
Journal of Sound and Vibration (1999) 220(4), 695–727
Article No. jsvi.1998.1953, available online at http://www.idealibrary.com on

AN ASYMPTOTIC-NUMERICAL METHOD FOR
LARGE-AMPLITUDE FREE VIBRATIONS OF

THIN ELASTIC PLATES

L. A
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An Asymptotic-Numerical Method has been developed for large amplitude free
vibrations of thin elastic plates. It is based on the perturbation method and the
finite element method. This method eliminates the major difficulties of the classical
perturbation methods, namely the complexity of the right hand sides and the
limitation of the validity of the solution obtained. The applicability of this method
to non-linear vibrations of plates is clearly presented. Based on the Von Karman
theory and the harmonic balance method, a cubic non-linear operational
formulation has been obtained. By using the mixed stress–displacement
Hellinger–Reissner principle, a quadratic formulation is given. The displacement
and frequency are expanded into power series with respect to a control parameter.
The non-linear governing equation is then transformed into a sequence of linear
problems having the same stiffness matrix, which can be solved by a classical
FEM. Needing one matrix inversion, a large number of terms of the series can
be easily computed with a small computation time. The non-linear mode and
frequency are then obtained up to the radius of convergence. Taking the starting
point in the zone of validity, the method is reapplied in order to determine a
further part of the non-linear solution. Iteration of this method leads to a powerful
incremental method. In order to increase the validity of the perturbed solution,
another technique, called Padé approximants, is shrewdly incorporated. The
solutions obtained by these two concepts coincide perfectly in a very large part
of the backbone curve. Comprehensive numerical tests for non-linear free
vibrations of circular, square, rectangular and annular plates with various
boundary conditions are reported and discussed.
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1. INTRODUCTION

The modal analysis and linearising techniques are routinely used to examine the
dynamic response of structures. However, standard procedures are based on the
assumption of linearity and can fail to give accurate results when the amplitude
of vibration is large enough to induce significant non-linear behaviour. The study
of large amplitude vibrations of plates involving geometrical non-linearities
requires efficient non-linear procedures. Previous investigations on the non-linear
vibrations of plates have used analytical or numerical methods. The analytical
methods are based on the assumption of the known functions satisfying boundary
conditions. However, this is limited to simple boundary conditions and standard
shapes of the plate, and the in-plane equilibrium is not generally satisfied. The
numerical methods based on the finite element method, generally encountered in
practice in computing codes, are based on the modal analysis techniques. This is
very useful, but limited to small amplitudes (w/h�1). For large amplitudes,
numerical procedures for non-linear problems are necessary. Some solution
algorithms for non-linear problems are implemented in different codes but they
are very time consuming and are not easy to manipulate. The significant advantage
of the method proposed here is the combination of the finite element method and
the perturbation method providing an efficient algorithm for solving the obtained
non-linear problem. This procedure is not computationally more expensive than
the standard modal analysis.

For a survey of the literature on non-linear vibrations of plates, the most
commonly used methods are presented. The assumption generally used is the
separation of time and space variables. The first approach is based on the
assumption that the non-linear mode shape is the same as the linear one. Using
Galerkin’s method, one can reduce the governing dynamic equations to a single
non-linear ordinary differential equation in time of Duffing type. The latter
equation is treated by elliptical functions or by a harmonic balance method [1–5].
A numerical resolution and a direct numerical integration method are also
used [6–8]. The assumption of the displacement in the form of double a Fourier
series leads to a non-linear algebraic system which can be solved by an
incremental-iterative method [9]. A comprehensive survey of the large amplitude
vibrations of plates has been presented in references [10–11]. In the second
approach, the dependence on time is assumed to be harmonic. Then, one can use
the harmonic balance method to obtain a non-linear boundary value problem in
the spatial variable. This technique is widely used because it permits one to
transform the non-linear dynamic problem into a non-linear static one. This allows
one to work with the same numerical methods as in static. Using the linearized
strain–displacement relations, the frequency–amplitude relations have been
obtained applying the Rayleigh–Ritz method [12]. The classical finite element
method can be used for an accurate solution of complex engineering problems.
The first attempt to apply the later method in large amplitude vibration is due to
Mei [13]. Most studies in non-linear vibrations of structures using this approach
have been carried out by combining the finite element method and linearising
procedures [13–18]. As clearly presented in references [14, 17, 18], this procedure
leads to an iterative linear eigenvalue problem. It is well known that the
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discretisation of the structure leads to a large scale problem. Then, on the one
hand, the iterative procedure at each point of the solution is very time consuming.
On the other hand, this formulation reduces the effect of the non-linearity [19].
Without linearising functions, the problem of non-linear free vibration is
represented as a non-linear eigenvalue problem which can be solved by an
incremental-iterative procedure [20]. An amplitude-incremental plate element is
presented and applied to study the periodic vibration of thin plates in
reference [21]. Different authors used the reduced basis technique or the Ritz
method [22, 23]. These papers demonstrated the effectiveness of reduction
methods in non-linear vibrations of beams and plates. The dynamic behaviour of
plates at large vibration amplitudes was examined both theoretically using a
multi-mode analysis, and experimentally by White et al. and by Benamar et al.
[24–27]. Following the same procedure, a semi-analytical approach has been
proposed for forced vibrations. This leads to non-linear algebraic equations
which can be solved by an incremental-iterative procedure. The application of
this method to the forced non-linear vibrations of beams has been recently
developed [28, 29].

In the third approach one determines an approximate solution of non-linear
dynamic problems by treating the continuous problem directly without the above
mentioned simplifying assumptions. Various methodological approaches can be
used like, for example, the method of multiple scales. For a comprehensive review
of the literature, we refer the reader to Nayfeh et al.’s works [30–32]. Other
methods like incremental time space finite strip or alternating frequency–time
domain can be used [33, 34]. The complete time-space problem has to be solved
without any simplification. Remembering the difficulties in solving numerically
some static or stationary problems, one understands that such methods will not
be workable in practice for a long time. Thus, it is relevant to look for simpler
techniques for solving time-dependent problems.

The harmonic balance method is a well known application for highly non-linear
systems and is largely used for non-linear vibrations of elastic structures. Using
this approach, one gets a non-linear differential problem that is similar to a static
one. The resolution of this problem permits one to obtain the non-linear modes
of vibration and the backbone curves which are simple dynamic characteristics of
the system. In general, the computational methods used to solve this problem are
the incremental iterative methods. The most popular one is a Newton–Raphson
method associated with control parameters. The principle is to follow the
non-linear solution path in a stepwise manner, via a sequence of linearizations
and some iterations to achieve equilibrium. With a proper parametrisation of
the branch, such algorithms are successful in determining a complete shape of
solution that will be represented point by point. However, this requires a long
computation time compared to a linear problem and it is difficult to automatize
as for step by step procedures. An alternative approach corresponds to analytical
representation techniques such as the perturbation methods. According to these
representation techniques, the solution of the whole problem is represented in the
form of power series with respect to a path parameter. The principle of
these methods is to determine some terms of the series by solving a recursive set
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of linear problems. In contrast with the incremental-iterative methods,
perturbation methods have received much less attention from the computational
community. There are two main explanations for the poor success of such
methods in computational context. The first one is the growing complexity of the
right-hand sides of the linear problems obtained. The second is the thought that
the analytical representation is valid only for very small values of the perturbation
parameter. So, these methods are usually considered more as a theoretical
framework for qualitative analysis than as a numerical tool to furnish accurate
qualitative results.

