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The eigenfunction method is used to analyze the asymmetric response of linearly
tapered circular plates subjected to transverse loads, uniformly distributed over
an annular sectorial area of the plate. The analysis is based on the classical plate
theory. Numerical results are presented graphically for the transverse deflection
and stresses of the plate for various combinations of plate and loading parameters.
Results obtained, as a particular case, for a plate of constant thickness subjected
to an off-center half-sine pulse point load are compared with previously published
results and found to match exactly.
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1. INTRODUCTION

Circular plates of variable thickness are widely used in several engineering fields.
In particular, the title problem is related to the loading condition in machine parts
such as diaphragms of turbines.

Although the free vibration problem of circular and annular plates of variable
thickness with various complicating effects has been taken up by many researchers
[1–4], very little work is available on the forced motion of circular plates of variable
thickness and even that is limited to their axisymmetric response only, namely,
Laura et al. [5], Irie et al. [6], Greco and Laura [7], and Gupta and Goyal [8, 9].
The authors have so far not come across any paper dealing with the asymmetric
forced response problem of circular plates of variable thickness.

Several research papers dealing with the forced asymmetric response of circular
plates of constant thickness can be found in the literature. Reismann [10] studied
the forced vibration of a clamped circular plate subjected to an arbitrarily placed,
harmonically oscillating, transverse, concentrated force, utilizing the concept of
singularity solutions. Mcleod and Bishop [11] presented solutions for a variety of
special cases of forced vibration of circular plates with simply-supported, free,
clamped, and sliding boundary conditions. Anderson [12] presented a finite
integral transform method to study the forced response of circular plates.
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Ramakrishnan and Kunukkasseril [13] have analytically analyzed the response of
circular plates to asymmetric loadings. Kunukkasseril and Ramakrishnan [14]
analyzed the effects of sonic boom on circular bridge panels. Kunukkasseril and
Chandrasekaran [15] studied the impact of concentrated loading on circular plates,
experimentally. Fisher [16] presented a modal analysis solution for the transient
asymmetric response problem of thin circular plates. Yang [17] proposed a
generalized Kelvin-function solution for a class of vibrating circular plate
problems. He applied it to study the forced vibration of the injector plate due to
pressure oscillation in the combustion chamber of a liquid rocket engine and the
circular lid of an underwater container subjected to water motion.

In the present paper, forced asymmetric response of linearly tapered circular
plates is analyzed by the eigenfunction method. The exact free vibration
frequencies and mode shapes are obtained by the Frobenius method, which
enables us to solve the integrals involved in the orthogonality condition of mode
shapes easily. A more detailed account of the advantages of the method can be
found in the authors’ earlier papers [8, 9]. A clamped plate subjected to a half-sine
pulse load, distributed uniformly over an annular sectorial area of the plate is
considered as an example problem. Numerical results are presented graphically for
the transverse deflection and stresses of the plate for various combinations of plate
and loading parameters. Results obtained, as a particular case, for a plate of
constant thickness subjected to an off-center half-sine pulse point load are
compared with previously published results and found to match exactly.

2. EQUATION OF MOTION

The equation of motion governing the forced asymmetric response of a linearly
tapered circular plate (see Figure 1(a)) according to classical plate theory is taken
as

D94w+D,r$2w,rrr +
2+ n

r
w,rr −

1
r2 w,r +

2
r2 w,ruu −

3
r3 w,uu%

+D,rr$w,rr +
n

r
w,r +

n

r2 w,uu%+ rhw,tt = f(r, u, t) (1)

Figure 1. (a) Transverse section of plate and (b) loading configuration.



      643

where
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1u21
is the polar biharmonic operator, D=Eh3/12(1− n2) is the flexural rigidity of the
plate, and w, f, h0, b, r, n and t are the transverse deflection, transverse force per
unit area, thickness at the center, taper constant, density of the plate, Young’s
modulus, Poisson ratio, and time respectively.

The above equation is made non-dimensional to get

H3

R4 [R4W,RRRR +2R3W,RRR −R2W,RR +RW,R +2R2W,RRuu

−2RW,Ruu +4W,uu +W,uuuu ]

+
3H2H,R

R3 [2R3W,RRR +(2+ n)R2W,RR −RW,R +2RW,Ruu −3W,uu ]

+
3(2HH2

,R +H2H,RR )
R2 [R2W,RR + nRW,R + nW,uu ]+12HW,TT

=12F(R, u, T), (2)

where
H=H0(1+ bR), R= r/a, H= h/a,

H0 = h0/a, W=w/a, F=12(1− n2)f/E, T= tzE/{ra2(1− n2)},

The homogeneous boundary conditions are that one member of each of the
following pairs vanish at the edge R=1:

(W, VR ) and (W,R , MR ), (3)

where

VR =MR,R +
MR −Mu +2MRu,u

R
, MR =

−H3

12 0W,RR +
n

R
W,R +

n

R2 W,uu1,

Mu =
−H3

12 0nW,RR +
W,R

R
+

W,uu

R2 1 and MRu =
−H3(1− n)

12 0W,Ru

R
−

W,u

R2 1.
The initial conditions involves the specification of

W(R, u, 0)=W0(R, u) and W,T (R, u, 0)=W0
,T (R, u). (4)
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3. METHOD OF SOLUTION

3.1.   

