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Geometric profile variations always exist in nominally circular rings due to
limitations in the manufacturing processes. Such profile variations are known to
lead to frequency splitting between pairs of modes which are degenerate in a
perfect ring. In this paper, the effects of circumferential profile variations on the
in-plane vibration characteristics of such rings are studied using a numerical
method. The inner and outer ring surfaces are described in a very general way by
Fourier series and the Rayleigh–Ritz method is used to obtain the natural
frequencies and mode shapes. Results are presented for a number of example cases
which include single- and multiple-harmonic variations in profile. The relationship
between the patterns of frequency splitting and the harmonic content of the ring
profile is investigated and the most important causes of frequency splitting are
identified.
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1. INTRODUCTION

A companion paper [1] presented a theoretical approach for calculating the natural
frequencies and mode shapes for the in-plane vibration of rings with
circumferentially variable, in-plane radius of curvature of the bounding surfaces.
Fourier series were used to define the inner and outer surfaces of the ring, thus
permitting any single valued closed ring shape to be modelled in a general way
with any required degree of accuracy. The true mid-surface of the ring was then
found from the inner and outer surface profiles using an iterative numerical
procedure, and the Rayleigh–Ritz method was used to determine the natural
frequencies and mode shapes.

The current paper presents a number of application examples of the theory given
in reference [1]. These are based on rings which are notionally circular in shape,
but which deviate from perfect axial symmetry in a number of ways. One aim of
the work reported here is to gain an improved, quantitative understanding of the
effects of departures from true circularity caused by limitations in manufacturing
processes. This is particularly relevant to applications such as vibratory gyroscopes
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[2, 3], where the frequency splitting caused by imperfection is vitally important and
must be controlled to within fine limits of the order of 0·01% (100 ppm) or better.
Therefore, there is a specific need to understand the effects of small profile
variations (i.e., departure from circularity is small compared to the mean radial
thickness of the ring) and results are presented for this situation. However, the
method of analysis is equally applicable to cases where the departure from
circularity is large and a number of such cases are also considered, including
regular polygons.

As mentioned above, the solution method used [1] relies on decomposing the
inner and outer surface profiles of the ring as Fourier series. This has a number
of advantages. First, the Fourier series is the most natural way to describe any
continuous, periodic closed structure, of which a ring is perhaps the most obvious
example. Second, when discussing departure from circularity (imperfection), there
is a need to quantify the effect in a way which can be usefully interpreted in the
context of its effect on ring vibration and the Fourier coefficients provide a
convenient way to do this. Furthermore, modern metrology equipment for
measuring circular forms often provides the required Fourier series description.

The Fourier series description of the ring profiles leads naturally to the idea of
the profile-spectrum of the ring shape. The way in which individual harmonics in
the profile-spectrum affect ring vibration modes of a given harmonic number is
of particular interest because there is the prospect that these can be controlled
during the manufacturing process.

Many papers have been published on the subject of the in-plane vibrations of
circular rings, the great majority of which are restricted to perfectly circular rings.
Relatively few papers have been published on the effects of departure from
perfection and the most important of these are briefly reviewed below. Reference
[4] presented an investigation of frequency splitting in a thin circular ring due to
equal masses which were assumed to be attached to the ring at the vertices of an
inscribed regular nth order polygon. A perturbation method and Group Theory
were used to obtain selection rules for the splitting of doublets. The rules predicted
when splitting would occur, but did not indicate the magnitude of the frequency
splits. An experimental study, which verified the main theoretical predictions, was
presented in reference [5].

Reference [6] described theoretical perturbation studies and experimental
measurements of the radial vibrations of eccentric rings. Frequency splitting due
to eccentricity was predicted to be small for most modes of vibration and the
experimental measurements supported the theoretical predictions.

Reference [7] presented an analysis of the vibration of an eccentric, thin walled
cylinder. It was assumed a priori that the mid-surface was circular and Fourier
series were used to represent the circumferential variation of the wall thickness.
The assumption of a circular mid-surface is not strictly valid in general and will
only be a valid approximation for small values of eccentricity. Agreement between
theoretical predicted and measured natural frequencies was of the order of 2%
(20 000 ppm).

The results given in the present paper show that the influence of profile variation
on vibration properties depends on the combined effects of mass- and
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stiffness-distributions that result from the dimensional variations. In certain simple
cases, where the imperfection can be represented as a point mass [2] which does
not affect stiffness, or a crack [8] which does not significantly affect mass, the
positions of given modes can be predicted intuitively from considerations of
maximum and minimum kinetic energy or strain energy. In the case of general
profile variations, however, the effects are more subtle and are not necessarily easy
to predict intuitively. This is because, for example, thickening the ring in some
region leads to an increase in both the mass and the stiffness in that region. It is
the integrated balance of the variations over the entire ring that determines the
circumferential location of the modes and whether the frequencies of particular
modes will increase or decrease. This point will be discussed in more detail, with
specific examples, later in the paper.

The present paper is structured as follows. A brief review of the key analytical
results as developed in reference [1] is given. Numerical results relating to a number
of examples of increasing complexity are then presented, starting with profiles
containing only a single harmonic variation. The effects of profile harmonic
number, profile variation amplitude and the relative phasing between the inner and
outer surfaces are considered. More complicated examples with multiple-harmonic
profile variations are presented, including a regular polygon. Finally, a general
discussion of the interpretation of the results is given and conclusions are drawn.

2. METHOD OF ANALYSIS

The method of analysis used to obtain the numerical results presented in this
paper is fully described in references [1, 9]. For convenience and ease of reference
when discussing the numerical results, the key steps are repeated below in
summary form.

Figure 1. A thin ring having circumferentially arbitrary profile.
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Figure 2. Illustration of spatial phase (i= j=4; h+
f = h−

f =0·3h).

Using Fourier series it is possible to model any closed ring bounded by
single-valued curves (see Figure 1) as follows:

f+(b')= f+
0 + s

n

p=1

f+
p cos (pb')+ s

n

q=1

f+
q sin (qb'), (1)

f−(b')= f−
0 + s

n

p=1

f−
p cos (pb')+ s

n

q=1

f−
q sin (qb'), (2)

where f+(b') and f−(b') denote respectively the outer and inner surface functions
with respect to the global circumferential co-ordinate b' and f+

0 , f+
p , f+

q , f−
0 , f−

p and
f−
q are the Fourier coefficients.