An Asymptotic-Numerical Method based on perturbation techniques and the
finite element method has been developed for non-linear problems. This method
permits one to remove some of the previous difficulties in the classical perturbation
methods. It has been used by Damil and Potier-Ferry [35] for computing perturbed
bifurcation and applied by Azrar et al. [36–39] for computing the post-buckling
behaviour of elastic plates and shells. Next, it has been extended to some
non-linear elastostatic problems by Cochelin et al. [40, 41]. An application of this
method to non-linear vibrations is presented by Azrar et al. [42]. These works have
brought out the essential features that affect the practicability of the coupling of
perturbation methods and finite element methods. The principle of this method is
to represent the unknowns (displacements, load parameters, frequency, . . . ) by a
power series expansion with respect to a control parameter. By introducing the
expansion into the governing equation, the non-linear problem is transformed into
a sequence of simple linear problems which can be solved by a classical finite
element method. Hence, a large number of terms of the series can be numerically
computed.

The main objective of this paper is to present the development of the asymptotic
numerical method for large amplitude vibrations of plates. The paper is organised
as follows. First, the governing equations based on the von-Karman’s plate theory
are presented. The use of the harmonic balance method permits one to obtain a
simple operational formulation. The asymptotic numerical method based on the
finite element method has been developed and applied for solution.
Comprehensive numerical tests for non-linear free vibrations of plates are reported
and discussed. However, the validity of the solution obtained is limited. Taking
the starting point in the zone of validity and reapplying the ANM, a path following
procedure is obtained. This continuation method leads to a very powerful
incremental method with an analytical step. The limitation of the validity of the
solution has been overcome and the whole backbone curve is analytically obtained
in a few steps. The orthogonalisation of the basis vectors and the rearrangement
of the computed series has been presented in order to extract the maximum
information. The resulting coefficients are approximated by Padé approximants.
A short computation time is needed for these manipulations. A good choice of
these approximants leads to a considerable improvement in the zone of validity.
The solutions obtained by the continuation procedure and Padé approximants
coincide perfectly in a very large part of the backbone curve. The large amplitude
free vibrations of circular, square, rectangular and annular plates with various
boundary conditions are presented and discussed.
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2. MATHEMATICAL FORMULATION

The non-linear differential equations governing the moderately large amplitude
vibration of thin elastic plates can be obtained from von Karman’s deflection
theory of plates. The displacement variational principle of these equations leads
to a cubic non-linearity. The mixed stress–displacement approach, called the
Hellinger–Reissner principle, leads to an only quadratic non-linearity. Then in
view of applying the expansion procedure, the mixed approach is preferred here
since it leads to simple algebra. After the expansion process, a displacement
formulation will be used, namely the very classical displacement finite element
method.

2.1.    

Denote the displacement of the middle surface of the plate by u, v and w, where
u and v are the in-plane displacements and w the transverse displacement in the
x, y and z directions, respectively. The reference plane z=0 may be chosen at an
arbitrary location through the undeformed plate and the z-axis directed normally
to it. For thin structures, the Green–Lagrange strains are supposed to vary linearly
through the thickness z and are given by

G(u, v, w)+ zk(u, v, w), (1)

with G(u, v, w)=GL(u, v, w)+GNL(u, v, w). The tensors G and k are the
generalised membrane strains and bending strains. The membrane strains G are
separated into a linear part GL and non-linear part GNL, (G=GL +GNL). From the
von Karman deflection theory of plates [11], the components of these generalised
strain tensors are defined as:
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The bending strain k is supposed to be linear with respect to the displacement
(framework of moderate rotations). The membrane or in-plane forces N and
moments M are assumed to be related to the strain and curvature by the
constitutive relations:
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in which Cm and Cb are symmetric matrices of material properties. For isotropic
plates of uniform thickness h, (E: Young’s modulus, n: Poisson’s ratio).
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The total strain energy expression of the plate can be written as:

P(u, v, w)=
1
2 gV

(G: Cm : G+ k: Cb : k) dV. (4)

Since G is quadratic in (u, v, w), P(u, v, w) is of the degree 4 with respect to
(u, v, w). To reduce the order of the non-linearity, an additional variable is
introduced. This can be achieved by using the mixed Hellinger–Reissner
functional:

H(u, v, w, N)=gV

(N: G− 1
2 N: C−1

m :N+ 1
2 k: Cb : k) dV (5a)

where the unknown is the mixed (displacement-stress) vector field

U= t[u, v, w, N] (5b)

The mixed functional H is cubic in (u, v, w, N) and the variation dH yields to
quadratic equations.

dH(u, v, w, N)=gV

(N: dG+(G−N: C−1
m ): dN+ k: Cb : dk) dV. (6a)

The variational principle dH(u, v, w, N)=0 is equivalent to

6dP(u, v, w)=0

N=[Cm ]: G

the virtual work principle,

the constitutive equation.
(6b)

When working with the power series expansion, it was found better to use the
functional H which leads to a quadratic non-linearity. As for the kinetic energy
T of the plate, the rotatory inertia terms are neglected, which is the most usual
procedure for plate deflection. This gives the following functional:

T=
1
2 gV

rh(u̇2 + v̇2 + ẇ2) dV, (7)
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in which r is the mass density and the overdot means the differentiation with
respect to time.

2.2.      

In the present work, only periodic vibrations of an undamped system are
considered. For a simple representation, harmonic motion is studied in a simple
way. Assume that the displacement vector is given by:

8u(x, y, t)= u(x, y) sin2 vt,
v(x, y, t)= v(x, y) sin2 vt,
w(x, y, t)=w(x, y) sin vt,

(8)

where v is the natural frequency. Insertion of (8) into (2) leads to the formulation
of strains, curvature and membrane tensors as follow:

GL(x, y, t)= gL(x, y) sin2 vt,

GNL(x, y, t)= gNL(x, y) sin2 vt,
g
G

G

G

G

F

f

k(x, y, t)= k(x, y) sin vt,
(9a)

N(x, y, t)=N(x, y) sin2 vt,

in which

N=[Cm ]: g and g= gL + gNL. (9b)

Equation (5a) giving the strain energy becomes:

H(u, v, w, N)= sin4 vt gV

[N: g−
1
2

N: C−1
m : N] dV

+ sin2 vt gV

1
2

k: Cb : k dV. (10)

To study the history of the actual solution corresponding to a period, we set the
initial time t1 =0 and the final time t2 =2p/v. After integration over the time
range one obtains:

g
2p/v

0

(H−T) dt=
p

v 634 gV 0N: g−
1
2

N: C−1
m : N1 dV

+
1
2 gV

k: Cb : k dV−v2 1
2

rh gV

(u2 + v2 +w2) dV7. (11)
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Using Hamilton’s principle, the governing equation is given by:

3
4 gV

(dg: N+ dN: g− dN: C−1
m : N) dV

+gV

dk: Cb : k dV−v2rh gV

(udu+ vdv+wdw) dV=0. (12)

This mixed variational principle can be used directly by using a mixed finite
element method. To obtain a displacement formulation one can determine the
membrane stress N as a function of the displacement.