For free vibration, the solution assumed as

W(R, u, T)=Wjm (R) cos mu eiVjmT, (5)

where j (=0, 1, 2, 3, . . . ) denotes the number of nodal circles, and m
(=0, 1, 2, . . . ) denotes the number of nodal diameters, is substituted in the
homogeneous differential equation (2), obtained by setting F=0. It gives

(1+ bR)2$Wjm,RRRR +
2
R

Wjm,RRR −
1+2m2

R2 Wjm,RR

+
1+2m2

R3 Wjm,R +
m2(m2 −4)

R4 Wjm%
+3b(1+ bR)$2Wjm,RRR +

2+ n

R
Wjm,RR −

1
R2 Wjm,R

−
2m2

R2 Wjm,R +
3m2

R3 Wjm%
+6b2$Wjm,RR +

n

R
Wjm,R −

m2n

R2 Wjm%−v2
jmWjm =0, (6)

where v2
jm =12V2

jm /H2
0 .

The Frobenius method is used to solve the above equation. The solution is
assumed as

Wjm (R)= s ajmkRk+ c, ajm0 $ 0, (7)

where the summation over integer k is taken from 0 to a.
In the analysis to follow, the suffixes j and m of ajmk are dropped for the sake

of convenience. The solution (7) is substituted into equation (6). The indicial
equation, obtained by equating to zero the coefficient of the lowest power of R
has roots c=−m, −m+2, m, and m+2. The solutions corresponding to the
indicial roots −m and −m+2 are singular at R=0 and are therefore omitted.
Equating to zero the coefficients of next higher power of R gives
a1 =−3b(1− n)m(m−1)/(4m2 −1) and a2 as indeterminate.
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The recurrence relation is obtained as

ak =−[b[(k+m−1){(k+m−2){2(k+m−1)2 −4+3n−4m2}

−(1+2m2)(k+m−1−m2)]ak−1

+b2[(k+m−2)(k+m−3){(k+m−2)(k+m+1)+1+3n−2m2}

+2(k+m−2)(3n−1−2m2)

+ (5−6n)m2 +m4]ak−2 −v2
jmak−4]/{k(k−2)(k+2m)(k+2m−2)}, (8)

where k=3, 4, 5, . . . , a0 and a2 are the arbitrary constants and a−1 =0.
In terms of the arbitrary constants, the above recurrence relation can be written

as

ak = a0f 0
k + a2f 2

k ,

where

f p
k =−[b[(k+m−1){(k+m−2){2(k+m−1)2 −4+3n−4m2}

−(1+2m2)(k+m−1−m2)] f p
k−1

+b2[(k+m−2)(k+m−3){(k+m−2)(k+m+1)+1+3n−2m2}

+2(k+m−2)(3n−1−2m2)

+(5−6n)m2 +m4] f p
k−2 −v2

jm f p
k−4]/{k(k−2)(k+2m)(k+2m−2)},

p=0 and 2, k=3, 4, 5, . . . , and f 0
0 =1, f 0

1 =−3b(1− n)m(m−1)/(4m2 −1),
f 0
2 =0, f 2

0 =0, f 2
1 =0, f 2

2 =1, and f p
−1 =0.

The free vibration solution (7) therefore takes the form

Wjm (R)= s (a0 f 0
k + a2 f 2

k )Rk+m. (9)

3.2.   

To test the convergence of solution (9), the recurrence relation (8) is divided by
ak−4 and the limit is taken as k:a. This gives

P4 +2bP3 + b2P2 =0,

where

Pn = lim
k:a 0 ak

ak− n1.
The roots of the above equation are P=0, 0, −b, and −b, suggesting that the

solution is uniformly convergent in the interval [0, 1] for =b=Q 1.
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3.3.  

The orthonormality condition of the normal modes of vibration is obtained as

g
1

0

HWjmWkmR dR= djk , (10)

where djk is the Krönecker delta.

3.4.   

