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1. 

Friction force is generated when two surfaces slide relative to each other. This
force can be separated into two types. The first has the usual retarding effect upon
motion maintained by an external force, while the second actually starts and
maintains another motion of a vibrating nature which is superimposed on the first.
For example, the work done by a damper with a Coulomb friction of a sliding
mass describing a sinusoidal motion X(t)=X0 cos vt is Uc =−4FcX0, where Fc

is the Coulomb friction force. If the Coulomb friction force is replaced by a linear
viscous force given by the expression FcX� /=X� =, where =X� = denotes the velocity
amplitude, one can show that the corresponding work done is Ud =−pFcX0. It
is seen that Uc is greater than Ud , and accordingly the damping effect of a damper
with a Coulomb friction is larger than that of a linear viscous dashpot. In both
cases damping acts as a retarding force. Tondl [1] examined the effect of dry
friction on the unstable equilibrium position of a linear single-degree-of-freedom
system with negative damping and found that dry friction can stabilize the
equilibrium position if the coefficient of negative damping does not exceed half the
value of the critical damping. Similar conclusions were drawn for two mass
systems with negative damping where dry friction is necessary to stabilize the
equilibrium position. A wide range of friction related problems have been recently
reviewed by Ibrahim [2], Armstrong–Helouvry et al. [3], Popp [4] and Ferri [5].
The majority of these studies considered a friction coefficient that does not vary
with time.

Kilburn [6] used the Fourier transform of the time series analysis and a statistical
analysis based on the Kolmogorov–Smirnov goodness-of-fit test to analyze the
time variation of friction force. Both methods indicated that friction behaves like
a random process and can be treated as a constant signal with superimposed white
noise. The instantaneous coefficient of friction is normally distributed, and its
mean and standard deviation are functionally related. Aronov et al. [7, 8]
conducted another series of tests using a pin-on-disk type model. The measured
friction force and velocity of the pin along the friction force were found to change
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randomly with time. Three different regions of operation were observed. The first
is a stable steady state friction process with no fluctuations. This region occurs
when the normal load is low and below a critical value. The second is a region
of unstable intermittent self-excited vibration. The friction force suddenly
increases, with high frequency modulated oscillations at 889 Hz (squeal), then
decreases to a lower level with a low frequency 240 Hz (chatter). This region exists
when the normal load increases beyond a certain critical value. The third regime
is characterized by high frequency self-excited oscillations.

This paper presents an experimental investigation of the friction damping for
a dynamical system subjected to sinusoidal excitation. The main objectives are to
characterize the stochastic nature of friction and to identify the model parameters
based on experimental results. With these results, a numerical simulation is carried
out to describe the friction damping influence on the system behavior under the
influence of friction damping. Particular emphasis is given to describing the
stochastic nature of friction in terms of probabilistic theory. The dependency of
the system response on the excitation frequency and amplitude, and on the friction
characteristics is examined.

2.  

2.1. Experimental model and tasks
The experimental model consists of a rectangular aluminum block of mass

m=1·028 kg and is carried by four leaf springs whose other ends are clamped to
a base block; see Figure 1. The base block is guided by Thomson bearings with
very low friction and very low constraint tolerances in the direction orthogonal
to the direction of excitation. The excitation is applied using a VTS-600
electromagnetic shaker. The head of the shaker is connected to the base block by
a rigid steel bar. In order to generate a uniform sinusoidal signal, which may be
corrupted by the model motion, a closed loop control is used. The accelerometer
signal is fed into the control device of a Spectral Dynamics ST1715 sine/random
vibration control system. This controller regulates the received signal and controls
the shaker in a closed loop to obtain accurate sinusoidal excitation. With this setup
reactive forces by the model movement are compensated for by the closed loop
feedback control system.

The friction elements consist of two small hardened steel rods welded onto a
leaf spring. The leaf spring is fixed to a non-rotating micrometer which carries a

Figure 1. Schematic diagram of the model and its supporting rig.
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Figure 2. Experimental measurements of response and contact forces for relatively high normal
force (excitation frequency 7 Hz, and excitation amplitude 2·5 mm). (a) Response displacement, (b)
response velocity, (c) normal force, (d) friction force, (e) response phase portrait, and (f)
friction–velocity curve.

three-dimensional Kistler type 9251A piezoelectric force transducer. A normal
force can be applied by turning by a micrometer screw a friction plate which is
screwed onto one side of the model block. An increase of displacement through
the micrometer screw will result in a steady increase of the normal force through
the deflection of the leaf spring. The friction plate material was changed from brass
to steel to increase the hardness and therefore reduce the wear of the plate.

