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This paper presents the formulation and numerical analysis of the
three-dimensional elasticity plate model using the differential quadrature (DQ)
method. The governing equations in terms of displacement, stress–displacement
relations, and boundary conditions for the three-dimensional plate model are first
presented. These equations are then normalized and discretized using the DQ
procedure. Example problems on the free vibration of rectangular plates with
generic boundary conditions are selected. Two types of mesh pattern, the uniform
mesh pattern and the cosine mesh pattern, were used and their convergence
characteristics were studied. The cosine mesh was then chosen as the better mesh
pattern pertaining to the problems solved. The solutions calculated using the
cosine mesh pattern were then compared, where possible, with the exact or the
numerical or the analytical solutions. It is found that the differential quadrature
method yields accurate results for the plate problems under the current
investigation.
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1. INTRODUCTION

In the field of sciences and engineering, the solutions to practical problems are
usually described by simultaneous partial differential equations. It is commonly
agreed that exact or analytical solutions to such equations are both difficult and
tedious. Such solutions are even more difficult as the order of the partial
differential equations becomes higher and the number of independent variables
becomes greater. This gives rise to the popularity of numerical methods in solving
such equations.

Currently, conventional numerical methods like low order finite differences and
finite element methods are used for such problems. These methods usually need
a large number of grid points in order to arrive at the convergent and accurate
solution. This large number of grid points is sometimes redundant and wastes
computational resources if the problem needs only a small number of grid points.
An example of such is in the calculation of the maximum deflection of a uniformly
loaded structure. Obviously, the location where the maximum deflection occurs
can be easily predicted. Also, in the solution of global problems like buckling or

0022–460X/99/090577+23 $30.00/0 7 1999 Academic Press



. .   . . 578

free vibration analysis, the number of grid points used is immaterial. Much
research was thus conducted to develop numerical methods that address such
needs. The differential quadrature (DQ) method is one of them.

The DQ method was proposed by the late Richard Bellman and his associates
[1–3]. It was reported that this method was able to rapidly compute accurate
solution of partial differential equations by using only a few grid points in the
respective solution domain [4]. In short, this DQ method approximates the partial
derivatives of a function with respect to spatial discrete points using the weighted
linear sum of the function values at all the discrete points in the overall domain
of the spatial variable [2, 5–7]. This method is able to reduce the set of partial
differential equation to a set of algebraic equations for time independent problems
and a set of ordinary differential equations for time dependent problems.

There are basically four approaches in calculating the weighting coefficients of
the DQ approximation. The first is the power polynomials approach, proposed by
Bellman [2]. Unfortunately, the system of equations to be solved using this
approach becomes ill conditioned when the number of grid points chosen is too
large. The second is the use of the roots of the shifted Legendre polynomials as
the test function which subsequently is used to calculate the weighting coefficient.
The limitation of this method is it restricts the type of mesh pattern used. This
imposes a major drawback in structural analysis as all sorts of boundary
conditions could appear and different mesh grids may be needed for different
boundary conditions. The third approach was proposed by Quan and Chang [7].
It uses the Jacobi orthogonal polynomials as the test function. As the Legendre
polynomials belong to the family of Jacobi orthogonal polynomials, this approach
faces the same limitations as the second approach. The fourth approach, also
proposed by Quan and Chang [7], adopts the Lagrange interpolated polynomials
as the test function instead of the power polynomials or Legendre polynomials.
In the paper, Quan and Chang derived the first and second order weighting
coefficients. Followed [7], Shu and Richard [8] used the same test function and
derived the higher order weighing coefficients in the form of a recurrence
relationship. The method proposed by Shu and Richard [8] shall be used for the
calculation of the weighting coefficients in this paper.

The pioneer work for application of DQ method to structural mechanics was
carried out by Bert et al. [4, 9, 10], Wang and Bert [11] and Wang et al. [12, 13].
Other researchers in this area include Liu and Liew [14, 15], Du et al. [16], Laura
and Gutierrez [17], Wen and Yu [18], Han and Liew [19, 20], Liew et al. [21, 22]
and Liew and Han [23, 24]. In the area on three-dimensional plate analysis, Teo
and Liew [25, 26], Liew and Teo [27] and Teo [28] researched into the DQ
application pertaining to bending, buckling and free vibration of isotropic and
orthotropic plates. In 1998, Malik and Bert [29]† employed the DQ method to
solve free vibration three-dimensional elastic thick plates that have at least one pair
of opposite edges simply-supported.

Numerous methods have been proposed by earlier researchers for solving
plate problems based on three-dimensional elasticity theory [30–38]. These

† This reference was brought to the authors’ attention by one of the reviewers.
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three-dimensional solutions are extremely useful in evaluating the accuracy of
approximate results, for instance, in the case of two-dimensional plate theories.
In this paper, we employ the DQ method for three-dimensional free vibration
analysis of rectangular plates having generic boundary conditions.

This paper is organized as follows. In section 2, the DQ procedures are briefly
described. In section 3, the three-dimensional equilibrium equations and the
boundary conditions are outlined. In section 4, the details of the normalization
and discretization of the three-dimensional linear elasticity equations and
boundary conditions are presented. In section 5, the ease of use, and the
convergence characteristics and accuracy of the DQ method are demonstrated
through the solving of numerical test examples for which exact solutions or
numerical solutions are available for comparison. Finally, the conclusions from
this study are drawn in section 6.