One of the particular cases that will be considered here in some detail is that
where the inner and outer surfaces are each assumed to contain only a single
harmonic variation in profile. The harmonic number can be the same for both
surfaces, or different. In these cases the outer and inner profile can be expressed
quite generally as follows:

f+(b')= r+
a + h+

f cos ib', f−(b')= r−
a + h−

f cos (jb'−f), (3, 4)

where h+
f and h−

f are the amplitudes of the outer and inner surface profile
variations measured from the mean outer and inner radii r+

a and r−
a , respectively,

and i, j are the harmonic numbers of the outer and inner profiles respectively.
f may be referred to as the spatial phase angle between the trigonometric

functions of the inner and outer surfaces at b'=0. Figure 2 illustrates some
examples of the case where the harmonic numbers of the inner and outer surfaces
are the same (=4) but the spatial phase angles are different.

For free vibration at frequency v the tangential and normal displacement, v and
w, of the middle surface are assumed to have the following forms:

v= s
N

n=0

(vs
n sin nb'− vc

n cos nb') eivt, (5)
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w= s
N

n=0

(wc
n cos nb'+ws

n sin nb') eivt, (6)

where vc
n , vs

n , wc
n and ws

n are the generalised co-ordinates.
Based on the above relationships, the eigenvalue problem for in-plane free

vibration of the ring can be derived [9] using a suitable thin shell theory (e.g.,
Novozhilov’s [10]) and the Rayleigh–Ritz method. It can be expressed in the
following general matrix form

$$Kss

Kcs

Ksc

Kcc%− l2$Mss

Mcs

Msc

Mcc%$qs

qc%=$00%, (7)

where

vs
0 vc

0

ws
0 wc

0

vs
1 vc

1

ws
1 wc

1G
G

G

G

G

G
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G
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G
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G

G

G

G

G

L

l

qs = ···
, qc = ··· . (8)

···
···

vs
N vc

N

ws
N wc

N

In the above equations, q denotes a vector of generalised co-ordinates vn , wn and
[Kss] etc. and [Mss] etc. represent stiffness and mass matrices of size 2(N+1). The
superscript s denotes coefficients related to co-ordinates vs

n and ws
n , and superscript

c denotes coefficients related to co-ordinates vc
n and wc

n . The frequency factors of
the ring, l, are the eigenvalues of equation (7) and are defined by

ln =Xr

E
vnra , (9)

where vn is the natural frequency of the nth radial mode, ra is the mean radius
of the middle surface, E is Young’s modulus and r is the density of the ring
material.

The eigenvalue problem, equation (7), can be solved numerically, using one of
the readily available standard techniques, to obtain the eigenvalues (the frequency
factors) and the eigenvectors (the mode shapes). For a given value of n, equation
(7) yields a pair of values of ln except at the n=0 mode. The pair of eigenvalues
will be equal in the case of a perfect ring but will be slightly different in the case
of an imperfect ring, giving rise to a higher frequency mode and a lower frequency
mode for each value of n.
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3. NUMERICAL RESULTS

All the frequency data in this paper will be presented and discussed using the
non-dimensional frequency factor ln defined by equation (9). In computing the
results, sufficient terms have been used in the displacement solution series,
equations (5) and (6), to achieve convergence to four significant figures in the
frequency factors, this being a practical compromise between accuracy and
computing time based on engineering judgement. The required convergence was
met in most cases using 30 terms in the series and, unless otherwise stated, it may
be assumed that 30 terms were used. The results presented are in very close
agreement with those obtained from an extensive finite element study [9] giving
confidence in their validity.

In presenting the numerical results, emphasis has been placed on the
frequency-splitting effect of profile variations, since this was the initial motivation
for performing the work and, in practice, frequency splitting is the most significant
practical consequence of small departures from perfect circularity. In the main,
therefore, absolute values of frequency factor are not quoted and the numerical
frequency results are given as the percentage changes caused by profile variation
compared to the perfect ring. Details of actual frequency factors, and of
comparison with results derived from finite element analysis, may be found in
reference [9].

Nominal ring dimensions and material properties used in this paper are the same
as those adopted by Tonin and Bies [7], namely r+

a =40·75 mm, r−
a =37·83 mm,

E=206·7×109 N/m2, r=7850 kg/m3. The axial length is 2 mm.

3.1. -  

In general, it is unlikely that imperfections in the manufacturing process would
lead to a ring which contained only a single harmonic departure from true
circularity in both the inner and outer surfaces, although it is well known that the
method of support of circular components (such as ball bearing raceways) during
turning and grinding operations can induce lobed shapes which are dominated by
a single harmonic. Nevertheless, a sound understanding of the individual effect of
a single profile variation harmonic on the vibration of the ring would seem to be
a logical precursor to an investigation of what happens when multiple profile
variation harmonics are present. We therefore begin by examining in some detail
the effect of a single harmonic component.

Clearly there is an almost infinite range of harmonic numbers (i, j) and profile
harmonic amplitudes, h+

f and h−
f , (equations (3) and (4)) which could be

investigated. From practical considerations, results will be restricted mainly to
cases where the inner and outer profiles contain harmonic numbers in the range
i= j=1, 2, 3, 4, 5, 6. Furthermore, it will be assumed that the profile harmonic
amplitude is the same on the inner and outer surfaces and values of hf within the
range h+

f = h−
f =0·01h to 0·6h will be considered, where h= r+

a − r−
a is the

difference between the mean outer and inner radii. This range of profile amplitudes
encompasses what might be termed both ‘‘small’’ and ‘‘large’’ variations. Spatial
phases in the range f=0 to p will be considered.
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3.1.1. The effect of profile harmonic number

Tables 1 and 2 show the effect of a single harmonic profile variation with
harmonic number in the range 1 to 6 for a profile amplitude h+

f = h−
f =0·1h and

three values of the spatial phase angle f. The results for even profile harmonics
are given in Table 1 and for odd harmonics in Table 2. They are displayed
separately because the frequency splitting patterns are different for the two cases.
The results in the tables show the percentage differences between the frequency
factors ln for the ring with profile variations present compared to the
corresponding frequency factor of the equivalent perfect ring (i.e., ring with
h+

f = h−
f =0). In the tables, percentage differences are displayed to two decimal

places consistent with the four significant figure accuracy of the frequency factors.
The column headings, v(n), refer to the predominant harmonic number, n, in the
corresponding eigenvector (mode shape vector). For example, v(2) refers to a
mode in which the dominant component of the eigenvector is the 2b' contribution.
In the case of a perfect ring this eigenvector would contain only the 2b'
contribution, but when the ring profile is no longer purely circular the
corresponding eigenvector contains relatively small components at 3b', 4b', . . . .
etc. This will be discussed in more detail later in the paper.