Transducer signals are received by a Data Translation model DT-2828
analog/digital converter board installed in an expansion slot of a 4DX2-66V
Gateway 2000 personal computer. The signals come from (1) a Brüel & Kjaer
model 4383 piezoelectric accelerometer mounted on the shaker platform, (2) a type
CE-06-250UW-350 strain gage placed on one of the leaf spring beams in a
half-bridge configuration to detect the model response, and (3) the normal and
friction force components measured by a three-dimensional force transducer. The
signals from the force transducer are amplified using a Kistler type 5814A10
three-channel charge amplifier. The signals are in the form of voltages, and are
converged first into binary and then digital numbers. The digitized signals are
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processed for estimating statistical parameters by using Interactive Laboratory
System (ILS, by Signal Technology, Inc.) and Data Translation Visual
Engineering Environment (DTVEE, by Data Translation Inc.). The board has
four channels with a simultaneous sampling rate of 100 000 samples/s. To optimize
the use of the PC for data processing, the ILS software package was also installed
in a SUN Sparc-Station-10 which receives the acquired data via a network line
for fast processing.

The relative displacement between the friction plate and the friction element can
be calculated using the relationship

xrel =−ẍ(t)/v2
0 + xstr , (1)

where xstr is the displacement measured by the strain gage and xrel is the calculated
relative displacement with respect to the friction elements. The excitation
acceleration ẍ is filtered to reduce the influence of noise. Taking the derivative of
this signal gives the relative velocity. In the actual experimental testing it was found
that the vertical and lateral acceleration components of the mass m are very small
compared with the acceleration along the excitation direction.

2.2. Experimental results
The test procedure involves free and forced vibration tests. The purpose of free

vibration tests is to measure the model parameters. The constants of the model
and friction elements without contact constitute natural frequencies and damping

Figure 3. Time history records of the friction force plotted for two different sampling rates: (a)
sampling rate 600 Hz, (b) sampling rate 100 000 Hz.
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Figure 4. Characterization of the normal force under excitation frequency 7 Hz and amplitude
2·5 mm (corresponding to Figure 2(c)). (a) Power spectral density of the unfiltered signal, (b) spectral
density after removing the first five periodic signals; (c) the first five periodic signals; (d) probability
density of the normal force about its mean: minimum=13·80 N, mean=16·39 N, maxi-
mum=18·10 N, variance=0·1102; –––, Gaussian; ——, PDF; and (e) wave form of the normal
force without the first five periodic signals.

ratios. These parameters are measured by performing free vibration tests. Based
on these tests, the model natural frequency in the absence of friction element
contact is found to be f=10·05 Hz, while the damping of the system is
z=0·00225.

The forced vibration measurements were taken for the shaker, model response,
and friction and normal force components. The measured signals are processed
to estimate statistics and amplitude–frequency response. Measurements have been
taken for a fixed excitation amplitude and frequency but with varied applied
normal force. Each set of data represents a time history with a sampling frequency
of 600 Hz taken over a period of 50 s. Each measured signal was divided into
30 000 points which were found to be adequate to estimate the statistical
parameters of response and contact forces.
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2.2.1. Characterization of the response
Experimental measurements included normal and friction forces, model relative