2. DIFFERENTIAL QUADRATURE METHOD

We first consider a function f(x) in one-dimensional space. The DQ method
approximates the first derivative of this function at the ith discrete point on a grid
by

f '(xi )= s
N

l=1

A(1)
il f(x1) for i=1, 2, 3, . . . , N (1)

where N is the total number of grid points chosen for the solution domain in the
x direction and A(n)

il is the weighting coefficient of the ith point approximation of
the function f(x). The superscript n represents the nth derivative of the function.

The weighing coefficients A(n)
il can be obtained using the following recurrence

formulas:

A(1)
il =

M(1)(xi )
(xi − x1)M(1)(x1)

for i$ 1; i, l=1, 2, 3, . . . , N (2a)

A(n)
il = n0A(n−1)

il A(n)
il −

A(n−1)
il

xi − x11 for i$ 1;

n=2, 3, . . . , N−1; i, l=1, 2, 3, . . . , N (2b)

and

A(n)
ii =− s

N

l=1,l= i

A(n)
il for i=1, 2, 3, . . . , N. (2c)

For equation (2a), M(1) is denoted by the following expression:

M(1)(xp )= t
N

l=1,l$ k

(xp − x1). (3)
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An elaborated presentation of the DQ method can be obtained from the work
by Du et al. [14] and the excellent review by Bert and Malik [39].

The above DQ approximation is shown for a one-dimensional case. The
three-dimensional DQ approximation can be easily extended from the above. The
DQ method approximates the function f(x, y, z) as required in the three-dimen-
sional formulation of this paper and is detailed as follows.

The first-order derivatives can be approximated by

1f
1x bijk 1 s

Nx

l=1

A(1)
il fljk ;

1f
1y bijk 1 s

Ny

m=1

B(1)
jm fimk ;

1f
1z bijk 1 s

Nz

n=1

C(1)
kn fijn . (4a–c)

The second-order derivatives can be approximated by

12f
1x2 bijk 1 s

Nx

l=1

A(2)
il fljk ;

12f
1y2 bijk 1 s

Ny

m=1

B(2)
jm fimk ;

12f
1z2 bijk 1 s

Nz

n=1

C(2)
kn fijn (5a–c)

1

1x 01f
1y1bijk 1 s

Nx

l=1

A(1)
il s

Ny

m=1

B(1)
jm flmk ;

1

1x 01f
1z1bijk 1 s

Nx

l=1

A(1)
il s

Nz

n=1

C(1)
kn fljn ; (6a, b)

1

1y 01f
1z1bijk 1 s

Ny

m=1

B(1)
jm s

Nz

n=1

C(1)
kn fimn (6c)

where A, B and C denote the weighting coefficients of the partial derivative of the
function f(x, y, z) with respect to the x, y and z directions respectively; Nx , Ny and
Nz are the number of grid points chosen in the x, y and z directions respectively.

3. BASIC GOVERNING EQUATIONS

3.1.  

The equations of motion in terms of displacement for a homogeneous isotropic
plate without body force can be written as:

92u+
1

1−2n

1e
1x

+
rv2u

G
=0 (7a)

92v+
1

1−2n

1e
1y

+
rv2v
G

=0 (7b)

92w+
1

1−2n

1e
1z

+
rv2w

G
=0 (7c)

where r is the density, e is the dilatation defined by

e=(1/1x; 1/1y; 1/1z){u, v, w}T (7d)

and

92 =
12

1x2 +
12

1y2 +
12

1z2. (7e)
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The variables u, v and w are the displacements in the x, y and z-directions as
depicted in the co-ordinate system respectively. This co-ordinate system is shown
in Figure 1. The symbols n and v represent the Poisson ratio and the angular
frequency of the plate respectively. In this paper, E and G are the Young’s and
shear moduli of the plate respectively.

The stress–displacement relation are given as:

sx 8(1− n)
1

1x
8n

1

1y
8n

1

1z

sy 8n
1

1x
8(1− n)

1

1y
8n

1

1z

sz 8n
1

1x
8n

1

1y
8(1− n)

1

1z
u

txy
=

G
1

1y
G

1

1x
0

×
v

(8)

txz G
1

1z
0 G

1

1x
w

tyz 0 G
1

1z
G

1

1y

where 8 is defined as 8=2G/(1−2n).
In the above equations sx , sy and sz represent the stresses in the x, y and

z-directions respectively; txy , txz and tyx are the shear stresses.

K L K L
G G G G
G G G G
G G G G
G G G G
G G G G
G G G G K L
G G G G G G
G G G G G G
G G G G G G
G G G G G G
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G G G G
G G G G
k l k l

Figure 1. Co-ordinate system and dimensions.
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3.2.  

In three-dimensional numerical analysis of a plate, the boundary conditions
need to apply to all six faces of the solid. The four faces where x=0, a and y=0,
b are called the edge boundary conditions whereas the top and bottom surfaces
of the plate are called the surface boundary condition.