A solution to the forced motion problem posed by equation (2), the boundary
conditions (3), and the initial conditions (4), is assumed in the form

W(R, u, T)= s s Wjm (R) cos mugjm (T), (11)

where Wjm are the mode shape functions given by equation (9). The summations
over j and m are taken from 0 to a. The substitution of this solution in equation
(2) gives

s s $0H3

R4 {R4Wjm,RRRR +2R3Wjm,RRR −R2Wjm,RR +RWjm,R −2m2R2W,jm,RR

+2m2RWjm,R −4m2Wjm −m4Wjm}+
3H2H,R

R3 {2R3Wjm,RRR

+(2+ n)R2Wjm,RR −RWjm,R −2m2RWjm,R +3m2Wjm}

+
6HH2

,R

R2 {R2Wjm,RR + nRWjm,R +m2nWjm}1gjm +12HWjmgjm,TT%=12F.

Now, the use of equation (6), governing the free vibration in the jmth mode, leads
to

s
j

H[gjm,TT +V2
jmgjm ]Wjm =Fm (R, T), m=0, 1, 2, . . . ,

where

F0(R, T)=
1
p g

p

0

F(R, u, T) du,
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and

Fm (R, T)=
2
p g

p

0

F(R, u, T) cos mu du, m=1, 2, 3, . . . .

Multiplying the above equation by Wkm , integrating over the plate and using the
orthogonality condition (10), one gets

gjm,TT +V2
jmgjm =Gjm (T), (12)

where

Gjm (T)=g
1

0

Wjm (R)Fm (R, T)R dR, m=0, 1, 2, . . . . (13)

The solution of equation (12), obtained by using the Laplace transformation
technique, is given by

Vjmgjm (T)=Vjmgjm (0) cos VjmT+ gjm,T (0) sin VjmT

+g
1

0

Gjm (t) sin Vjm (T− t) dt, (14)

where gjm (0) and gjm,T (0) are the constants of integration to be determined from
the initial conditions. Putting T=0 in equation (11), one gets

W(R, u, 0)=W0(R, u)= s s Wjm (R) cos mugjm (0),

and

W,T(R, u, 0)=W0
,T (R, u)= s s Wjm (R) cos mugjm (0).

Multiplying these relations by Wkm , integrating over the plate and using the
orthogonality condition (10), one gets

gjm (0)=g
1

0

HWjmW0R dR and gjm,T (0)=g
1

0

HWjmW0
,TR dR. (15)

The radial and tangential stresses, at the top fiber are given by

sR =−
H
2

s s 0Wjm,RR +
n

R
Wjm,R −

m2n

R2 Wjm,R1gjm (T) cos mu.

sU =−
H
2

s s 0nWjm,RR +Wjm,R −
m2

R2 Wjm,R1gjm (T) cos mu. (16)
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This completes the formal solution of the forced asymmetric motion problem
of a linearly tapered circular plate.

4. EXAMPLE PROBLEMS

4.1.     

For a plate clamped at the boundary, one has W=W,R =0 at R=1, which
reduces to Wjm =Wjm,R =0 at R=1. These boundary conditions give

a0 s f 0
k + a2 s f 2

k =0 and a0 s (k+m)f 0
k + a0 s (k+m)f 2

k =0, (17)

and therefore, the frequency equation is obtained as

0s f 0
k 10s (k+m)f 2

k 1−0s f 2
k 10s (k+m)f 0

k 1=0. (18)

The unique mode shape functions obtained by using the relations (17) and the
mode normalization condition (10) are

Wjm (R)= a0 s ( f 0
k −Af 2

k )Rk+m, (19)

where

A=0s f 0
k 1>0s f 2

k 1
and

1
a2

0
=H0 s s ( f 0

k f 0
l −2Af 0

k f 2
l +A2f 2

k f 2
l )0 1

k+ l+2m+2
+

b

k+ l+2m+31,
the summation over l also being taken from 0 to a.

4.2.  

The initial displacement and initial velocity of the plate are assumed to be zero,
that is W0(R, u)=W0

,T (R, u)=0, so that from equation (15) one gets

gjm (0)= gjm,T (0)=0. (20)
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4.3.  

The forced motion problem of the plate is analyzed for half-sine pulse,
uniformly distributed load (see Figure 1(b) for loading configuration) given by

F(R, u, T)= 8 −2P0

a(g2
2 − g2

1 )
sin (pT/t1)[1−U(T− t1)],

0,

for −a/2E uE a/2 and g1 ERE g2,

elsewhere,
(21)

where U(T) represents the unit-step function.
The mode shape functions from equation (19) and the loading condition given

by equation (21) are substituted into equation (13). Gjm (T) thus obtained is
substituted into equation (14) along with the initial conditions (20) to get

gjm =6Sjm ,
2Sjm sin (ma/2)/(ma/2),

for m=0
for m=1, 2, 3, . . .