displacement as detected by the strain gauges, and relative displacement between
the friction element and the model block as estimated by relation (1) and the
corresponding relative velocity. Figure 2 shows time history records of the model
relative displacement, relative velocity, and the corresponding phase diagram for
two different normal load levels and under a constant excitation amplitude of
2·5 mm and a frequency of 7 Hz. The figure also includes the corresponding time
history records of the normal and friction forces, and the dependence of the
friction force on the relative velocity. Although the normal force was applied by
initial constant pressure exerted by the forward displacement of the micrometer,
its value experiences time variation during the same test. This variation is due
primarily to the wear effects when significant amounts of material particles
accumulate on the surface. This process is accompanied by the generation and
elimination of surface asperities on the sliding surfaces. For this reason, the test
had to be repeated after cleaning and polishing the surfaces. This variation is
random in nature and fluctuates about a mean value. The corresponding friction
is periodic with a superimposed random fluctuation. Accordingly, the dependence
of the friction force on the relative velocity is not given by a single curve and the
friction force possesses multivalues for the same relative speed. As the normal load
level increases, the relative displacement experiences periodic nonlinear wave form.
This is mainly observed in regions of high displacements, where complex dynamic

Figure 5. Dependence of friction coefficient on the relative velocity corresponding to Figure 2(d):
(a) actual friction coefficient-velocity curves, (b) dependence of the mean value of the friction
coefficient on the relative velocity, (c) dependence of friction coefficient variance on the relative
velocity.
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Figure 6. Probability density function of friction coefficient corresponding to Figure 2, for
different values of the relative velocity (dotted curves show the corresponding Gaussian distribution):
(a) 0·05 m/s, (b) 0·125 m/s, (c) 0·2 m/s.

characteristics take the form of stick–slip phenomena. This feature is clearly
observed in both the time history records of the relative velocity and the
corresponding phase diagram. In the neighborhood of zero relative velocity the
state of stick–slip is clearly observed.

One may observe some kind of significant variation of the static friction forces
in the time history records. A mgnification of the friction time history record is
shown in Figure 3(a) for a sample frequency of 600 Hz. This apparent variation
of the static friction force is fund mainly due to the sampling rate. Figure 3(b)
shows the same friction time history record but with a sampling rate of 100 000 Hz.
It is seen that the static friction force is almost the same. This is always valid in
the present results.

2.2.2. Characterization of the normal force
Analyzing the normal force record, shown in Figure 2(c), reveals that the signal

consists of periodic components superimposed on a random one, most likely of
Gaussian distribution. Figure 4 shows the corresponding power spectra. The
obvious peaks in the spectral density function represent the periodicity of the
signal. With a self-programmed filter, the first five periodic signals are extracted
from the time history, as seen in Figure 4(c), while the random component is
shown in Figure 4(b). Figure 4(e) shows the remaining normal force components
without the first five periodic components. The probability density function of the
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normal force is shown by the solid curve in Figure 4(d). The dotted curve is the
corresponding Gaussian distribution estimated from the mean and variance
values. It is the normal displacements of the sliding surfaces which lead to a
proportional change of the normal force through the deflection of the spring that
carried the friction element.

Inspection of the frequency content of the normal force reveals that these
frequencies are multiples of the excitation frequency. The first two frequencies
which have the highest periodic influence on the normal force can be understood
easily. The first frequency is mainly due to an unparalleled motion between the
friction plate and the friction element. While an effort was made to achieve
alignment between the friction element and the model surface, the inevitable small
deviations resulted in some fluctuations, with frequencies identical to the excitation
frequency. The second periodicity, with the frequency double the excitation
frequency, is due to an uneven wear of the friction material. The rubbing surfaces
will be subject to normal displacement as a result of the removal of surface

Figure 7. Numerical simulation results of response and contact forces (compare with Figure 2):
(a) response displacement, (b) response velocity, (c) normal force, (d) friction force, (e) response
phase portrait, and (f) friction-velocity curve.
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Figure 8. Comparison of measured and estimated probability density functions (pdf) of the
response peak amplitude for different levels of normal force (Gaussian pdf is shown by dotted
curves): (a1) measured normal load mean value mN =7·519 N, variance s2

N =0·1815 N2, response
amplitude mean value mX0 =4·8055 mm, response amplitude variance s2

