g
a

−g̃ $1+
g

g̃%
−1

f1(g) dg=$1+
g1

g̃%
−1

, (25)

where g1 is the weather coefficient for downward refraction. Finally, the
time-averaged sound level, LAt =10 log {S1}, becomes (equations (22, 24, 25))

LAt =10 log {Q1}−10 log {2pd2/d2
0[1+ g1d2/(z+H)2]}. (26)

To estimate numerical values for Q1 and g1, two measurements of LAt under
downward conditions of propagation are needed (equations (19, 20, 26)). Note
that the numerical value of g1 accounts for ground effect, refraction and wind
eddies, i.e., atmospheric turbulence.

Example II. Noise, produced by the same cement mixer as in Example I, was
measured at the distances d1 =25 m and d2 =50 m and the heights z1 = z2 =1 m.
Due to wind blowing toward the microphones, there were the downward
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conditions of sound propagation. For the sample time t=1 h, the results are:
L(1)

At =66·6 dB and L(2)
At =60·4 dB. The background noise level was below 50 dB.

Equations (19), (20), and (26) yield the weather coefficient, g1 = −1·44×10−4

(note the negative value) and the source parameter, Q1 =1·80×1010.

3.2.  

During upward propagation (e.g., wind blowing from receiver to the source),
the average value of the sound level, LA (t) (equation (21)), is lower than that for
neutral conditions of propagation, L(0)

A . Large fluctuations, however, may occur.
Thus, similarly to the case of downward refraction considered above, one assumes
that the random variable, g, changes from −g̃ to +a. The distribution function
for downward refraction is f1(g). There is no evidence, however, that for upward
refraction the same distribution function remains. Therefore one can introduce
f2(g) and obtain (equation (24))

S2 =Q2
d2

0

2pd2 g
a

−g̃ $1+
g

g̃%
−1

f2(g) dg. (27)

Finally, one arrives at the time-averaged sound level,

LAt =10 log {Q2}−10 log {2pd2/d2
0 [1+ g2d2/(z+H)2]}, (28)

where Q2 is the source parameter and g2 is the weather parameter for upward
refraction. The above equation holds when the receiver is beyond the shadow zone.
To estimate the numerical values of Q2 and g2, two measurements of LAt are
necessary (equations (19, 20, 28)).

Example III. At the same points used in Examples I and II, simultaneous
measurements were carried out of the time-averaged sound level, LAt , with the
sample time t=1 h. This time, however, wind was blowing toward the cement
mixer. With the background noise level fluctuating around 47 dB, L(1)

At =64·2 dB
and L(2)

At =57·3 dB were obtained. Equations (19), (20), and (28) give the source
parameter Q2 =1·12×1010, and the weather coefficient g2 =1·16×10−3.

4. CONCLUSIONS

If the conditions of sound propagation listed in the Introduction prevail during
the time intervals t0, t1, and t2, respectively, then the time-average sound level, LAt ,
with the sample time, t= t0 + t1 + t2 (see Figure 2), can be calculated from
(equations (3, 17, 26, 28))

LAt =L(0)
A (d, z)+DLAt (d, z), (29)

where L(0)
A (equation (17)) is the sound level for a homogeneous and calm

atmosphere, and the refraction influence is accounted by

DLAt =10 log {1−P1F1(d, z)−P2F2(d, z)}. (30)
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Figure 5. Contours of LA15h =const. calculated from equations (34–37).

Here, P1 = t1/t and P2 = t2/t denote the probabilities of the downward, and
upward refraction, and

F1 =1−
Q1

Q0

(z+H)2 + g0d2

(z+H)2 + g1d2, F2 =1−
Q2

Q0

(z+H)2 + g0d2

(z+H)2 + g2d2. (31)

If the value of LAt (equation (29)) for industrial noise is known and the
time-averaged sound level of background noise, L	 AT , is available, then the noise
during the time interval, Tq t, can be assessed by (equation (1))

LAT =10 log 6t

T
10LAt (d, z)/10 +10L	 AT /107. (32)

Example IV. The following results of measurements and calculations from
Examples I, II, and III: g0 =3·26×10−4, Q0 =1·29×1010; g1 =−1·44×10−4,
Q1 =1·80×1010 and g2 =1·16×10−3, Q2 =1·12×1010. Suppose the cement
mixer is working t=5 h during a day and the probabilities of downward and
upward refraction are P1 =0·2 and P2 =0·1. For the background noise,
L	 AT =48 dB, the day time-averaged sound level, LA15h , with T=15 h, is (equation
(32))

LA15h (d, z)=10 log {(5/15)10LA5h /10 +105}, (33)

where (equations (17, 29–31)),

LA5h =101·1−10 log {2pd2/d2
0[1+3·26×10−4d2/(z+2)2]}+DLA5h , (34)

with

DLA5h =10 log {1−0·2F1 −0·1F2}, (35)
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and

F1 =1−1·4
(z+2)2 +3·26×10−4d2

(z+2)2 −1·44×10−4d2 ,

F2 =1−0·87
(z+2)2 +3·26×10−4d2

(z+2)2 +1·16×10−3d2 . (36)

The contours of LA15h (d, z)= const. are shown on Figure 5.
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