N(x, y)= [Cm ][g(u, v, w)]= [Cm ][gL(u, v)+ gNL(w, w)]. (13)

The insertion of the stress N into equation (12) leads to a variational principle of
cubic non-linearity in displacement. After discretization by the finite element
method, one gets a non-linear eigenvalue problem. This problem could be treated
by a predictor-corrector method. Our purpose here is to solve the variational
equation (12) using an asymptotic-numerical method.

Introduce the following change of variables which represents a perturbation of
the frequency parameter v in the vicinity of a linear eigenfrequency vL by:

v2 =v2
L + o. (14)

Inserting equation (14) into the equilibrium equation (12) gives:

3
4 gV

[N: dgL +(gL −C−1
m : N): dN] dV+gV

dk: Cb : k dV

−v2
Lrh gV

[udu+ vdv+wdw] dV− orh gV

[udu+ vdv+wdw] dV

+
3
4 gV

[N: dgNL + gNL: dN] dV=0. (15)

In view of using an operational notation as presented in references [36–39, 42], the
governing equation (15) can be written as:

�L · U, dU�−(v2 −v2
L)�M · U, dU�+ �Q(U, U), dU�=0, (16a)

in which U= t[u, v, w, N] is the mixed vector and

�L · U, dU�=
3
4 gV

[N: dgL +(gL −C−1
m : N): dN] dV+gV

dk: Cb : k dV

− v2
Lrh gV

[udu+ vdv+wdw] dV, (16b)
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�M · U, dU�= rh gV

[udu+ vdv+wdw] dV, (16c)

�Q(U, U), dU�=
3
4 gV

[N: dgNL + gNL: dN] dV. (16d)

The operators L and M are linear and Q is a quadratic one. The matrices
corresponding to the operators L and M are the linear stiffness and the mass
matrices, respectively.

3. ASYMPTOTIC-NUMERICAL METHOD

The asymptotic numerical method has been successfully used to study the
buckling and post-buckling of elastostatic structures like beams, plates and shells
[35–41]. The backbone curve that determines the free vibration analysis of plates
is a branch that bifurcates from the fundamental solution U=0 at v=vL, where
vL is the linear frequency of vibration. At the bifurcation point (U=0, v=vL ),
the tangent operator L is singular. Furthermore, it is assumed that the kernel of
this tangent operator is one-dimensional, which generally occurs. Using the
Lyapunov–Schmidt reduction method and implicit function theorem it can be
established that the unknown vector U and the frequency parameter v can be
expanded into integro-power series of a parameter a in the vicinity of the
bifurcating point as follows [38, 42].

U= aU1 + s
+a

p=2

apUp, (17a)

g
G

G

G

G

G

G

F

f

v2 =v2
L + s

+a

p=1

apC(p), (17b)

�U1, Up�=0 if pq 1. (17c)

Hence, Up are mixed unknown vectors and C(p) are unknown coefficients. The
orthogonality condition (17c) is obtained from Lyapunov–Schmidt reduction and
from the assumption that the kernel of the tangent operator L is one-dimensional
and generated by the vector U1. Introducing equation (17) into equation (16a) and
equating like powers of a, one obtains the following set of linear mixed problems.

order 1 L · U1 =0,

order 2 L · U2 =C(1)M · U1 −Q(U1, U1),

· · · ·
(18)

order p L · Up = s
p−1

r=1

C(r)M · Up− r − s
p−1

r=1

Q(Ur , Up− r ).
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The principle of this numerical method is to compute successively a number of
vectors Up and coefficients C(p) up to a given order n. The truncature of the series
(17) at the order n yields polynomials v(a, n) and U(a, n) that are considered as
approximations of the exact solution branch.

Order 1. Solve the following variational problem

�L · U1, dU�=0. (19)

The resolution of this problem gives the linear vibration modes. This allows one
to determine the linear frequency vL and the corresponding vibration mode U1.

Order p. To compute the vector Up , the only difficulty is to construct the
right-hand sides which depends on Uq and C(q), qQ p. The detail of the
construction of the right-hand side is given in Appendix A. The pth problem can
be written under the more compact form:

�L · Up ; dU= �F(p), dU� [dU, (20a)

�Up ; U1�=0 for pq 1, (20b)

C(p−1) =
1

�M · U1, U1� 6− s
p−2

r=1

C(p)�M · Up− r ; U1�

+ s
p−1

r=1

�Q(Ur , Up− r ); U1�7. (20c)

Note that the coefficient C(p) is computed in terms of the vectors Uq , qE p and
C(p) takes place in the determination of Up+1.

Recall that the unknown vector Up includes not only the displacements u, v and
w but also the membrane stress resultant Nab which had been introduced to reduce
the order of the non-linearity to a quadratic one in the governing equation. As
a consequence, all the linear problems (20) are mixed. In order to use classical
FEM, equations (20) are transformed into a pure displacement problem and a
pseudo-constitutive equation which gives the pth term of the resultant stress N(p).
To get N(p) at order p, put du= dv= dw=0 and dNab $ 0 in equations (20) to
yield:

N(p) = [Cm ][gL
(p) −FN

(p)], (21)

where FN
(p) is given in Appendix A.

The resultant stress N(p) is obtained as a function of the displacement. The
insertion of equation (21) into equations (20) leads to a pure displacement problem
as follows.

Denote the displacement vector U� by:

U� = 8uvw9, (22)
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�L� · U� P ; dU��= �F�p ; dU�� [dU� , (23a)

�U� p ; U� 1�=0 for pq 1, (23b)

with

�L� · U� p , dU��=
3
4 gV

gL: Cm : dgL dV+gV

k: Cb : dk dV

− v2
Lrh gV

(udu+ vdv+wdw) dV, (24a)

�F�(p), dU��=gV

(FU
(p)dU� +

3
4

FW
a(p)dw, a+

3
4

Cm : FN
(p): dgL) dV, (24b)

where , FU, Fw
a and FN are given in Appendix A.

The operator �L� · U�p, dU�� is similar to an operator of dynamical stiffness and
it involves the elastic bending stiffness, the membrane stiffness and the mass
operator. So, the mixed problem (20) has been replaced by the displacement
problem (23) and the constitutive equation (21) giving the stress. Finally, N is a
convenient additional variable for reducing the equation degree and to make the
expansion procedure easier. Once the non-linear problem is transformed into a set
of linear problems, the stress is eliminated and a classical FEM is used to solve
the linear problems.