X0 =5·3825E03 mm2; (a2)
simulation mN =7·519 N, s2

N =0·1815 N2, mX0 =4·8056 mm, s2
X0

=5·546825E-3 mm2; (b1) measured
mN =11·5 N, s2

N =0·1179 N2, mX0 =4·5855 mm, s2
X0

=1·008E-2 mm2; (b2) simulation mN =11·5 N,
s2

N =0·1179 N2, mX0 =4·69103 mm, s2
X0

=1·00155E-2 mm2; (c1) measured mN =15·3 N,
s2

N =0·0911 N2, mX0 =4·06913 mm, s2
X0

=9·6615E-3 mm2; (c2) simulation mN =15·3 N,
s2

N =0·0911 N2, mX0 =4·132118 mm, s2
X0

=9·35545E-3 mm2; (d1) measured mN =16·39 N,
s2

N =0·1102 N2, mX0 =3·854 mm, s2
X0

=2·796425E-2 mm2; (d2) simulation mN =16·39 N,
s2

N =0·1102 N2, mX0 =3·9536 mm, s2
X0

=1·5374E-2 mm2.

material. This will cause a frequency doubling of the displacement of the friction
element which is periodically raised when it reaches its extreme ends. The other
periodic influences are very likely caused by uneven surfaces such as bumps in the
friction plate, or are the result of exciting the spring mass damper system of the
friction element. Those periodic influences can be considered as external effects on
the system and must be considered when comparing the results of the experiment
with the simulation results.
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2.2.3. Characterization of friction
The relationship between the normal force and the friction force gives the

coefficient of friction. It is known that the coefficient of friction is highly dependent
on a variety of parameters such as the relative velocity, normal force, surface
conditions, temperatures, etc. In order to understand the stochastic nature of the
coefficient of friction, the observed hystereses of friction–velocity, and its
dependency on the normal force, the coefficient of friction is separated into four
segments representing different states of positive and negative velocity and
acceleration direction. These measurements are separated into segments within
different velocity ranges. From the final data sets, the probability density function
can be calculated and compared with a Gaussian distribution. Finally, the mean
value and the variance are being plotted to show their dependency on the relative
velocity. This procedure is being done for a variety of different normal forces to
obtain the influence of the normal force on the coefficient of friction.

The dependency of the friction coefficient, its mean value, and its variance on
the relative velocity are obtained for different levels of the normal force at discrete
values of the relative velocity. Figure 5 shows a sample of these statistics for the
case of Figure 2. Based on the ensemble of different measurements it was found
that as the normal force increases the variance of the friction coefficient decreases.
However, the probability density function of the friction coefficient deviates from
Gaussianity as the normal load and relative velocity increase, as shown in Figure
6. Considering the limitations of data taken during every test, the results can be
considered to represent a Gaussian distribution especially for relatively low normal
force levels. With increasing normal force, it is found that the distribution deviates
from normality. The mean value indicated on the probability density function
curves shows the non-linearity and hystereses of the coefficient of friction with
respect to the relative velocity.

Figure 9. (a) Response amplitude-frequency curves for different levels of friction force,
(b) dependence of response variance on excitation frequency for different levels of friction force.
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3.    

The experimental model shown in Figure 1 can be analytically described by the
equation of motion

mẍ(t)+ cẋ(t)+ kx(t)=FR + kU0 cos (Vt), (2)

where m=block mass, x=displacement, c=damping coefficient, k=spring
stiffness, FR =friction force, U0 =base excitation amplitude. The friction Force FR

depends on the velocity ẋ and the normal force FN . During the slip mode the
friction force is

FR = mFN sgn (ẋ), (3)

whilst the following expression is used for the stick mode:

FR = k(x(t)−U0 cos (Vt). (4)

Introducing the non-dimensional parameters

t=v0t, v0 =zk/m , h=
V

v0
, (*)'=

d(*)
dt

=
(ẋ)
v0

, z=
c

2zKm
,

equation (2) becomes

x0(t)+2zx'(t)+ x(t)= (FN /k)m+U0 cos (ht). (5)

This equation can be written as three autonomous first-order differential equations

y'= &y'1
y'2
y'3'= & y2

−2zy2 − y1 +U0 cos (y3)+ (FN /k)m sgn (y2)
h ', (6)

where y1 = x(t), y2 = x'(t), y3 = ht.
Equations (6) will be solved numerically. To achieve accurate results the

simulation parameters have to be chosen to reflect the actual experimental results.
It was shown that the normal force signal contains periodic and random
components, whereas the coefficient of friction could be shown to be nearly
Gaussian with a non-zero mean value. A subroutine using a random generator
calculates a set of random numbers for a given mean value, and variance is
developed. This subroutine is used to simulate the normal force and the coefficient
of friction. The non-linearity and hystereses of the coefficient of friction can be
represented by the expression

m(x)= a+ b/(1+ c=X� =)+ dẋ2 +R(s2
x), (7)

where a, b, c and d are parameters used to fit experimental results and R(s2
x)

represents the Gaussian distribution with a variance s2
x.