Where frequency splitting occurs in a particular doublet, two different values
of percentage change in ln are shown in Tables 1 and 2 and these are identified
in the third column as being the higher and lower frequencies in the pair. The

T 1

The effect of even profile harmonic numbers on frequency factor

Frequency v(0) v(2) v(3) v(4) v(5) v(6)

f=0 i= j=2 High −0·01 −0·01 −0·02 −0·02 −0·02 −0·02
Low −0·02 −0·02 −0·02 −0·02 −0·02

i= j=4 High 0·23 1·07 −0·07 −0·08 −0·17 −0·12
Low −1·15 −0·07 −0·30 −0·17 −0·12

i= j=6 High 2·79 −0·09 1·20 −0·13 −0·36 −0·15
Low −0·09 −1·37 −0·13 −0·36 −2·85

f= p/2 i= j=2 High 10 0·17 −0·30 −0·49 −0·59 −0·64
Low −1·22 −0·34 −0·49 −0·59 −0·64

i= j=4 High 0·19 7·04 −0·58 0·14 −0·44 −0·42
Low −9·84 −0·58 −1·45 −0·44 −0·45

i= j=6 High 2·04 −2·85 6·36 −0·66 −0·71 −0·06
Low −2·85 −9·22 −0·66 −0·71 −3·24

f= p i= j=2 High 0·01 0·34 −0·57 −0·96 −1·16 −1·27
Low −2·44 −0·67 −0·96 −1·16 −1·27

i= j=4 High 0·16 9·00 −1·12 0·26 −0·70 −0·73
Low −14·53 −1·12 −2·53 −0·70 −0·77

i= j=6 High 1·40 −5·56 8·06 −1·21 −1·07 −0·95
Low −5·56 −13·61 −1·21 −1·07 −2·56

h+
f = h−

f =0·1h; v(n) denotes mode dominated by nth displacement harmonic. Numerical values are
percentage change in frequency factor ln compared to perfect ring, defined as [limperfect

n − lperfect
n ]×100%/lperfect

n .
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T 2

The effect of odd profile harmonic numbers on frequency factor

Frequency v(0) v(2) v(3) v(4) v(5) v(6)

f=0 i= j=1 High 10 10 10 10 10 10
Low 10 10 10 10 10

i= j=3 High 0·04 −0·02 −0·04 −0·07 −0·05 −0·05
Low −0·02 −0·08 −0·07 −0·05 −0·05

i= j=5 High 0·81 −0·09 −0·07 −0·17 −0·11 −0·42
Low −0·09 −0·07 −0·17 −0·91 −0·42

f= p/2 i= j=1 High 10 −0·29 −0·61 −0·69 −0·71 −0·72
Low −0·29 −0·61 −0·69 −0·71 −0·72

i= j=3 High 0·05 −0·62 0·17 −0·36 −0·44 −0·52
Low −0·62 −1·29 −0·36 −0·44 −0·52

i= j=5 High 0·62 −2·86 −0·62 −0·60 0·11 −0·59
Low −2·86 −0·62 −0·60 −1·87 −0·59

f= p i= j=1 High 10 −0·57 −1·23 −1·38 −1·43 −1·45
Low −0·58 −1·23 −1·38 −1·43 −1·45

i= j=3 High 0·05 −1·24 0·35 −0·66 −0·82 −1·00
Low −1·24 −2·50 −0·66 −0·82 −1·00

i= j=5 High 0·44 −5·60 −1·21 −1·07 −0·01 −0·76
Low −5·60 −1·21 −1·07 −2·55 −0·76

h+
f = h−

f =0·1h; v(n) denotes mode dominated by nth displacement harmonic. Numerical values are
percentage change in frequency factor ln compared to perfect ring, defined as [limperfect

n − lperfect
n ]×100%/lperfect

n .

frequency split in a given doublet is the arithmetic difference between the higher
and lower values.

Turning now to a detailed examination of the results presented in Tables 1 and
2, the following observations may be made about the frequency splitting patterns
of the flexural modes (there is no frequency splitting of the v(0), breathing, mode).

(a) When the profile variation harmonic number (i= j) is even (Table 1),
frequency splitting only occurs in the nth mode when n= ki/2 where k is a positive
integer. (The split frequencies are highlighted in the table.) For example, it can
be seen from Table 1 that for the case where i= j=4, f=0 that the frequency
factor percentage splits are 2·22% for n=2 (i.e., v(2)), 0·22% for n=4 (i.e., v(4))
and less than 0·01% for n=6. Frequency splitting continues to be predicted for
higher values of n but is smaller than the 0·01% accuracy of the computed results.
Similar trends can be seen for all even values of i and j. It may be noted that the
maximum split for a given i= j occurs at the lowest value of n and the split
becomes smaller at higher values of n.

(b) When the profile variation harmonic number (i= j) is odd (Table 2),
frequency splitting only occurs in the nth mode when n= ki where k is a positive
integer. For example, it can be seen from Table 2 that for the case where i= j=3
and f=0 that splitting of 0·04% occurs for n=3 (i.e., v(3)). As in the case where
n is even, the frequency split is largest for the lowest value of n and becomes smaller
for higher values of n. In fact, for the profile amplitude h+

f = h−
f =0·1h on which

Table 2 is based, the frequency split is less than 0·01% for kq 1, so the splits do
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Figure 3. Effect of profile harmonic number (i= j) on frequency factors of 2nd mode (n=2)
(f= p, hf =0·1h). —w—, Higher frequency; —Q—, lower frequency.

not show in the tabulated values. Larger values of h+
f and h−

f will be considered
later.