In this paper, the free surface boundary condition shall be used in the discussion.
Also, two types of edge boundary conditions are considered. They are namely the
fully clamped boundary condition (C) and the simply supported boundary
conditions (S). Following are the equations describing the boundary conditions:
W Clamped boundary condition (C)

u=0; v=0; w=0. (9)

W Hard simply supported boundary condition (S)

On x=0 and a: sx =0; v=0; w=0 (10a)

On y=0 and b: sy =0; u=0; w=0. (10b)

W Free surface condition

On z=0, c: sz =0; txz =0; tyz =0. (11)

4. METHOD OF SOLUTION

4.1.  

In order to normalize the above equations, the following non-dimensional
parameters are introduced.

X=
x
a
; Y=

y
b
; Z=

z
c
; (12a–c)

U=
u
a
; V=

v
b
; W=

w
a

; (12d–f)

a=
a
b
; b=

c
b
; g=

c
a

(12g–i)

tXY =
txy

G
; tXZ =

txz

G
; tYZ =

tyz

G
(12j–l)

sX =
g(1−2n)sx

2G
; sY =

g(1−2n)sy

2G
; sZ =

g(1−2n)sz

2G
. (12m–0)

In the above equations, a, b and c represent the lengths in the x, y and z-directions
of the plate respectively.
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4.2.       

Substituting equations (12) into the equilibrium equations [equations (7)] results
in the following normalized governing equations

2g2(1− n)
12U
1X2 + b2(1−2n)

12U
1Y2 + (1−2n)

12U
1Z2 + g2 12V

1X 1Y
+ g

12W
1X 1Z

=2c2(1+ n)(2n−1)
rv2

E
U (13a)

b2 12U
1X 1Y

+ g2(1−2n)
12V
1X2 +2b2(1− n)

12V
1Y2 + (1−2n)

12V
1Z2 + ab

12W
1Y 1Z

=2(1+ n)(2n−1)
rv2

E
V (13b)

g
12U

1X 1Z
+ g

12V
1Y 1Z

+ g2(1−2n)
12W
1X2 + b2(1−2n)

12W
1Y2 +2(1− n)

12W
1Z2

=2(1+ n)(2n−1)
rv2

E
W. (13c)

Using similar procedures, the stress–displacement equations [equations (8)] can
be normalized into the following:

sX = g(1− n)
1U
1X

+ gn
1V
1Y

+ n
1W
1Z

(14)

sY = gn
1U
1X

+ g(1− n)
1V
1Y

+ n
1W
1Z

(15)

sZ = gn
1U
1X

+ gn
1V
1Y

+(1− n)
1W
1Z

(16)

a2tXY = a2 1U
1Y

+
1V
1X

(17)

gtXZ = g
1W
1X

+
1U
1Z

(18)

btYZ =
1V
1Z

+ ab
1W
1Y

. (19)

According to the differential quadrature method, the normalized governing
equations [equations (13)] can be discretized into the following forms:

2g2(1− n) s
NX

l=1

A(2)
il Uljk + b2(1−2n) s

NY

m=1

B(2)
jmUimk +(1−2n) s

NZ

n=1

C(2)
knUijn

+g2 s
NX

l=1

A(1)
il s

NY

m=1

B(1)
jmVlmk + g s

NX

l=1

A(1)
il s

NZ

n=1

C(1)
knWljn

=2c2(1+ n)(2n−1)
rv2

E
Uijk (20a)
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b2 s
NX

l=1

A(1)
il s

NY

m=1

B(1)
jmUlmk + g2(1−2n) s

NX

l=1

A(2)
il Vljk +2b2(1− n) s

NY

m=1

B(2)
jmVimk

+(1−2n) s
NZ

n=1

C(2)
knVijn + ab s

NY

m=1

B(1)
jm s

NZ

n=1

C(1)
knWimn)

=2(1+ n)(2n−1)
rv2

E
Vijk (20b)

g s
NX

l=1

A(1)
il s

NZ

n=1

C(1)
knUljn + g s

NY

m=1

B(1)
jm s

NZ

n=1

C(1)
knVimn + g2(1−2n) s

NX

l=1

A(2)
il Wljk

+b2(1−2n) s
NY

m=1

B(2)
jmWimk +2(1− n) s

NZ

n=1

C(2)
kn Wijn

=2(1+ n)(2n−1)
rv2

E
Wijk (20c)

sX = g(1− n) s
NX

l=1

A(1)
il Uljk + gn s

NY

m=1

B(1)
jmVimk + n s

NZ

n=1

C(1)
knWijn (21)

sY = gn s
NX

l=1

A(1)
il Uljk + g(1− n) s

NY

m=1

B(1)
jmVimk + n s

NZ

n=1

C(1)
knWijn (22)

sZ = gn s
NX

l=1

A(1)
il Uljk + gn s

NY

m=1

B(1)
jmVimk +(1− n) s

NZ

n=1

C(1)
knWijn (23)

a2tXY = a2 s
NY

m=1

B(1)
jmUimk + s

NX

l=1

A(1)
il Vljk (24)

gtXZ = g s
NX

l=1

A(1)
il Wljk + s

NZ

n=1

C(1)
knUijn (25)

btYZ = s
NZ

n=1

C(1)
knVijn + ab s

NY

m=1

B(1)
jmWimk . (26)

4.3.       