3.1.   (U1, vL )

Before computing the vectors U� p and the coefficients C(p) that give the backbone
curve, one must determine the eigenmode and eigenfrequency characterising the
linear vibrations. To do so, it is necessary to solve equation (19), written in a
displacement form as follows:

�L� · U� 1, dU��=0. (25a)

With the classical notation of computational mechanics [43, 44] the discretization
of this problem leads to an eigenvalue problem in the form:

[Ke−v2
LM][U� 1]=0, (25b)

where [Ke] is the elastic stiffness matrix and [M] is the mass matrix. The solution
of this problem gives the linear modes and linear frequencies of vibration. Denote
by [U� 1] the first mode of vibration and vL its corresponding frequency.

3.2.   U� p  C(p)

The discretization of the problem (23a) reads

[Ke−v2
LM][U� p ]= [F�(p)], (26)

in which [U� p ] is the vector of the modal displacement of order p. [Ke−v2
LM] is

the tangent stiffness matrix at a bifurcation point which is singular. The
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orthogonality condition (23b) between U� p and U� 1 should be added to equation
(26) in order to get an invertible problem. After discretization, this condition
reads:

[U� 1]t · [P] · [U� p ]=0. (27)

where P is a positive-definite matrix associated with the scalar product (23b).
Now choose [P]= [Ke] to have an energy oriented scalar product. So, after
relaxation of equation (26) by equation (27) an invertible problem is obtained
[35–39, 42].

$Ke−v2
LM

U�*t b U�*
0 %$U� p

k %=$F�(p)

0 %, (28)

where [U�*]= [Ke][U� 1] and k is a Lagrange multiplier. Notice that the stiffness
matrix is the same for all linear problems. Hence, a Crout decomposition is
performed once for all. The right hand side vector F�(p) depends on the already
calculated vectors Uq and coefficients C(q) for qQ p. The assembling of F�(p) is very
similar to the assembling of a residual vector in a Newton–Raphson scheme and
requires about the same computation time. The computation of the coefficients
C(p) and the membrane stress Nab(p) can be judiciously performed during the
assembling of the right-hand side. F�, so, that almost no additional computation
time is required for these quantities.

In summary, this asymptotic-numerical method requires about the same
computation time as a modified Newton–Raphson step with (n−1) iterations
without recalculating the stiffness matrix. The computation time of some vectors
Up in the static case with elastic analysis, buckling analysis and Newton–Raphson
steps have been given in Table 1 of reference [39]. For a large number of d.o.f.,
most of the computing time is spent in the Crout decomposition. This is why the
computation of many terms requires only 50% of additional computation time
compared to a linear analysis.

Finally, the linear and non-linear vibrations of plates with various shapes and
boundary conditions can be easily studied. The numerical solution of the
eigenvalue problem (25b) gives the linear frequency vL and linear mode U1.
Obviously, the other frequencies and associated mode shapes are computed. To
obtain the non-linear frequency and the non-linear mode shape, one has to solve
the set of linear systems (28). This leads to the computation of the displacement
vectors U� p = {up , vp , wp}, the associated stress N(p) = {Nxx(p), Nyy(p), Nxy(p)} and the
coefficients C(p) constituting the frequency for each order p. The truncation of the
series (17) at order n gives:

v2(a)=v2
L + aC(1) + a2C(2) + · · ·+ anC(n),

U� (a)= aU1 + a2U2 + a3U3 + · · ·+ anUn , (29)g
G

G

F

fN(a)= aN(1) + a2N(2) + a3N(3) + · · ·+ anN(n).
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T 1

Frequency ratio v/vL according to the maximum amplitude w*=w(centre)/h for a simply supported isotropic square plate (v=0.3)

v/vL

ZXXXXXXXXXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXXXXXXXXXV
FEM+ 1-mode+ 1-mode+ 1-mode+ 1-mode Rayleigh– FEM

Present incremental Gauss Runge– elliptic +perturbation Ritz +
study method integration Kutta integrals method method linearisation

w* ANM [21] [8] [6] [1, 3] [1, 3, 19] [12] [17]

0·2 1·01976 1·0196 1·0189 1·0208 1·0195 1·0196 1·0149 1·0134
0·4 1·07669 1·0763 1·0771 1·0805 1·0757 1·0761 1·0583 1·0528
0·6 1·16596 1·1645 1·1669 1·1725 1·1625 1·1642 1·1270 1·1154
0·8 1·28124 1·2779 1·2813 1·2894 1·2734 1·2774 1·2166 1·1979
1·0 1·41666 1·4109 1·4141 1·4248 1·4024 1·4097 1·3230 1·2967

T 2

Frequency ratio v/vL according to the maximum amplitude w*=w(centre)/h for a fully clamped isotropic square plate (v=0.3)

v/vL

ZXXXXXXXXXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXXXXXXXXXV
Multi- FEM+

Present mode Perturbation incremental
study analysis method method M. Sathy- G. V. J. N.

w* ANM [25, 26) [1] [21] amoorthya Rao et al.a Reddya C. Meia

0·2 1·00723 1·0070 1·0085 1·0073 1·0129 1·0070 1·0062 1·0062
0·4 1·02860 1·0276 1·0292 1·0291 1·0306 1·0276 1·0245 1·0256
0·6 1·06321 1·0607 1·0661 1·0648 1·0665 1·0608 1·0540 1·0564
0·8 1·10975 1·1044 1·1136 1·1138 1·1157 1·1047 1·0934 1·0970
1·0 1·16672 1·1573 1·1674 1·1762 1·1684 1·1578 1·1411 1·1429

a Values taken from references [25, 26].
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These series permit one to obtain the frequency (or the period) as a function of
the displacement at any desired point of the plate. The membrane stress or bending
stress can also be easily obtained.

3.3.  

To bring out the effectiveness and reliability of this method, numerical results
of non-linear free vibrations of thin elastic plates with various shapes and
boundary conditions will be presented. The linear problems (25b) and (28) are
solved using the classical finite element method. The plate is modelled with
triangular shell elements D.K.T. which have three nodes and five d.o.f. per node
(u, v, w, u1, u2) [43, 44]. These investigations give the linear frequency vL , the
associated mode shape (u1, v1, w1) and the vectors U� p = t{up , vp , wp} at each order
p. The coefficients C(p) are obtained by the algebraic equation (20c) and the stress
vectors N(p) are given by equation (21). The non-linear frequency v, the non-linear
displacement (u, v, w) and the associated stress are obtained by the series (29).
Only the order n of the truncation has to be chosen. The truncation of these series
at order 2 gives the same results as those obtained by the assumed one-mode
analysis and perturbation method for the resulting Duffing equation. A
comparison with the previously published results for a simply supported and a
fully clamped square plate is given in Tables 1 and 2. A good agreement can be
seen between the present results and those of various authors. The assumed
one-mode analysis gives a good prediction of the non-linear frequency
corresponding to the maximum amplitude, especially for the simply supported
case. This analysis, which is generally used, remains efficient particularly when the
interaction between higher modes is very small. The major disadvantage of the
one-mode analysis is that the predicted deformation is proportional to the linear
mode. This leads to inaccurate results, as will be shown later. In Figures 1 and
2, are presented the deflection at the centre w(centre)/h versus the frequency ratio
v/vL for different orders of truncation (12–14–16–18) of the series (29) for a fully
clamped square plate and at orders (18–20) for a fully clamped circular plate.
Published results, obtained by the multi-mode analysis [25, 26] and by the FEM
and iteration process [15, 21] are added for comparison. It is apparent that the
extension of the backbone curves is in good agreement with these results.