It is noticeable that, for the same amplitude of profile variation harmonic, the
frequency splits which occur when the profile harmonics are even and n= i/2 are
generally much greater than those which occur when n= i for i even or odd.
Possible reasons for this will be discussed in section 4 of the paper.

Figures 3–5 illustrate the principal trends relating to the effects of harmonic
number which follow from Tables 1 and 2. It is noteworthy that the trends in
frequency splitting resulting from single harmonic components of profile variation
are in agreement with the splitting rules established in reference [4] for the case
of equal attached masses placed at the vertices of regular polygons with the same
harmonic number.

Figure 4. Effect of profile harmonic number (i= j) on frequency factors of 3rd mode (n=3)
(f= p, hf =0·1h). —w—, Higher frequency; —Q—, lower frequency.
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Figure 5. Effect of profile harmonic number (i= j) on frequency factors of 4th mode (n=4)
(f= p, hf =0·1h). —w—, Higher frequency; —Q—, lower frequency.

3.1.2. The effect of spatial phase angle

The spatial phasing between the single harmonic profile variation on the outer
and inner surfaces has a strong influence on frequency splitting. In general it is
found that frequency splitting increases significantly when the spatial phase angle

T 3

Modal vectors of the 2nd and 3rd modes (i= j=2, f=0, and h+
f = h−

f =0·1h)

Frequency Contribution to modal vector from nth generalised co-ordinate
factors ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

ln n = 0 1 2 3 4 5 6

0·0576 wc
n −0·0133 0·00 0·8943 0·00 0·0057 0·00 0·00

ws
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

2nd mode vs
n 0·00 0·00 −0·4473 0·00 −0·0047 0·00 0·00

vc
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

0·0575 wc
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

ws
n 0·00 0·00 0·8942 0·00 0·0057 0·00 0·00

2nd mode vs
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

vc
n 0·0100 0·00 −0·4475 0·00 −0·0047 0·00 0·00

0·1626 wc
n 0·00 −0·0140 0·00 0·9483 0·00 0·070 0·00

ws
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

3rd mode vs
n 0·00 0·0001 0·00 −0·3170 0·00 −0·0042 0·00

vc
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

0·1626 wc
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

ws
n 0·00 −0·0143 0·00 0·9483 0·00 0·070 0·00

3rd mode vs
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

vc
n 0·00 −0·0003 0·00 −0·3170 0·00 −0·0042 0·00

Note, only even n contributors are $0 in the 2nd mode and only odd n contributors are $0 in the 3rd mode.
Frequency split 00 in the 3rd mode. Modal vectors are normalised such that RSS of all components=1 (30-term
series).
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T 4

Modal vectors of the 2nd and 3rd modes (i= j=4, f= p, and h+
f = h−

f =0·1h)

Frequency Contribution to modal vector from nth generalised co-ordinate
factors ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

ln n = 0 1 2 3 4 5 6

0·0627 wc
n 0·00 0·00 0·8940 0·00 0·00 0·00 −0·0250

ws
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

2nd mode vs
n 0·00 0·00 −0·4474 0·00 0·00 0·00 0·0042

vc
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

0·0492 wc
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

ws
n 0·00 0·00 0·8941 0·00 0·00 0·00 −0·0206

2nd mode vs
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

vc
n 0·00 0·00 −0·4474 0·00 0·00 0·00 0·0034

0·1608 wc
n 0·00 −0·0300 0·00 0·9464 0·00 −0·0111 0·00

ws
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

3rd mode vs
n 0·00 0·0320 0·00 −0·3164 0·00 0·0022 0·00

vc
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

0·1608 wc
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

ws
n 0·00 −0·0300 0·00 −0·9464 0·00 −0·0111 0·00

3rd mode vs
n 0·00 0·00 0·00 0·00 0·00 0·00 0·00

vc
n 0·00 −0·0320 0·00 0·3164 0·00 0·0022 0·00

Note, only even n contributors are $0 in the 2nd mode and only odd n contributors are $0 in the 3rd mode.
Frequency split 00 in the 3rd mode. Modal vectors are normalised such that RSS of all components=1 (30-term
series).

increases from 0 to p. Before examining the numerical results in detail it is worth
commenting on the physical meaning of spatial phase. Consider Figure 2 which
shows schematically (profile variation amplitude is exaggerated for clarity) a ring
with equal amplitude 4b' variations in the inner and outer profiles for three values
of spatial phase f (=0, p/2, p). f=0 and p are special cases of the more general
case which is represented by p/2. In the case where f= p, Figure 2(c), the
circumferential mid-surface is circular and the thickness has a 4b' harmonic
variation. It can be seen that the difference between the maximum and minimum
radial thickness is greatest in the case where f= p. At the other extreme, when
f=0, Figure 2(a), the mid-surface is non-circular and simply follows the mean
of the inner and outer profiles. The corresponding thickness measured along the
normal to the mid-surface is constant in this case. In both the above mentioned
special cases the eigenvalue problem, equation (7), partitions into two uncoupled
problems because the off-diagonal sub-matrices of the mass and stiffness matrices
are zero. The resulting mode shapes are either symmetric or anti-symmetric with
respect to b'=0. Tables 3 and 4 show typical modal vectors which display these
properties. For values of f other than 0 and p the eigenvalue problem does not
partition and the corresponding eigenvectors therefore contain a combination of
odd and even (sine and cosine) generalised co-ordinates.

Returning now to the numerical frequency results it can be seen from Tables
1 and 2 that frequency splitting generally increases significantly when the spatial
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phase angle increases from 0 to p. This is particularly marked in the splits which
occur in modes for which n= i/2 when the profile harmonic number is even. For
example, in Table 1 the frequency split in the 3b', v(3), modes caused by a 6b'
variation in profile (i= j=6) is 2·57% when f=0, 15·58% when f= p/2 and
21·67% when f= p. Similar figures apply to the split in the 2b' modes caused by
a fourth harmonic profile variation, i= j=4.