By substituting the non-dimensional parameters, [equations (12)] into the
boundary conditions [equations (9)–(11)] will give their normalized form. Below
are the examples of the normalized form of the edge boundary conditions at
X=constant and boundary conditions for the top and bottom surfaces of the
plate.
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Normalized clamped boundary condition (C):

U=0; V=0; W=0. (27)

Simply supported boundary condition (S):

g(1− n)
1U
1X

+ gn
1V
1Y

+ n
1W
1Z

=0; V=0; W=0. (28a–c)

Free surface boundary conditions:

gn
1U
1X

+ gn
1V
1Y

+(1− n)
1W
1Z

=0 (29a)

g
1W
1X

+
1U
1Z

=0 (29b)

1V
1Z

+ ab
1W
1Y

=0. (29c)

According to the differential quadrature procedure, the above equations
[equations (27)–(29)] can be discretized into the following:

Discretized clamped boundary condition (C):

Uijk =0; Vijk =0; Wijk =0. (30)

Simply supported boundary condition (S):

g(1− n) s
NX

l=1

A(1)
il Uljk + gn s

NY

m=1

B(1)
jmVimk + n s

NZ

n=1

C(1)
knWijn =0; (31a)

Vijk =0; Wijk =0. (31b–c)

Free surface boundary condition:

gn s
NX

l=1

A(1)
il Uljk + gn s

NY

m=1

B(1)
jmVimk +(1− n) s

NZ

n=1

C(1)
knWijn =0; (32a)

g s
NX

l=1

A(1)
il Wljk + s

NZ

n=1

C(1)
knUijn =0; (32b)

s
NZ

n=1

C(1)
knVijn + ab s

NY

m=1

B(1)
jmWimk =0. (32c)



. .   . . 586

4.4.  

From the above procedures, one can derive the general form of eigenvalue
equation as follows:

DU= lEU (33)

in which

U= &Uijk

Vijk

Wijk' (34)

where D and E are matrices derived from the governing equations [equations (13)];
U is the displacement matrix.

In the above eigenvalue equation, l is the non-dimensional frequency parameter
used in this paper. It is defined as l=(vb2/p2)zrh/D where D is the flexural
rigidity of the plate.

The determinant of the matrix to be solved for a solution domain with grid size
of Nx ×Ny ×Nz is (3×Nx ×Ny ×Nz ). This is because for every point in the
solution domain, there are three conditions that need to be satisfied, be it the three
governing equations or the three equations describing the particular boundary
condition under consideration.

In forming the system of equations, the points on the six faces of the plate are
described by the boundary conditions whereas the points inside the plate are
described by the governing equations. If Nx =Ny =Nz =N, the solution domain
of N×N×N points has (4N2 −6N+4) points being described by the boundary
conditions. In another words, there are (N−2)3 points in the solutions domain
that are described by the three governing equations.

5. RESULTS AND DISCUSSION

In this discussion, symbols are used for plates subject to different boundary
condition. For example, a plate with all edges simply supported is denoted by SSSS
while all edges clamped is denoted by CCCC. A SCSC plate is a plate with the
edges X=0 and 1 simply supported and edges Y=0 and 1 clamped.

When the solution domain is discretized, one needs to determine the mesh
patterns to be used. The two commonly used mesh patterns are the uniform mesh
pattern and the cosine mesh pattern. The uniform mesh pattern divides the
solution domain into points equidistant to one another. The cosine mesh pattern,
however, divides the solution domain into points following a cosine function.
Below is the formula showing the division of the axes into cosine mesh pattern:

U(i)=0·501−
cos (i−1)× p

N−1 1 (35)

where U(i) can be the x(i), y(i) or z(i) co-ordinate of the ith points considered.
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Figure 2. Convergence study of the frequency parameter, l=(vb2/p2)zrh/D, of a square SSSS
plate under different mesh pattern. a/b=1, c/b=0·01, n=0·3, l* –––, Exact Classical Plate theory
solution, reference [40]. e, Mode 1, cosine mesh; r, Mode 1, uniform mesh; q, Mode 6, cosine
mesh; ×, Mode 6, uniform mesh.

A very important condition to be met before determining the mesh pattern to
be used is the convergence of the solution. This should take precedence in the study
of numerical methods. Figures 2 to 5 are employed to study the mesh pattern
together with the convergence characteristics. The first and the sixth modes are
chosen in this study as they are representative of the lower and the higher modes.
In these figures, the DQ solution using both the uniform mesh and the cosine mesh
is presented. The frequency parameter, l=(vb2/p2)zrh/D , in these figures is
normalized using available results. As in Figure 2, the DQ solution is normalized
using exact solutions from the classical plate theory [40]. Due to the two theories
being different, one cannot conduct an accuracy study; only the convergence study
is done. The frequency parameter in Figures 3 and 4 are normalized using an exact
three-dimensional solution [30]. In this aspect, a convergence study as well as
preliminary accuracy study is shown. The frequency parameter in Figure 5 is
normalized using the three-dimensional solution derived from the p-Ritz method
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[41]. Though it is also a numerical solution, it is considered to be an accurate
solution.

In Figure 2, one can deduce that regardless of the mesh pattern, the first mode
begins to converge starting from the mesh size of 5×5×5. The solution from
the cosine mesh proves faster convergence after increasing the mesh size beyond
9×9×9. For the higher mode solution using the cosine mesh, acceptable
convergence only starts at mesh size 7×7×7. As for the results from the uniform
mesh, one can only conclude that even at a mesh size of 11×11×11, the results
are still not convergent. It is predicted that further refinement of the mesh may
yield convergent results.