The frequency–displacement curves given by the series (29) are very
characteristic of polynomial approximations. Indeed, for small values of the
parameter a, the asymptotic-numerical solutions (29) coincide quite perfectly until
a critical value of a. Beyond this value the truncated polynomial series separate
from each other and diverge. Obviously, this critical value is the radius of
convergence of the series (29) (see Figures 1 and 2). The limitation of the validity
of the solution is not a handicap of this method for two main reasons. First, the
zone of convergence is sufficiently large. As presented in Figure 1, one obtains a
large part of the backbone curve characterising the non-linear vibrations of a fully
clamped square plate until v3 1·3vL and w(centre)3 1·5h. Second, the range of
validity of the asymptotic solutions can be easily increased by using some shrewd
strategies like the continuation techniques [41] or the Padé approximants [38–40].
The effectiveness of these procedures will be presented in the following sections.
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Figure 1. Displacement–frequency curve for a fully clamped square plate: (——) w(centre)/h
versus the frequency ratio v/vL at different orders of the truncation of the asymptotic numerical
solution (29). (orders: 12–14–16–18); (*) indicates the results of references [25, 26] and (+) indicates
the results of reference [21].

Figure 2. Displacement–frequency curve for a fully clamped circular plate: (——) w(centre)/h
versus the frequency ration v/vL at orders 18–20 of the truncation of the series (29). (+) indicates
the results of reference [15].
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4. IMPROVEMENT OF THE SOLUTION

The asymptotic numerical method gives an analytical solution as a function of
the perturbed parameter. It has been shown in Figures 1 and 2 that the validity
of the solution is limited by a radius of convergence. This is clearly defined in all
the studied cases and depends on the rigidity of the structure. Nevertheless, the
part of the backbone curve obtained is sufficiently large for the initial non-linear
vibrations [42]. For large vibration amplitudes, one has to overcome this
limitation. This is the main objective of the following sections. Two useful
strategies are presented that have been successfully tested in the static
post-buckling analysis.

4.1.  

The polynomial solutions (29) coincide perfectly inside the radius of
convergence but they diverge out of this zone of validity. This limit can be
computed automatically following the same procedure as presented by Cochelin
[41]. A simple criterion is that the difference between two constitutive order
solutions remains small.

>Uordern −Uorder(n−1)>
>Uordern>

=
>anUn>

>aU1 + a2U2 + · · ·+ anUn>
E o. (30)

Here, o is a small number. By approximating the denominator as >aU1>, one
obtains a simple criterion in displacement.

alimit = o0>U1>
>Un>1

1/n−1

. (31)

Note that this simple criterion gives a good order of magnitude of the validity of
the solution, whereas it requires almost no computing time. However, a more
secure way of controlling the quality of the asymptotic solution consists of
computing residual vectors. Anyway, the simple criterion given above is very
helpful in defining the range of interest of the parameter a and it was successfully
tested in various studies [41].

Taking a starting point in the zone of validity of the solution, one can reapply
the ANM and go far into the solution path. Although, the continued solution has
a radius of convergence, the application of the ANM iteratively allows one to
determine a complex non-linear branch by a succession of local asymptotic
expansions.

4.1.1. The path-following algorithm

The ANM presented above started at the bifurcating point (U=0, v=vL ).
This permitted the backbone curve to be obtained up to the radius of convergence.
In this section, the starting point will be taken in the zone of validity of the solution
and the ANM reapplied. Denote the starting point by (U0, v0) and develop the
solution in the neighbourhood of this point.

L · U−(v2 −v2
0 )M · U+Q(U, U)=0, (32a)
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8U=U0 + aV1 + a2V2 + a3V3 + · · ·+ apVp +· · · ,

v2 =v2
0 + av(1) + a2v(2) + a3v(3) + · · ·+ apv(p) + · · · ,

(32b)

in which Vp and v(p) are the new unknowns of the problem (32a). Introducing (32b)
into (32a) and equating like powers of a, one obtains the following set of linear
problems:

order 1: Lt · V1 =v(1)M · U0,

order 2: Lt · V2 =v(2)M · U0 +v(1)M · V1 −Q(V1, V1),

. . .

order p: Lt · Vp =v(p)M · U0 + s
p−2

r=0

v(r+1)M · Vp− r−1 − s
p−1

r=1

Q(Vr , Vp− r ), (33)

in which the tangent operator Lt is defined as Lt ( · )=L( · )+2Q(U0, · ). The first
equation corresponds to the linearisation of equation (32a) at the starting point
(U0, v0), i.e., the vector V1 and the coefficient v(1) correspond to the tangent of the
branch at the starting point. Notice that at each order p both Vp and v(p) are
unknown and there is one superfluous unknown in each of these linear problems.
So, one must add a solvability equation. Therefore, it is better to consider a
measure that includes the entire displacement vector and also the load parameter,
i.e., an arc length measure [45–47].

Following this idea, the path parameter a will be identified as the projection of
the displacement increment (U(a)−U0) and the load increment (v(a)−v0) on the
tangent vector (V1, v(1)) [41].

a=
1
s2 {�U−U0, V1�+(v−v0)v(1)}. (34)

Here � · , · � is the Euclidean scalar product and s is a scaling parameter which
corresponds to the length of the tangent vector (V1, v(1)). Introducing the series
(32b) into equation (34) and equating like powers of a, one obtains the following
set of single equations

order 1: �V1, V1�+v(1)v(1) = s2,

order 2: �V1, V2�+v(1)v(2) = 0,

order 3: �V1, V3�+v(1)v(3) = 0,

order p: �V1, Vp�+v(1)v(p) = 0. (35)

Finally, all vectors Vp and coefficients v(p) of the series (32b) can be determined
by successively solving the systems of equations (33) and (35) at each order p.
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Now, recall that the new unknown vectors Vp are mixed. Following the same
manipulation presented in section 3, return to a pure displacement formulation.
After discretization, one obtains the following matrix problem:

[Kt (U0)]{Vp}=v(p){F}+ {FNL
p },

g
F

f�V1, Vp�+v(1)v(p) = 0, (36)

where [Kt (U0)] is the tangent stiffness matrix at the starting point (U0, v0), {F} is
the column vector (M · U0), and {FNL

p } represents the remaining part of the
right-hand side of equations (33). The problem (36) is solved in the following steps:

step 1: solve [Kt (U0)]{VL
1 }= {F},

step 2: compute v(1) =2
s

z�VL
1 , VL

1 �+1
, V1 =v(1)VL

1 , (37b)

step 3: compute N(1) = [Cm ][gL(V1)+2gNL(U0, V1)] (37c)

Order p

step 1: solve [Kt (U0)]{VNL
p }= {FNL

p }, (38a)

step 2: compute v(p) =−
�V1, VNL

p �
s2 v(1), Vp =

v(p)

v(1)
V1 +VNL

p , (38b)

step 3: compute N(p) = [Cm ][gL(Vp )+2gNL(U0, Vp )+ s
p−1

r=1

gNL(Vr , Vp− r )]. (38c)

Once again, the linear problems obtained have the same tangent matrix that one
has to invert once for all different orders. So, all unknown terms of the series (32b)
can be easily obtained. Using this method, the range of validity of the first series
(29) is extended. Obviously, the new series also has a radius of convergence, but
the reapplication of this process as many times as required removes the problem
of limitation.