In the general case, there is no obvious, simply physical link between the
geometry of the ring and the frequency splitting behaviour. However, in the special
case i, j even, f= p, it may be possible to place a physical interpretation on the
very large splitting which occurs in the n= i/2 modes. To aid this explanation, refer
to Table 4 which shows the contribution to the modal vectors from the generalised
co-ordinates corresponding to n=0, 1, 2, . . . , 6 for the case where i= j=4 and
f= p. This corresponds to the ring shape shown in Figure 2(c) where the profile
varies as cos 4b'. Table 1 indicates that a large (23·53%) frequency split occurs in
the 2b' modes for this ring for f= p. The modal vectors corresponding to these
modes are shown in Table 4 from which it can be seen that the radial (w)
displacement pattern in the higher frequency mode is dominated by a cos 2b'
distribution while the lower frequency mode is dominated by a sin 2b' distribution.
This means that the maximum change in centreline curvature in the higher
frequency mode occurs where the ring is thickest and therefore stiffest. Conversely,
the maximum change in curvature in the lower frequency mode occurs where the
ring is thinnest and therefore weakest. This ties in logically with the pattern of
frequency splitting. Of course, it is also true that, in the higher frequency mode,
the points of maximum displacement are points of maximum mass per unit length
(and vice versa) which, taken by itself, would lead to the opposite pattern of
frequency splitting (i.e., added mass at points of maximum displacement tends to
lower the natural frequency). However, because the mass per unit length is directly
proportional to the radial thickness but the flexural rigidity is proportional to the
cube of the radial thickness, the ‘‘stiffness’’ effect dominates the ‘‘mass’’ effect, as
it does in uniform beams where flexural natural frequencies increase with thickness.

It is more difficult to place a simple physical interpretation on more general
cases where the ring geometry variation is less distinct, and there is possibly little
practical value in pursuing this line any further at this stage. Suffice to say that
the behaviour will be governed by the detailed structure of the mass and stiffness
matrices which are derived from the strain energy and kinetic energy expressions
which are given in reference [1]. These will be discussed in more detail in section
4 of the present paper.

The key general points about the way in which the profile harmonic number and
spatial phase affect the frequency splitting are summarised in Figure 6 which shows
the effects on the 2b' flexural modes of 2b', 3b' and 4b' variations in profile for
spatial phases in the range 0 to p. The very large frequency splits caused by the
4b' profile variation are clearly demonstrated, as is the lack of any splitting at all
due to the 3b' profile variation.

It may also be noted from Tables 1 and 2 that, irrespective of whether frequency
splitting occurs, the effect of imperfection is generally to lower the natural
frequencies of the flexural modes of the ring compared to the equivalent perfect
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Figure 6. Effect of spatial phase angle on frequency factors of 2nd mode (hf =0·1h]. —Q—, High,
i= j=4; —W—, low, i= j=4; . . . r . . . , high, i= j=2; . . . t . . . , low, i= j=2; ––+––, High,
i= j=3; –.×–. , low, i= j=3.

ring (i.e., most of the percentage changes in frequency factor are negative). The
exceptions to this rule are the higher frequency modes in those doublets where
significant frequency splitting occurs. It may be surmised that the general reduction
in frequencies is linked with the fact that any imperfection tends to increase the
length of the mid-surface, which would tend to lower the natural frequency.

3.1.3. The effect of profile amplitude

It is clear that the amplitude of the profile variation will have an important
influence on the magnitude of the resulting frequency splits. In practice, the
amplitude of any profile variation due to deficiencies in manufacturing processes
are likely to be a small fraction of the mean radial thickness of the ring, and we
will consider examples relevant to this case. However, it is also of interest to
consider a range of larger profile variations where the profile amplitude is a
significant fraction of the mean radial thickness. These are relevant, partly for the
sake of completeness and partly because such cases provide a simple first order
approximation to thin regular polygonal rings which will be considered in more
detail later in the paper.

Consider first an example of a ‘‘small’’ profile variation. Table 5 compares the
percentage changes in the frequency factors for the case where i= j=4 for profile
amplitudes of 0·1h and 0·01h, respectively. It is immediately obvious that reducing
the profile amplitude from 0·1h to 0·01h significantly reduces the frequency
splitting to the extent that, to within the accuracy of the computed results, some
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T 5

Effect of profile amplitude on frequency factor

h+
f Frequency w(0) w(2) w(3) w(4) w(5) w(6)

f=0 0·1h High 0·23 1·07 −0·07 −0·08 −0·17 −0·12
Low −1·15 −0·07 −0·30 −0·17 −0·12

0·01h High 10 0·11 10 10 10 10
Low −0·11 10 10 10 10

f= p/2 0·1h High 0·19 7·04 −0·58 0·14 −0·44 −0·42
Low −9·84 −0·58 −1·45 −0·44 −0·45

0·01h High 10 0·84 −0·01 10 10 10
Low −0·87 −0·01 −0·01 10 10

f= p 0·1h High 0·16 9·00 −1·12 0·26 −0·70 −0·73
Low −14·53 −1·12 −2·53 −0·70 −0·77

0·01h High 10 1·17 −0·01 10 −0·01 −0·01
Low −1·23 −0·01 −0·03 −0·01 −0·01

hf =0·01h and 0·1h; f=0, p/2 and p; i= j=4. v(n) denotes mode dominated by nth displacement harmonic.
Numerical values are percentage change in frequency factor ln compared to perfect ring, defined as
[limperfect

n − lperfect
n ]×100%/lperfect

n .

of the frequency splits disappear. Amongst those splits that remain, it may be
noted that the relationship between magnitude of frequency split and amplitude
of profile variation is different for those cases where n= i/2 compared to the cases
where n$ i/2. In the former case, reduction in the profile amplitude by a factor
of 10 produces an approximately tenfold reduction in the frequency split (e.g.,
23·53% to 2·4% for f= p in the n=2 modes). In the latter cases, however, the
tenfold reduction in profile amplitude reduces the frequency split by a factor of
the order of 100 (e.g., 2·79% to 0·03% for f= p in the n=4 modes). An almost
identical pattern is observed for the corresponding frequency splits when i= j=6
[9]. In cases where the profile variation harmonic is odd (i= j=3, 5, . . . ), there
are no modes corresponding to n= i/2 and it is found that the reduction in
frequency split for the modes for which n= i is of the order of 100 for a tenfold
reduction in profile amplitude, as it is in the corresponding cases when i and j are
even. Further detailed numerical results are available in reference [9].