Figure 3 shows the convergence and accuracy study of the first and the sixth
modes of a fully simply supported square plate with a thickness to width ratio of
c/b=0·1. In the figure, the convergence of the first mode, regardless of mesh
pattern, begins from the mesh size of 5×5×5. Accurate results are obtained
from mesh size 8×8×8 onwards. It is shown that the convergent results of the
first mode solution using the cosine mesh pattern yield more accurate results than

Figure 3. Convergence and accuracy study of the frequency parameter, l=(vb2/p2)zrh/D, of
a square SSSS plate under different mesh pattern. a/b=1, c/b=0·1, n=0·3, l* –––, Exact
three-dimensional solution, reference [30]. e, Mode 1, cosine mesh; r, Mode 1, uniform mesh; q,
Mode 6, cosine mesh; ×, Mode 6, uniform mesh.
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Figure 4. Convergence and accuracy study of the frequency parameter, l=(vb2/p2)zrh/D, of
a square SSSS plate under different mesh pattern. a/b=1, c/b=0·2, n=0·3, l* –––, Exact
three-dimensional solution, reference [30]. e, Mode 1, cosine mesh; r, Mode 1, uniform mesh; q,
Mode 6, cosine mesh; ×, Mode 6, uniform mesh.

those generated from the uniform mesh pattern. As for the case of the sixth mode,
the results of cosine mesh converge to the accurate solution at mesh size 8×8×8
since the normalized result is unity; the results generated using a uniform mesh
pattern converges to the accurate result at mesh size 8×8×8 but diverges at a
mesh size of 10×10×10.

Similar to Figure 3, Figure 4 shows the convergence and accuracy study of the
frequency parameters of a fully simply supported square plate, this time with
c/b=0·2. It is seen that the first mode converges to the similar value at mesh size
5×5×5. It is also noted that both the cosine and the uniform mesh patterns yield
a result which is slightly higher than the exact solution as the curve is higher than
unity. For the sixth mode, convergence also starts at mesh size 5×5×5. When
the result is generated from the cosine mesh, the convergence is stable and accurate
even up to mesh size 11×11×11. This is not so for the uniform mesh. Though
its results converge in similar fashion as the cosine mesh pattern, they diverge at
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mesh size 11×11×11. It should be added that such divergence is about 41%,
hence rendering the results inaccurate.

The convergence study of DQ results using cosine mesh and uniform mesh for
a thick SSSS square plate, c/b=0·5, is shown in Figure 5. It is observed that at
mesh size 7×7×7, the lower and higher modes of the cosine mesh results
converge to the correct result. Mode 1 of the DQ results using the uniform mesh
also have the same convergence pattern. This is not so for the higher mode. One
can observe that DQ results using the uniform mesh give rather unstable results
until mesh size 10×10×10 is reached.

At this point of the study one can conclude that the uniform mesh pattern is
able to give rather reliable results for the lower mode of vibration if the plate is
moderately thick; its results are unstable for the case of the thin plate. For the case
of the moderately thick plate, its solution is reliable only at mesh sizes ranging
from 8×8×8 to 10×10×10. On the contrary, the cosine mesh pattern yields
stable and accurate results for plates of different thickness to width ratios. Its

Figure 5. Convergence study of the frequency parameter, l=(vb2/p2)zrh/D, of a square SSSS
plate under different mesh pattern. a/b=1, c/b=0·01, n=0·3, l* –––, three-dimensional p-Ritz
solution, reference [41]. e, Mode 1, cosine mesh; r, Mode 1, uniform mesh; q, Mode 6, cosine
mesh; ×, Mode 6, uniform mesh.
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results are also stable. Due to the above conclusion, the cosine mesh pattern shall
be used for the remaining part of the study.

To conduct a convergence study in detail, sample results are chosen and are
presented in Tables 1–3. In these tables, the first eight modal solutions of the SSSS,
CCCC and SCSC plates are shown.

As with many other numerical methods, the solution for plates with the lowest
thickness to width ratio has the most difficulty in converging. Due to this inherent
difficulty, the convergence of the frequency parameter of thin square plates with
c/b=0·01 shall be studied first. This is shown in Table 1. It can be noted that
the correct order of magnitude for the higher modal solution (starting from
mode 5) is reached only beyond mesh size 7×7×7. This is true for all the
combinations of boundary conditions considered. For the case of the SSSS plate,
the 3rd significant figure convergent solution is reached at mesh size 9×9×9;
for CCCC and SCSC plates, the 3rd significant figure convergent solution is
reached at mesh size 10×10×10.

Table 2 shows the convergence of the frequency parameters of moderately thick
square plates subject to the same set of boundary conditions considered above.
For a SSSS square plate, the 3rd significant figure convergent solution is reached
at mesh size 8×8×8; for a CCCC square plate, the 3rd significant figure
convergent solution is reached at mesh size 10×10×10; for a SCSC square plate,
the 3rd significant figure convergent solution is reached at mesh size 9×9×9.
One can also see that the convergence of the lower modes is better than the higher
modes.