Finally, it is shown that this method can be applied iteratively in a step by step
manner. Because of the local analytical representation of the branch within each
step, the present path following technique has some important advantages
compared to classical predictor-corrector schemes.

4.2. P́ 

In this section it is shown that the computed series (29) can be a posteriori
transformed into a much more accurate approximation of the exact solution. It
is also shown in numerical results of free vibrations of plates that the series (29)
fails beyond the radius of convergence (see Figures 1 and 2). An obvious reason
to explain this failure could be that the n first vectors U(p) form a too poor basis
to represent the branch. To go further, one has to go through an orthogonalization
process in order to obtain a more complete orthogonal basis. The obtained
orthogonal basis seems to be more accurate. The coefficient of each new basis
vector is a polynomial function. The basic idea for the improvement of the solution
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is to replace these polynomials by rational functions (ratio of two polynomials)
called Padé approximants. An updated representation of this subject can be found
in the book of Baker and Graves-Morris [48]. This technique is largely tested to
extend the domain of convergence of the polynomial representation [38, 40]. Recall
that the kernel of the operator L is assumed to be one-dimensional and generated
by the vector U1. The vectors Up are orthogonal to U1 but not with each other.
To obtain an orthogonal basis, use the classical Gram-Schmidt orthogonalization
procedure. The new orthogonal basis is defined by:

U_
1 =U1,

g
G

G

F

f U_
p =Up − s

p−1

j=1

ap, jU_
j , (39)

where the coefficients ap, j can be numerically computed by the following formulae

ap, j =
�Up , U_

j �
�U_

j , U_
j �. (40)

Insertion of equations (39) into equation (17a) leads to a new representation of
the solution U(a) given by:

U(a)= aU_
1

+ a2U_
2 $1+ s

ke 1

a2ak+2,2%
+. . .

+ apU_
p $1+ s

ke 1

akak+ p, p%+ . . . . (41)

The series

01+ s
ke 1

akak+ j, j1
can be approximated by the Padé approximant Pj [Lj , Mj ](a), which is a rational
fraction given by:

Pj [Lj /Mj ](a)=0bj
0 + bj

1a+· · ·+ bj
LjaLj

1+ cj
1a+· · ·+ cj

MjaMj1, (42)

where Lj and Mj are the degrees of the polynomial fraction of denominator and
numerator respectively. This rational function is defined such as its Maclaurin
expansion agrees with the power series through order Lj +Mj.

1+ s
ke 1

akak+ j, j =Pj [Lj , M j ](a)+O(aLj +Mj+1) (43)
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The Mj +Lj +1 coefficients b j
i and c j

i for each j can be computed by solving a
linear system [48]. Thus, a rational function representation of the solution U(a)
is defined by

U(a)= s
a

j=1

a jPj [Lj , Mj ](a)U_
j . (44)

The representation of the frequency parameter can be easily obtained from (16a)
as follows:

v2(a)−v2
L =

�Q(U(a), U(a)); U1�
�M · U(a); U1�

(45)

Finally, the solution of the problem (16a) is giving by the rational representations
(44, 45). Now recall that the manipulation and computation of the vectors U_

p and
the Padé approximants Pj [Lj , Mj ] require little computation time. Only the orders
Lj and Mj of each Padé approximant (42) have to be chosen [38, 40]. This leads
to the construction of a sequence of these approximants. It is expected that a
well-chosen sequence will normally increase the zone of validity of the solution.
The major difficulty in applying this technique is the choice of those orders.
Nevertheless, there is no rigorous justification of the convergence of these
approximants. An empirical convergence is regarded as entirely satisfactory within
its limitations. A criterion which has worked well here is the choice of P[L, M]
such that (M−L=2 or M−L=1). Some details of these constructions for a
given order are presented in Appendix B. In order to limit the number of poles
of these Padé approximants and to increase the robustness of this algorithm a new
way to build up these approximants has been presented [49].

4.3.   

For computational effort, these methods have been successfully tested in various
studies. The computational cost of these methods have been compared with other
numerical methods in some published results [39, 42, 49–52]. For a problem of
2000 to 5000 d.o.f., the computation of the series at orders 20 necessitates 50%
of additional computational time with respect to linear calculation. For this
reason, the methods presented here are more effective than the Newton–Raphson
algorithm, especially for bifurcating branches, in which case it is difficult to define
an efficient computational strategy [51].

As for the reduced basis technique [22], a detailed comparison has been done
in reference [49]. As expected, the later method yields greater ranges of validity
than the representation by series and by Padé approximants, but the difference is
not so large, especially with Padé approximants. In contrast, the reduced basis
technique should be used only with small orders of truncation, since the time to
get the reduced system increases rapidly when this order increases. Clearly, the two
methods presented here with a large order of truncature (15 to 25) lead to greater
step lengths than the reduced basis technique at a small order (7 to 10), with similar
computational cost, see reference [49]. That is why reference [49] recommends the
representation by Padé approximants, ‘‘so long as a cheap algorithm to compute
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the coefficients of the reduced problem has not been found’’. Recently, a
robust continuation method based on that rational representation has been
established [52].