In practical terms therefore there is a poweful incentive to reduce the magnitude
of the profile variation if frequency splitting is to be minimised. The frequency split
in a pair of modes, due to profile variations at twice the predominant mode-shape
harmonic, is likely to be the most difficult to deal with practically. This is because
such frequency splits are relatively much larger and the relationship between the
profile-amplitude and the frequency split is apparently less strong (i.e., linear
instead of quadratic). A detailed explanation of the differences in the profile
amplitude and frequency split requires a more detailed consideration of the
construction of the mass and stiffness matrices, which is given in section 4.

Consider now the situation where the profile amplitude is relatively large
compared to the mean radial thickness. As an example, results are presented for
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Figure 7. Geometry of ring with different amplitudes of 6th harmonic profile variation (f=0).

a sixth harmonic variation in profile amplitude, such that the outer and inner
profiles are given by

f+(b')= r+
a + hf cos 6b', f−(b')= r−

a + hf cos (6b'−f), (10, 11)

where r+
a and r−

a denote the nominal radii of outer and inner profiles, respectively,
and f=0.

Figure 7 illustrates the geometries considered and it can be seen that the
resulting ring approximates to a hexagon for larger values of hf . As an aside it
may be noted here that when h+

f and h−
f are greater than h/2, values of f other

than f=0 could result in physically unrealisable rings in which the ‘‘inner’’ and
‘‘outer’’ profiles cross.

For the cases considered it was found that, within the accuracy of the computed
results, frequency splitting is only predicted in the 3b' and 6b' modes and no
splitting is predicted in the 2b', 4b' and 5b' modes. The percentage frequency splits
in the 3b' and 6b' modes are, for the range of hf considered, shown in Figure 8.
As expected, the magnitidue of the frequency split increases as the profile
amplitude increases. However, in contrast to the ‘‘small’’ amplitude profile
variations considered earlier, the frequency split in the 6b' mode due to the 6b'
profile variation is greater than the split in the 3b' mode for values of hf greater
than 00·1h. Extrapolation of the frequency split in the 3b' mode shown in
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Figure 8 to include values of hf in the range 0Q hf Q 0.1h indicates an almost linear
relationship between profile amplitude and frequency split, as observed and
discussed earlier in relation to the ‘‘small’’ amplitude profile variations. However,
the almost-quadatic relationship between the profile amplitude and frequency split
in the 6b' modes which was demonstrated for 0·01Q hf Q 0·1h is not followed for
hf q 0·1h where the relationship appears to be almost linear in the range of hf

considered.

3.2. -  

It is most unlikely that the profile variation on the inner and outer surfaces of
a real ring would contain only a single harmonic. The more general case where
a significant number of harmonics of different amplitude exists on the inner and
outer surfaces is not particularly tractable. In order to progress from the single
harmonic variation considered in section 3.1 towards the general case, results are
now presented for three cases of intermediate complexity, each of which contains
a small number of different harmonics. These cases are: (i) the inner and outer
profile each contain a single, (different) harmonic, (ii) the inner and outer profiles
each contain the same three harmonics, and (iii) a regular hexagonal ring.

3.2.1. Different single harmonic on inner and outer profile

Table 6 shows the changes in frequency factors compared to those of a perfect
ring, for a number of cases, these being i= j=3, 4, 6 together with the
combinations i=3, j=4 and i=4, j=6, with f= p and h+

f = h−
f =0·1h in all

cases.
The patterns of frequency splitting in the cases where only a single harmonic

is present are of course the same as those discussed in section 3.1 and the frequency
splits are maxima because f= p. In the cases where two different harmonics are
present, frequency splits occur in those modes which would be expected from each
of the single harmonic contributions taken separately, albeit that the predicted

Figure 8. The frequency split versus profile amplitude varied from 0·1h to 0·6h in the 3rd and 6th
modes. —Q—, 3rd mode; —R—, 6th mode.
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T 6

Effect of combinations of two profile harmonics on frequency factors (hf =0·1h,
f= p)

Frequency w(0) w(2) w(3) w(4) w(5) w(6)

i= j=3 High 0·05 −1·24 0·35 −0·66 −0·82 −1·00
Low −1·24 −2·50 −0·66 −0·82 −1·00

i= j=4 High 0·16 9·00 −1·12 0·26 −0·70 −0·73
Low −14·53 −1·12 −2·53 −0·70 −0·77

i= j=6 High 1·40 −5·56 8·06 −1·21 −1·07 −0·95
Low −5·56 −13·61 −1·21 −1·07 −2·56

i=3, j=4 High 0·18 5·37 −0·14 −0·44 −0·50 −0·49
Low −7·39 −0·96 −0·82 −0·51 −0·51

i=4, j=6 High 2·15 3·30 5·02 −0·17 0·26 −0·91
Low −7·71 −6·98 −0·90 −1·57 −2·42

v(n) denotes mode dominated by nth displacement harmonic. Numerical values are percentage change in
frequency factor ln compared to perfect ring, defined as [limperfect

n − lperfect
n ]×100%/lperfect

n .

frequency splits are proportionally smaller due to the reduced level of profile
variation at each value of i and j. Additionally, however, a frequency split is
predicted in the v(5) modes which is not caused by either of the two harmonics
individually. The actual level of this frequency split in the case i=4, j=6 is
significant (1·83%), but is much smaller (0·01%) in the case i=3, j=4. The cause
of this ‘‘cross splitting’’ will be discussed in section 4.

3.2.2. Three harmonics on the outer and inner surfaces

To move towards the general case, consider outer and inner profiles defined by
the following three-term series

f+(b')= r+
a +0·01h cos 3b'+0·05h cos 4b'+0·1h cos 6b', (12)

f−(b')= r−
a +0·01h cos (3b'−0)+0·05h cos (4b'− p/2)+0·1h cos (6b'− p),

(13)

where r+
a and r−

a denote the mean radii of outer and inner profiles, respectively,
and h is the mean thickness of the ring.