Table 3 shows the convergence study of a moderately thick rectangular plate
(c/b=0·25) with an aspect ratio of a/b=2·0. Similar to the above, the first eight
modal solutions shall be analyzed. It is observed that the SSSS plate has a
convergent result at mesh size 9×9×9; for the case of a CCCC and SCSC plate,
the convergent result is at mesh size 10×10×10.

Hence, the deduction drawn from the above convergence study is under similar
a/b or c/b; the SSSS plate converges the earliest whereas the CCCC plate converges
the slowest.

In order to verify the accuracy of the DQ method in solving the
three-dimensional elastic plate problem, an accuracy study is conducted. Such a
study compares the current DQ solution with published results. As far as possible,
the authors try to compare the current results with the exact solution, preferably
from a three-dimensional theory. In this study, the percentage deviation of the DQ
results from the published solution is determined based on the following
expressions:

% Deviation= b0Present solution−Published solution
Published solution 1b×100%. (36)

Table 4 shows the comparison study of the frequency parameter of thin and
thick square plates subject to SSSS boundary condition. In this study, the thin
plate, c/b=0·01, is compared with the exact classical plate solution [40] and the
three-dimensional p-Ritz solution [41]. Solutions from other plate theories are also
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T 1

Convergence of frequency parameters, l=(vb2/p2)zrh/D of thin square plates, (a/b=1·0, c/b=0·01), under
different boundary conditions

Mode sequence number
Grid points ZXXXXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXXXXV
X×Y×Z 1 2 3 4 5 6 7 8

SSSS
5×5×5 1·9757 65·083 65·083 83·155 83·155 90·626 117·63 143·86
6×6×6 1·9832 4·8814 4·8824 7·7702 65·226 65·226 92·288 128·67
7×7×7 2·0019 4·9443 4·9475 7·9148 9·7636 9·7642 12·682 12·683
8×8×8 2·0084 5·0031 5·0061 7·9989 10·018 10·018 13·017 13·018
9×9×9 1·9952 4·9977 5·0081 7·9957 10·024 10·029 13·011 13·012

10×10×10 1·9838 4·9818 5·0099 7·9914 10·027 10·028 13·000 13·006
11×11×11 2·0028 4·9878 5·0065 7·9873 9·9745 9·9807 12·966 12·971

CCCC
5×5×5 3·7933 117·53 117·53 125·65 125·65 158·73 166·17 176·22
6×6×6 3·8135 7·9068 7·9083 11·215 125·51 125·51 148·18 182·72
7×7×7 3·6949 8·0937 8·0955 11·607 14·954 15·072 17·812 17·812
8×8×8 3·6896 7·4811 7·4840 11·022 15·637 15·752 18·462 18·463
9×9×9 3·6648 7·4730 7·4758 11·021 13·332 13·384 16·716 16·717

10×10×10 3·6671 7·4599 7·4705 10·995 13·367 13·430 16·748 16·748
11×11×11 3·6516 7·4505 7·4664 10·975 13·356 13·419 16·738 16·742

SCSC
5×5×5 3·0228 65·083 83·189 115·82 117·50 122·74 143·86 143·95
6×6×6 3·0374 5·4561 7·5219 9·6475 65·226 115·16 122·88 128·67
7×7×7 2·9590 5·5197 7·7106 9·9331 10·140 14·087 14·769 16·730
8×8×8 2·9633 5·5720 7·0537 9·6150 10·387 14·255 15·455 17·146
9×9×9 2·9335 5·5559 7·0531 9·6168 10·395 13·065 14·243 15·655

10×10×10 2·9485 5·5533 7·0439 9·5918 10·386 13·114 14·234 15·693
11×11×11 2·9518 5·5439 7·0460 9·5914 10·336 13·114 14·190 15·689
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presented for comparison and verification purposes. When the present solution is
compared with the classical theory, the percentage deviation is less than one
percent for all of the first eight modes. The highest deviation is for mode 6 which
amounts to 0·29% whereas the lowest deviation comes from mode 2 which
amounts to 0·046%. When the present solution is compared with the
three-dimensional p-Ritz solution [41], the largest deviation also comes from mode
6 with a value of 0·46%; the least deviation comes from mode 7 with a value of
0·31%. It should be commented that the fundamental mode has lower percentage
deviation when compared with the Ritz solution.

For a square SSSS plate with c/b=0·1, one can observe that the p-Ritz method
has the same value as the exact three-dimensional solution [30]. This is true for
the first eight modes in study except for modes 4 and 5 where the exact solution
is not available. In this case, the accuracy study shall be done by comparing the
DQ solution with the exact solution for mode 1 to 8 except mode 4 and 5 in which
the comparison shall be made with the solution form the p-Ritz method [41]. In
the comparison analysis, the DQ solution for mode 1 has the same value as the
exact solution; modes 4 and 5 yields zero percent deviation when compared with
the p-Ritz method [41]. Both mode 7 and mode 8 have the highest deviation of
0·36% when compared with the exact solution [30].