5. NUMERICAL RESULTS

There are many parameters that can be varied in non-linear vibration of plates
so that it would be difficult to present and compare results of all cases. Only a
few typical cases will be selected for discussion. To illustrate the effectiveness of
this method, comprehensive numerical tests are investigated. The validity of the
obtained results is demonstrated by comparing them with those available in the
literature. For large amplitude vibrations, the continuation method and Padé
approximants are clearly presented and applied for various shapes and boundary
conditions of plates. The backbone curves of fully clamped square and circular
plates are presented in Figures 1 and 2. It is clearly shown that results predicted
by this method agree well with those reported in the literature. Part of the
backbone curve is obtained analytically in one step needing numerical solution of
linear problems having the same matrix. The validity of the predicted results is
limited by the radius of convergence of the series (29). Taking the starting point
in the zone of validity and reapplying the asymptotic numerical method, one
obtains a path following method giving analytically the whole of the backbone
curve. In Figure 3, is presented the large amplitude frequency curves for a simply
supported and a fully clamped circular plate by iterating the ANM. The symbol
(-e-) indicates the starting point of the method. For a simply supported case, one
obtains the resonant curve up to v=4vL in two steps and for a fully clamped
case the same result is obtained in three steps. The solution is obtained by iterating

Figure 3. Displacement–frequency curve for a simply supported and fully clamped isotropic
circular plate by the iterating ANM. q indicates the starting point of the ANM and (+) indicates
the results of reference [15].
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Figure 4. Displacement–frequency curve for a fully clamped square plate by iterating
Asymptotic-Numerical Method and by Padé approximants. q indicates the starting point of the
ANM.

the ANM and compared with Reddy et al.’s results [15] obtained by FEM and
an iterating eigenvalue technique. Comparison between Figures 2 and 3 in the fully
clamped case shows clearly that the limitation of the solution obtained has been
overcome and the totality of the backbone curve can be derived. This clearly shows
the effectiveness of the method in order to obtain a large part of the non-linear
branch in a few steps.

The use of the Padé approximants procedure permits one to rearrange the series
(29) in order to extract from them the maximum amount of information. This
shrewd process permits one increase considerably the zone of validity without
more computation time. The effectiveness and reliability of these procedures are
clearly presented in the Figures 4 and 5. In these figures are presented the
transverse displacement at the centre versus the frequency ratio of a fully clamped
isotropic square and rectangular plate by iterating the ANM and by Padé
approximants. It is apparent that the limitation of the validity of the solution
presented in Figure 1 has been overcome and the prolongation of the backbone
curve is determined. Then, the large amplitude solution is easily computed for a
desired range. The presented part of the solution is obtained in four steps. The
use of Padé approximants presented above permitted a threefold increase in the
zone of validity of the solution before diverging. The greatest advantage of this
procedure is that a simple rearrangement of the series (29) and a good choice of
the approximants permits one to obtain a very large part of the solution.
Obviously, the major difficulty in applying this procedure is how to direct the
choice in order to obtain the best approximants. A solution of Paolé approximants
having singularity points out of the desired zone is usually used. For an automatic
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computation, a criterion for the choice depending on the shape of the solution is
needed. The criterion used here is presented in Appendix B.

As presented in Tables 1 and 2, the results obtained by this method agree well
with those obtained by the assumed one-mode analysis, especially for the simply
supported case. The one-dimensional analysis gives good predictions for the
non-linear frequency against the amplitude at the centre of the plate but leads to
erroneous results for the displacement which remains proportional to the first
mode. In Figure 6, is presented the linear and non-linear modes for simply
supported boundary conditions at the centre and at the quarter of a square plate
for various amplitudes. In this case there is a small discrepancy between linear and
non-linear modes. In Figures 7 and 8, are presented linear and non-linear modes
at various amplitudes for fully clamped square and rectangular plates, respectively.
In these cases, one can clearly see that there is a wide discrepancy between the
linear and non-linear modes. This illustrates the limitation of the one-mode
analysis which leads to erroneous results for the non-linear mode at large
amplitudes. In Figures 9 and 10, are presented the first three and two backbone
curves for square and rectangular plates, respectively. All these results are obtained
in three steps of the ANM. In Figure 11, is presented the backbone curve of a fully
simply supported annular plate obtained by the two procedures, where (R1=1)
is the internal radius of the hole and (R2=10) is the external radius of the circular
plate. In this case, the zone of validity of the series (29) is very small
(w(R2−R1)/2, (R2−R1)/2) =0·4h). Four iterations of the ANM give the
solution until (v=3·4vL ). The Padé approximant solution obtained by the same
criterion as in Figures 4 and 5 coincides with the ANM solution except at the

Figure 5. Displacement–frequency curve for a fully clamped rectangular plate (length/width=2)
by iterating Asymptotic-Numerical Method and by Padé approximants. q indicates the starting
point of the ANM.
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Figure 6. Linear and non-linear mode shapes at the centre and at the quarter of a simply
supported square plate at various amplitudes. c is the side of the plate and w(centre)=w(c/2, c/2).
1: linear mode, 2: non-linear mode at w(centre)=2·0018h, and 3: non-linear mode at
w(centre)=3·5039h.

Figure 7. Linear and non-linear mode shapes at the centre and at the quarter of a fully clamped
square plate at various amplitudes. c is the side of the plate and w(centre)=w(c/2, c/2). 1: linear
mode, 2: non-linear mode at w(centre)=2·005h, and 3: non-linear mode at w(centre)=3·006h.
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Figure 8. Linear and non-linear mode shapes at the centre and at the quarter of a fully clamped
rectangular plate at various amplitudes. L is the length and l is the width of the plate (L/l=2),
w(centre)=w(L/2, l/2). a: linear mode, b: non-linear mode at w(centre)=1·0005h, and c: non-linear
mode at w(centre)=2·0057h.

Figure 9. The first three backbone curves for a fully clamped square plate obtained by three
iterations of the ANM.
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Figure 10. The first two backbone curves for a simply supported rectangular plate,
(length/width=2) obtained by three iterations of the ANM.

Figure 11. Displacement–frequency curve for a simply supported annular plate by iterating
Asymptotic-Numerical Method and by Padé approximants. q indicates the starting point of the
ANM. R1 =1 is the interior radius and R2 =10 is the external one.
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Figure 12. Displacement–frequency curve for fully simply supported annular circular plates with
various internal radii. R2 =10 is the external radius and R1 =0·5, 1, 2, 5 is the radius of the circular
hole, R2/h=100.

singular point. These figures clearly show that this amazing technique greatly
increases the solution obtained by the asymptotic series (29) without more
computation time. In Figure 12, is presented the backbone curve of a simply
supported annular circular plate with variation of the radius of the hole. The
results are obtained by three steps of the ANM. Finally, the method presented is
an effective tool capable of tracing the whole of the backbone curve in a few steps
with little computation time. This effectiveness will be very fruitful in studing more
complicated structural vibrations or internal resonance appearing when one takes
into account more terms of the time series.

6. CONCLUSION

The applicability of the Asymptotic-Numerical Method to study the large
amplitude vibrations of plates with various geometries and boundary conditions
has been demonstrated. Based on the von Karman model and on the harmonic
balance method, the dynamic problem of plate vibration is transformed into a
static one. A non-linear operational formulation has been obtained. The
Asymptotic-Numerical Method based on the finite element method has been
applied for the solution. The principle of this method is to compute numerically
some series that give the displacement, the stress and the frequency as a function
of a perturbation parameter. In order to simplify the expansion procedure, a mixed
formulation of the governing equation has been used which leads to a quadratic
non-linearity. Hence, a very large number of terms of the series can be easily
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computed. Numerical results for non-linear frequency and non-linear
displacement are presented and compared. Presented results agree well with the
results available in the literature. For large amplitude vibrations, the iterating
ANM and Padé approximants procedures are incorporated. The backbone curves
are successfully obtained for different shapes and boundary conditions of the plate
at very large amplitudes.