TQ t1, (22)

where

Sjm =
P0t1[Vjm sin (pT/t1)− p sin (VjmT)]

pVjm (p2 −V2
jmt2

1 )(g2
2 − g2

1 )

×a0 s ( f 0
k −Af 2

k )0gk+m+2
2 − gk+m+2

1

k+m+2 1 [m.

gjm =6S*jm ,
2S*jm sin (ma/2)/(ma/2),

for m=0
for m=1, 2, 3, . . .

Te t1, (23)

where

S*jm =
2P0 sin {Vjm (t1/2−T)} cos (Vjmt1/2)

Vjm (p2 −V2
jmt2

1 )(g2
2 − g2

1 )

×a0 s ( f 0
k −Af 2

k )0gk+m+2
2 − gk+m+2

1

k+m+2 1 [m.

The transverse deflection and the radial stress for the forced motion problem
are obtained by substituting Wjm (R) from equation (19) and gjm (T) from equation
(22)/(23), into expressions (11) and (16), respectively.
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Figure 2. W, oR and oU under the load at R=0·5, u=0° for plates subjected to pulse load for
various pulse durations. H0 =0·02, b=0·0.; ——. Rf=0·1; – – –, 0·45; — —, 2·5.

5. RESULTS AND DISCUSSION

The series involved in the characteristic equation (equation (18)) are summed
up to an accuracy of 10−8. The series occurring in the subsequent analysis are
summed up to the same number of terms as taken in each earlier corresponding
series. The roots of the characteristic equation are computed by the bisection
method with a tolerance of 10−5. A clamped plate subjected to constant and
half-sine pulse loads is treated as an example problem. Numerical results are
presented graphically for the transverse deflection (W/P0), radial stress (sR /P0) and
tangential stress (sU /P0). The series for transverse deflections and stresses
(equations (11) and (16), respectively) are summed up to j=10 and m=9, which
assures an accuracy of five decimal places.
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Figure 4. W, sR and sU at R=0·5 for plates subjected to pulse load for increasing angular span of load. H0 =0·01, b=0·3, Rf =1·0, g1 =0·4, g2 =0·6.
— —, u=0°; ——, 60°; – – –, 120°; —W—, 180°.
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Figure 6. W, sR and sU at R=0·5 for plates subjected to pulse load for changing position of radial span of load. H0 =0·01, b=0·3, Rf =1·0, a=20°.
— —, u=0°; ——, 60°; – – –, 120°; —W—, 180°.
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Figure 7. W, sR and sU at R=0·5 for plates subjected to pulse load for various values of b. H0 =0·01, Rf =1·0, a=20°, g1 =0·4, g2 =0·6.
— —, u=0°; ——, 60°; – – –, 120°; —W—, 180°.
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The variations in position, radial and angular span of the load are made in such
a manner so that the total load on the plate remains constant.

Ramakrishnan and Kunukkasseril [13] presented results for transverse
deflection, radial and tangential strains for a plate of constant thickness subjected
to an off-center half-sine pulse point load for various pulse durations which were
incorrect, as pointed out by Fisher [16]. The corresponding corrected results,
obtained as a particular case, for a plate of constant thickness (b=0) are
presented in Figure 2. The results for transverse deflection match exactly those of
Fisher [16].

W, sR , and sU at R=0·5 are plotted against time in Figures 3–7 for plates
subjected to half-sine pulse load for various loading and plate parameters.

The effect of pulse duration on half-sine pulse load on the transverse deflection
is illustrated in Figure 3. It can be seen that for short pulse durations, the time
taken in attaining peak value of deflection is maximum for u=180° and is
maximum for u=0°. Also the deflection for u=180° is more than the deflection
along u=0°. But as the pulse duration increases, the time taken in attaining the
peaks increases and is almost the same for all values of u for Rf e 1·7. At the same
time, the deflection at u=0° becomes maximum, whereas it becomes minimum
at u=180° and remains so for further increases in pulse duration. The increase
in pulse duration continuously increases the time taken in attaining the peak values
but the peak values are almost constant for Rf e 3·0.

As the angular (a) and radial span (g1 − g2) of the load is increased, the
asymmetry in W, sR , and sU is found to decrease, as is evident from Figures 4
and 5. This decrease in asymmetry is accompanied by a decrease in magnitude also.
That is, if the loaded area increases, the asymmetry and the magnitude decrease.

If the position of the load is shifted from near the center of the plate towards
its outer periphery, the asymmetry in transverse deflection and stresses first
increases, becomes maximum for g1 =0·25 and g2 =0·5 and then decreases as is
clear from Figure 6.

The effect of asymmetry in transverse deflection and stresses is more pronounced
in thinner plates, as is evident from Figure 7 in which they are plotted for various
values of the taper constant b.
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