T 2

Convergence of frequency parameters, l=(vb2/p2)zrh/D, of thick rectangular
plates, (a/b=1·0, c/b=0·25) under different boundary conditions

Mode sequence number
Grid points ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV
X×Y×Z 1 2 3 4 5 6 7 8

SSSS
5×5×5 1·6636 2·6033 2·6033 3·6242 4·4805 4·4805 5·7545 5·7545
6×6×6 1·6807 2·6091 2·6091 3·4963 3·4963 3·6915 4·9446 5·1470
7×7×7 1·6832 2·6094 2·6094 3·5490 3·5490 3·6922 5·0333 5·2210
8×8×8 1·6830 2·6094 2·6094 3·5556 3·5556 3·6902 5·0389 5·2187
9×9×9 1·6830 2·6094 2·6094 3·5529 3·5529 3·6902 5·0365 5·2188

10×10×10 1·6830 2·6094 2·6094 3·5523 3·5523 3·6902 5·0358 5·2187
CCCC

5×5×5 2·4859 5·0269 5·0269 5·2934 5·2934 6·3493 7·1186 7·3244
6×6×6 2·4777 4·2063 4·2063 5·0278 5·0278 5·5482 5·9314 7·2856
7×7×7 2·4607 4·1826 4·1826 5·0260 5·0260 5·5565 5·9509 6·2216
8×8×8 2·4578 4·1687 4·1687 5·0251 5·0251 5·5449 5·9506 6·3315
9×9×9 2·4563 4·1666 4·1666 5·0242 5·0242 5·5421 5·9505 6·2692

10×10×10 2·4552 4·1656 4·1656 5·0233 5·0233 4·5412 5·9504 6·2714
SCSC

5×5×5 2·0938 2·6033 4·5908 4·6336 4·8929 5·1581 5·7545 6·5752
6×6×6 2·0996 2·6091 3·6323 4·0548 4·6135 4·9049 5·1470 5·2246
7×7×7 2·0919 2·6094 3·6769 4·0415 4·6156 4·9035 5·2210 5·2787
8×8×8 2·0902 2·6094 3·6831 4·0293 4·6152 4·9019 5·2187 5·2777
9×9×9 2·0892 2·6094 3·6798 4·0276 4·6148 4·9017 5·2188 5·2748

10×10×10 2·0886 2·6094 3·6790 4·0269 4·6144 4·9014 5·2187 5·2741
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T 3

Convergence of frequency parameters, l=(vb2/p2)zrh/D, of thick rectangular
plates, (a/b=2·0, c/b=0·25) under different boundary conditions

Mode sequence number
Grid points ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV
X×Y×Z 1 2 3 4 5 6 7 8

SSSS
5×5×5 1·0976 1·3017 2·2456 2·6033 2·8772 2·8833 3·6444 3·6719
6×6×6 1·1097 1·3045 1·6626 2·5735 2·6091 2·9179 3·0712 3·4819
7×7×7 1·1128 1·3047 1·6806 2·4757 2·6094 2·6105 2·9183 3·1268
8×8×8 1·1126 1·3047 1·6838 2·5372 2·6093 2·6094 2·9174 3·1354
9×9×9 1·1125 1·3047 1·6833 2·5316 2·6094 2·6094 2·9173 3·1319

10×10×10 1·1125 1·3047 1·6829 2·5289 2·6094 2·6094 2·9174 3·1312
CCCC

5×5×5 1·8329 2·9940 3·3715 3·9371 4·5271 4·9806 4·9849 5·5352
6×6×6 1·8209 2·2856 3·3741 3·7914 4·1181 4·4055 4·5181 4·7395
7×7×7 1·8064 2·2755 3·0388 3·3713 3·7605 4·1111 4·5127 4·6515
8×8×8 1·8036 2·2572 3·0576 3·3711 3·7436 4·0057 4·0951 4·5119
9×9×9 1·8024 2·2558 2·9939 3·3703 3·7417 4·0781 4·0926 4·5110

10×10×10 1·8013 2·2549 2·9967 3·3702 3·7407 3·9289 4·0917 4·5101
SCSC

5×5×5 1·1809 1·3017 2·6622 2·8772 3·0827 3·6719 3·6729 4·1883
6×6×6 1·1935 1·3045 1·8839 2·5735 3·0921 3·0981 3·5460 3·9673
7×7×7 1·1950 1·3047 1·8907 2·6105 2·7949 3·0989 3·1465 3·6130
8×8×8 1·1933 1·3047 1·8744 2·6093 2·8307 3·0984 3·1546 3·6173
9×9×9 1·1930 1·3047 1·8734 2·6094 2·7680 3·0983 3·1510 3·6136

10×10×10 1·1925 1·3047 1·8731 2·6094 2·7715 3·0983 3·1501 3·6128

The final comparison study for the SSSS square plate is done for a plate with
c/b=0·2. In this case, modes 1, 4, 5, 6 and 7 of the DQ solution shall be used
to compare with the exact solution [30]. This is because the exact solution for
modes 2, 3, and 8 is unavailable. The percentage deviations of modes 1, 4, 5, 6
and 7 when compared with the exact solution are 1·145%, 0·205%, 0·205%,
0·002% and 0·011% respectively. The DQ solution for modes 2, 3 and 8 shall be
compared with the p-Ritz method [41]. It is discovered that modes 2 and 3 have
zero deviation whereas modes 5 and 8 have 0·205% and 0·003% deviations
respectively.