Table 7 presents the percentage frequency splits for each of the three harmonic
profile variations taken individually and in combination. As before, the pattern
of frequency splitting due to each harmonic taken individually is as expected. It
can be seen that in the single harmonic cases, particularly large splits (21·65% in
the v(3) mode for i= j=6 and 8·5% in the v(2) modes for i= j=4) are
predicted.

When all the profile variation harmonics are taken together, it can again be seen
that frequency splits occur at all the frequencies where splits occur due to single
harmonics. In addition, a frequency split is predicted in the v(5) modes due to
the combined effect of the harmonics. However, it is particularly striking that the
previously large magnitudes of the splits in the v(2) and v(3) modes are much
reduced (8·5%:1·09% and 21·65%:2·58%) in the combined case, even though
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Effect of combinations of three profile harmonics on frequency factors
(hf =0·1h, various f)

Frequency split (%)
Profile ZXXXXXXXXXXXCXXXXXXXXXXXV

variations v(2) v(3) v(4) v(5) v(6)

hf =0·01h
i= j=3, f=0 10 10 10 10 10

hf =0·05h
i= j=4, f= p/2 8·50 10 0·39 10 10

hf =0·1h
i= j=6, f= p 10 21·65 10 10 1·62
Combination of
above profile 1·09 2·58 0·06 0·28 2·68

variations

v(n) denotes mode dominated by nth displacement harmonic. Numerical values are percentage change in
frequency factor ln compared to perfect ring, defined as [limperfect

n − lperfect
n ]×100%/lperfect

n .

the profile harmonic amplitudes are the same in both cases. This can be
rationalised on the grounds that a single harmonic variation in the inner and outer
profiles, particularly when f= p, represents the most extreme variation of mass
and stiffness distribution compared to the perfect ring. When multiple harmonics
are present, however, the overall variation is diluted.

3.2.3. Thin-walled regular polygons

As the final example, consider a thin-walled polygon, typified by a hexagon. Any
regular polygon can be described by a Fourier series which, for an n-sided
polygon, contains only non-zero spatial harmonics of order kn where
k=0, 1, 2, 3, . . . . Table 8 shows the Fourier coefficients for the thin-walled
hexagonal ring considered here, from which it can be seen that the magnitude of
the non-zero coefficients reduces steadily as k increases. In broad terms, the ratios
of the 6th, 12th and 18th harmonic amplitudes to the mean thickness are of the

T 8

Fourier coefficients of the hexagon

Outer profile Inner profile

a+
0 =0·10881e+01 a−

0 =0·10101e+01
a+

6 =−0·63279e−01 a−
6 =−0·58745e−01

a+
12 =0·17545e−01 a−

12 =0·16288e−01
a+

18 =−0·79850e−02 a−
18 =−0·74128e−02

. . . .
and
a+

6n+1 = a+
6n+2 = a+

6n+3 = a+
6n+4 = a+

6n+5 =0,
a−

6n+1 = a−
6n+2 = a−

6n+3 = a−
6n+4 = a−

6n+5 =0,
and b+

n = b−
n =0 where n=0, 1, 2, 3, . . . ,
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Figure 9. Hexagon geometry approximated by truncated Fourier series with p terms.

order 0·78, 0·22 and 0·1, respectively. Figure 9 shows the physical geometry of a
hexagon approximated by 6-term and 12-term series (i.e., a circle plus one and two
additional terms only).

Table 9 presents the percentage frequency splits predicted for 6-term (p=6) and
12-term (p=12) profile series for cases where N=30 and N=40 terms were used
in the displacement function series, equations (5) and (6). In the case of the 12-term
profile series it was found that N=30 did not produce the required four significant
figure convergence in the frequency factors, hence N=40 was used. It can be seen
from Table 9 that use of a 12-term profile series (p=12) produces relatively small
changes in the predicted frequency factors compared to the 6-term series (p=6)
and the magnitudes of the predicted splits in both cases are comparable with what
would be predicted if the curves in Figure 8 were extrapolated to a profile
amplitude in the region of 0·78h. Table 9 also includes the corresponding results
from a Finite Element analysis of an ‘‘exact’’ hexagon [9]. The predicted splits are
of the same order as those obtained using the numerical method. However, the
level of discrepancy between the two methods suggests that more terms are needed
in the profile series (p=18, 24, etc.) to obtain an accurate representation of the

T 9

Predicted frequency splitting of hexagon. Effect of number of terms used
in profile Fourier series

p, N v(2) v(3) v(4) v(5) v(6)

6, 30 10 11·4% 10 10 33·9%
12, 30 10 15·9% 10 10 35·1%
12, 40 10 17·0% 10 10 35·1%
12, FE 10 16·9% 10 10 40·5%
Exact 10

Shape (FE) 10 15·2% 10 44·6%

p=number of terms in profile Fourier series; N=number of terms in displacement function
series.
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sharp corners of the hexagon, but this would significantly increase the computing
time.

4. DISCUSSION

The numerical results presented in Section 3 demonstrate a variety of frequency
splitting behaviour, the precise detail of which changes quite markedly as the
detailed spatial-harmonic content of the ring profile changes, even when the profile
only contains one or two harmonics. As mentioned earlier, the way in which
particular profile variation harmonics influence particular modes of vibration will
be determined by the way in which they affect the relevant elements of the mass
and stiffness matrices in equation (7) which, in turn, govern the coupling between
the generalised co-ordinates. Although, in the most general case, a specific and
detailed interpretation is likely to be prohibitively complex, it is possible to gain
some general insight into the problem by examining the strain energy and kinetic
energy integrals from which the stiffness and mass matrices are formed.