The main advantages of this method are as follows:

In comparison with classical perturbation methods, a great number of terms of
the perturbed series can be easily and automatically computed. The Padé
approximants procedure for improving the range of validity of the solution can
be easily added without more computation time.

A path following technique via the iteration of ANM with analytical large steps
is successfully used. In comparison with traditional step by step procedures, the
present method has the following advantages: it is simple and computationally
efficient. Indeed, the expansion technique transforms the non-linear problem into
a sequence of linear ones with a single stiffness matrix. Hence, the computation
time is of the same order as for a single step of the modified Newton–Raphson
algorithm; the backbone curve is known continuously and not only at some points;
the computation of the series is fully automatic. The only parameters that have
to be chosen are the order of truncature, the small parameter o to define a new
starting point and the number of the desired iterations; the range of validity of
the step length is given by the method itself and it is not chosen a priori by the
user.

In summary, this method is efficient and reliable. It has been illustrated here for
large amplitude vibrations of plates with different shapes and boundary
conditions. Other related topics, such as forced non-linear vibrations, internal
resonance and non-linear damped vibrations of thin elastic structures, may be
investigated later using the techniques developed here.
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Padé approximants for nonlinear elastic structures.

41. B. C 1994 Computer and Structures 53, 1181–1192. A path-following
technique via an Asymptotic-Numerical Method.

42. L. A, B. C, N. D and M. P-F 1998 Structural Dynamic
Systems 7, (Gordon & Breach series in press). An Asymptotic-Numerical Method for
nonlinear vibrations of elastic structures.

43. O. C. Z 1977 The finite element method. London: McGraw-Hill; 3rd
edition.

44. J. L. B, K. J. B and L. W. H 1980 International Journal for Numerical
Methods in Engineering 15, 1771–1812. A study of three node triangular plate bending
elements.

45. M. A. C 1983 International Journal for Numerical Methods and Engineering
19, 1269–1289. An arc-length method including line search and acceleration.

46. E. R 1984 Computer Methods in Applied Mechanics and Engineering 47, 219–259.
Some computational aspects of the stability analysis of nonlinear structures.

47. E. C 1994 Computer and Structures 50, 217–229. A study on arc-length-type
methods and their operation failures illustrated by a simple model.



     725

48. G. A. B and P. G-M 1981 Encyclopaedia of Mathematics and its
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APPENDIX A

The aim of this appendix is to present the right hand side of equations (20) and
(23). At order p, one has to solve the following problem:

6�L · Up ; dU�= �Fp ; dU�,
�Up ; U1�=0, pq 1.

The operator �L · ( ); dU� is defined by equation (16b) and the right-hand side is
given by:

�Fp ; dU�=gV

{FUpdU+ 3
4F

w
a (p)dw,a + 3

4F
N
ab (p)dNab} dV

where FU, Fw
a and FN

ab are given by:

FU(p)dU� = rh s
p−1

r=1

C(r)[u(p− r)du+ v(p− r)dv+w(p− r)dw],

Fw
a (p)=− s

p−1

r=1

Nab (r)w,b (p− r),

FN
ab (p)=− s

p−1

r=1

1
2w,a (r)w,b (p− r).

APPENDIX B

In this appendix, some details are given about the construction of Padé
approximants and the strategy followed for numerical results presented in Figures
4, 5 and 11. Let us consider the case of truncation of the series at the order n=20.
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By the ANM, one obtains the vectors U1, U2, . . . U20 and the solution U(a) is given
by:

U(a)= aU1 + a2U2 + · · ·+ a20U20. (B1)

Using the Gram-Schmidt orthogonalization procedure, one can easily obtain

U1 =U_
1

g
G

G

F

fUp =U_
p + s

p−1

j=1

ap, jU_
j ; ap, j =

�Up , U_
j �

�U_
j , U_

j �, (B2)

ap,1 = 0, because of the orthogonality condition �U1, Up�=0 for pq 1.
The insertion of (B2) into (B1) leads to:

U(a)= aU_
1 + a2U_

2 $1+ s
18

k=1

akak+2,2%+ a3U_
3 $1+ s

17

k=1

akak+3,3%+. . .

+ a12U_
12$1+ s

8

k=1

akak+12,12%+. . .

U(a)= aU_
1 + a2U_

2 P2[L2, M2](a)+ a3U_
3 P3[L3, M3](a)

+ a4U_
4 P4[L4, M4](a)+ · · ·+ a12U_

12P12[L12, M12](a)]+ . . . (B3)

where Pj [Lj , Mj ](a) approximates the series

01+ s
n− j

k=1

akak+ j, j1.
The construction of these approximants necessitates a numerical solution of two
linear systems given the (Lj +Mj +1) coefficients of the numerator and the
denominator of Pj [Lj , Mj ](a) [38, 40, 48, 49]. It is common practice to display the
approximants in a table, called a Padé table, and to choose the best ones that have
singularity outside the desired zone. A criterion which was used for numerical
solutions presented in these studies is the choice of P[L, M](a) such that
M−L=2 or M−L=1 and truncated at order 12.

U(a)= aU_
1 + a2U_

2 P[8, 10](a)+ a3U_
3 P[8, 9](a)+ a4U_

4 P[7, 9](a)

+a5U_
5 P[7, 8](a)

+a6U_
6 P[6, 8](a)+ a7U_

7 P[6, 7](a)+ a8U_
8 P[5, 7](a)+ a9U_

9 P[5, 6](a)

+a10U_
10P[4, 6](a)+ a11U_

11P[4, 5](a)+ a12U_
12P12[3, 5](a).

Obviously, a selection of the Padé approximants in (B3), that have singularities
outside of the desired zone, can lead to more accurate results than those presented
here.
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APPENDIX C: NOTATION

x, y, z Cartesian co-ordinates
t time variable
u, v, w displacement components in x, y and z directions, respectively
GL, GNL linear and non-linear parts of the strain tensor
gL, gNL linear and non-linear parts of the strain tensor without time
k bending strain tensor
N, M in-plane stress and moment resultants
h, r thickness and mass density
E, v Young’s modulus and Poisson’s ratio
P potential energy
T kinetic energy
U=[u, v, w, N] mixed displacement–stress vector field
H mixed functional
vL , v linear and non-linear frequencies
[Cm ], [Cb ] membrane and bending matrices
L stiffness linear operator
M mass operator
Q non-linear operator
Up =[up , vp , wp , Np ] mixed vector field at order p of the power series expansions of the

vector U
C(p) coefficient at order p of the power series expansion of the frequency

v
U� =[u, v, w] pure displacement vector
L� pure displacement stiffness operator
F�(p) right hand side at order p
[Ke], [M] stiffness and mass matrices
[Kt] tangent matrix
U0 starting point for the continuation process
Lt tangent operator
Vp displacement vector at order p of the power series expansions of the

displacement around the starting point U0

s scaling parameter
U_

j vector fields after orthogonalisation
Pj [Lj , Mj ] Padé approximant
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