The normal force is given as

FN =FN,per +R(mx , s2
x), (8)

where FN,per represents the periodic component while R(mx , s2
x) is the random

component estimated for a given mean mx and variance s2
x.
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The periodic normal force is only used to compare the simulation results with
the experimental measurements. Because the periodic signals are specific to this
model, they have not been used when obtaining general results for parameter
dependencies and describing friction damping.

The friction appears as a force opposing the relative velocity in the equation
of motion. It has random behavior which could be shown to be nearly Gaussian.
For this reason the numerical simulation is performed to describe the system
dynamic characteristics and to compare the response parameters with those
measured experimentally. The friction damping simulation involves two states, the
‘‘stick’’ and the ‘‘slip’’ modes. The slip mode is solved numerically whereas
the ‘‘stick’’ mode can be solved analytically. To determine the point of
mode change between the ‘‘slip’’ and the stick’’ states, an iteration process is used.
This procedure enables one to define a good approximation when the velocity
reaches zero. The sign of the friction force is the signum of the velocity. This
property can be easily inserted into the differential equation by a logical operator
defined by the sign of the velocity. Furthermore, the randomness is taken into
account by a random number generator. This generator is called up by a
subroutine defined in the math library IMSL for FORTRAN, and generates a
Gaussian distributed set of random numbers with a given mean value and
variance. The random number then can be called at specified time intervals within
the numerical integration.

The length of the time interval in which the coefficient of friction changes
randomly can be varied and offers the possibility of adapting the simulation to
meet the accuracy set by the experimental results. Using a random parameter in
a simulation leads to random results. In general, when random problems like this
are simulated, procedures like the Monte Carlo simulation are being used.
Simulations like these require several numerical simulations to obtain a mean
solution out of the varied set of random solutions. In the case of this simulation,
the variable of interest is not the time history of displacement, but rather the
distribution of maximum amplitude. For this case it is possible simply to run the
simulation once for a long period of time and statistically analyze the distribution
of the maximum amplitudes. These results can then be compared with
experimental results.

Figure 7 shows the computational results calculated by using the information
about the distribution of the normal force and the coefficient of friction. It is seen
that the simulation results are in good agreement with the corresponding
experimental results given in Figure 2. For better comparison, the maximum
amplitude of the response is used as the main variable to describe the effect of
friction damping. Figure 8 shows probability density plots of the maximum
amplitude for the experiment and its corresponding simulation results. The
distribution can be seen to have the main characteristics of a Gaussian
distribution, but deviates as the normal force increases. Figures 9(a) and 9(b) show
the dependence of the response amplitude and its variance on the excitation
frequency for different friction force levels. The damping effect on the resonance
response amplitude is noticed as the friction force increases.
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4.   

The analysis of the experimental results has shown that the friction force can
be described by a periodic component with superimposed random fluctuations.
The random component has essentially a Gaussian distribution for relatively low
levels of normal force. As the normal force increases, the distribution of the
friction force deviates from normality. The mean value of the friction force is
found to depend on the relative velocity in a non-linear form associated with
hystereses, depending on the acceleration direction. Gaussian distributions of
normal and friction forces are used for numerical simulation. This is not an exact
assumption for increasing normal forces, which is reflected by the results obtained
for higher normal forces in their deviation from experimental results. During
experimental investigation it was hard to achieve repeatability of results.
Conditions such as surface roughness and unevenness are the main sources of
changing experimental conditions. Since their influences on the system response
are very high, it is very difficult to reach exact conclusions about the system’s
behavior. Furthermore, the experimental setup was found to be very sensitive with
respect to applying a constant normal force. Large periodic fluctuations of the
normal force did not allow a proper evaluation of the influence of the magnitude
of the normal force on the coefficient of friction.
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