The relevant integrals are fully defined in reference [1], equations (18) and (23).
It is unnecessary to repeat the equations fully here and it is sufficient to note that
both the kinetic energy and strain energy are expressed by integrals around the
ring circumference which have the following general form,

E=g
2p

0

{F[w2(nb)]G[h(ib)+ ah3(ib)]} db. (12)

Considering the integrand in equation (12) it should be noted that F[w2(nb)] is a
function only of the ring displacements and their derivatives with respect to b and
to time, and G[h(ib)+ ah3(ib)] is a function only of the ring profile geometry. By
examining the conditions under which the integral in equation (12) might lead to
a non-zero result, it is possible to infer something useful about how particular
orders of profile harmonic interact with the particular generalised co-ordinates and
hence affect particular modes of vibration. The precise detail of each specific case
is however embedded in the integrals which are given in references [1, 9]. To see
the general pattern it is first necessary to look in more detail at the forms of the
functions F and G.

F[w2(nb)] is a quadratic function of the displacement functions associated with
the series of generalised co-ordinates, given by equations (5) and (6) of the present
paper. It is easy to show that any pair of harmonics, say n and m, in the assumed
displacement series will give rise to terms within F[w2(nb)] which contain sines and
cosines of 2nb, 2mb, (n+m)b and (n−m)b.

The function G[h(ib)+ ah3(ib)] depends on the ring’s radial thickness and on
the cube of the thickness. For a thin ring, the parameter a may be taken to be
small, reflecting the fact that terms associated with h3 will generally be much
smaller than terms associated with h. The general form of G[h(ib)+ ah3(ib)] will
be determined by the form of the inner and outer profiles as expressed by equations
(1) and (2). If the ring profile contains only a single harmonic variation, say i,
then the function G will contain terms which are the sines and cosines of ib
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(associated with both h and ah3) and 3ib (associated with ah3 only). If the ring
profile contains two harmonics, say i and j, then the function G may contain terms
which are the sines and cosines of ib, jb (associated with both h and ah3) and of
3ib, 3jb, (2i+ j)b, (2j+ i)b and (2j− i)b (associated with ah3 only). If more than
two harmonics are present in the ring profile, additional combinations of
harmonics will appear in G. For example, with three profile harmonics i, j, k, there
will be additional combinations of the form (i+ j2 k) and (i− j2 k). Further
elaboration of this point is unnecessary, other than to note that terms associated
with h, as opposed to ah3, will have the dominant influence because of their relative
magnitude.

Bearing in mind that F and G contain sine and cosine functions of various
combinations of harmonics then, based on the orthogonality properties of
harmonic functions of different orders, it is now possible to determine the
conditions under which equation (12) can lead to a non-zero result by looking for
appropriate combinations of displacement and profile variation harmonics in the
functions F and G, respectively. It is clear that equation (12) can only give a
non-zero result when a particular net combination of harmonics in function F is
matched by the same net combination of harmonics in function G.

The simplest case to consider is that in which the profile contains only a single
harmonic, say i, in which case G will contain components at ib (associated with
both h and h3) and 3ib (associated with ah3 only). Considering two displacement
harmonics, m and n, F will contain components at 2nb, 2mb, (n+m)b and
(n−m)b. Non-zero integrals may therefore result if either i or 3i is equal to either
2n or 2m or (n+m) or (n−m). Bearing in mind that the numerical results were
obtained using displacement series containing 30 terms (i.e., n, m=0, . . . , 30) it
is clear that, even in this simplest of cases, many combinations of m and n could
potentially give rise to non-zero contributions to the energy integrals, hence giving
rise to many potentially non-zero terms in the mass and stiffness matrices. Some
of these terms will be more significant than others.

It may be argued that the most important terms in the mass and stiffness
matrices are those which are closest to the leading diagonal. (In the case of a
perfectly circular ring, the choice of generalised co-ordinates used here leads to
mass and stiffness matrices which are diagonal.) This is consistent with the
observation that, for rings with profile variation, the eigenvectors (Tables 3 and
4 and reference [9]) are each dominated by a single displacement harmonic, with
the contributions from other harmonics decreasing rapidly. It may therefore be
expected that the interaction between the profile harmonic and the dominant
displacement harmonic in each mode will be the most important.

Returning now to the above mentioned case where the profile contains a single
harmonic, i, it may therefore be expected that the most important cases will be
as follows. When the profile harmonic is even then i=2n or 2m is likely to be the
most important (especially as this case relates to h rather than ah3), with cases
where i=m2 n and 3i=2n, 2m or 3i= n2m being of less importance,
especially when m and n are significantly different from i. This is consistent with
the results of Table 1 where, for example, i=4 (f= p) leads to a relatively large
split in the 2b mode progressively smaller splits in the 4b and 6b modes. When
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the profile harmonic, i is odd the conditions i=2n or 2m and 3i=2n or 2m can
not be fulfilled. Therefore, non-zero integrals can only result from the
combinations i=m2 n and 3i= n2m. The most important of these is likely to
be i=m2 n (since this is related to h) in the case where m=0, n= i or vice versa.
This is consistent with the results presented in Table 2 where, for example, i=3
(f= p) only produces a noticeable frequency split in the 3b mode.

When more than one profile harmonic is present, the combinations of profile
and displacement harmonics which potentially give rise to non-zero contributions
to the energy integrals increases rapidly. No attempt will be made here to give
further detailed explanation. Suffice to say that the large number of possible
combinations means that, in principle, only two or three low order profile
harmonics have the capacity to couple with almost all the modes that are likely
to be of practical engineering interest. The degree of interaction will often be very
small but it is difficult to generalise and each specific case needs individual analysis.
It is clear, however, that the strongest interaction will always arise between an even
profile harmonic, say i, and the modes whose dominant displacement harmonic
is i/2.

5. CONCLUSIONS

This paper reports a numerical study of the vibration of a thin ring with a
rectangular cross-section and circumferential profile variation. Profile variations
are represented, in the general way, by Fourier series functions. The method gives
quantitative predictions of frequency splitting which are found to be in agreement
with previously published qualitative results on frequency splitting patterns.

Numerical results have been presented for a number of example cases in which
the inner and outer profiles are nominally circular with various superimposed
harmonic variations in radius. For a ring with a single harmonic variation in
profile, the effects of the harmonic number and of the amplitude and spatial
phasing of the inner and outer surfaces have been investigated and the frequency
splitting patterns have been noted. The effects of multiple harmonic variations in
profile have also been investigated and the combinations of harmonics that cause
frequency splitting have been investigated. The most important causes of
frequency splitting have been identified and highlighted.
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