From the above analysis of Table 4, one can conclude that the DQ solution is
accurate in solving the SSSS plate problem. Generally, the accuracy for the cases
studied can be limited to Q1·5% deviation from the exact solution [30]. It is also
noticed that the solution of the first order plate theory [42] has the most deviation
from the exact three-dimensional solution [30]. This is followed by the higher order
theory [43]. It is also noticed that the numerical three-dimensional results
considered deviate less when compared with the exact three-dimensional solution.
Hence, it can be generally regarded that the numerical three-dimensional results
are still more accurate than the results generated by other plate theories. Its
uniqueness proves the need for three-dimensional numerical solution.
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T 4

Comparison of frequency parameters, l=(vb2/p2)zrh/D, for thin and thick square plates with SSSS
boundary condition

Thickness Mode sequence number
ratio, ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
c/b Solution method 1 2 3 4 5 6 7 8

0·01 Classical theorya 2·0 5·0 5·0 8·0 10·0 10·0 13·0 13·0
Midlin theoryb 1·9992 4·9954 4·9954 7·9882 9·9816 9·9816 — —
3-D Ritz solutionsc 1·9993 4·9956 4·9956 7·9888 9·9826 9·9826 12·9710 12·9710
Present 3-D solutions 1·9952 4·9977 5·0081 7·9957 10·0240 10·0290 13·0110 13·0120

0·1 Midlin theoryb 1·9311 4·6048 4·6048 — — 7·0637 8·6049 8·6049
Midlin theoryd 1·931 4·605 4·605 — — 7·064 8·605 8·605
Higher order theorye 1·9353 4·6222 4·6222 — — 7·1036 8·6609 8·6609
3-D exact solutionsf 1·9342 4·6222 4·6222 — — 7·1030 8·6617 8·6617
3-D Ritz solutionsc 1·9342 4·6222 4·6222 6·5234 6·5234 7·1030 8·6617 8·6617
Present 3-D solutions 1·9342 4·6250 4·6250 6·5234 6·5234 7·1064 8·6932 8·6932

0·2 Midlin theoryd 1·7659 — — 3·8576 3·8576 — 5·5729 6·5809
Higher order theorye 1·7558 — — 3·8991 3·8991 — 5·6526 6·6867
3-D exact solutionsf 1·7557 — — 3·8991 3·8991 4·6128 5·6527 —
3-D Ritz solutionsc 1·7558 3·2617 3·2617 3·8991 3·8991 4·6128 5·6524 6·5234
Present 3-D solutions 1·7758 3·2617 3·2617 3·8999 3·8999 4·6127 5·6533 6·5236

a Reference [40]; b reference [42]; c reference [41]; d reference [47]; e reference [43]; f reference [30].
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T 5

Comparison of frequency parameters, l=(vb2/p2)zrh/D, for thin and thick square plates with CCCC
boundary condition

Thickness Mode sequence number
ratio, ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
c/b Solution method 1 2 3 4 5 6 7 8

0·01 Classical theorya 3·6459 7·4370 7·4370 10·963 13·366 13·366 16·718 16·718
Midlin theoryb 3·6421 7·4254 7·4254 10·951 13·294 13·356 — —
3-D Ritz solutionsc 3·6492 7·4352 7·4352 10·953 13·315 13·379 16·682 16·682
Present 3-D solutions 3·6671 7·4599 7·4705 10·995 13·367 13·430 16·748 16·748

0·1 Midlin theoryb 3·3099 6·3249 6·3249 8·8977 10·455 10·544 — —
Midlin theoryd 3·2954 6·2858 6·2858 8·8098 10·379 10·478 12·553 12·553
3-D Ritz solutionsc 3·3184 6·3402 6·3402 8·8961 10·490 10·590 12·519 12·519
Present 3-D solutions 3·3282 6·3547 6·3547 8·9135 10·493 10·592 12·524 12·524

0·2 3-D Ritz solutionsc 2·7247 4·7706 4·7706 6·2727 6·2727 6·4163 7·3219 7·4225
Present 3-D solutions 2·7288 4·7762 4·7762 6·2754 6·2754 6·4224 7·3254 7·4258

a reference [44]; b reference [45]; c reference [41]; d reference [46].
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The comparison study is done for a CCCC square plate as shown in Table 5.
For the case of thin plate, c/b=0·01, one can deduce that the deviation of the
DQ results from that of the classical theory [44] is Q0·6%. When the DQ solution
is compared with that of the three-dimensional p-Ritz method [41], the deviation
is 0·5%. For the case of plates with c/b=0·1, the deviation of the DQ solution
from that of the p-Ritz method [41] is Q0·3%. When the plate’s c/b=0·2, the
deviation with Ritz method is Q0·2%. Hence, one can safely say the DQ solution
yields accurate results.

6. CONCLUSIONS

This paper verifies that the DQ method is able to solve problems related to
three-dimensional vibration of plates with a high degree of accuracy. The
discussions in the previous section also allows the following conclusions to be
drawn. Firstly, the cosine mesh pattern is a more desirable mesh for solving
three-dimensional plate vibration problems. It is also concluded that
three-dimensional numerical solutions for plate problems yield highly accurate
solutions thus complementing solutions derived from other plate theories like the
first order plate theory and the higher order plate theories. This gives rise to a need
for further studies into this field of research.
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