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This paper presents a dynamic absorber to reduce the torsional vibrations
exhibited during start-up of systems driven by synchronous motors. The dynamic
absorber is comprised of two inertia rings connected, via spring-like material, to
both the driver side (motor) and the driven side (compressor). The stiffness and
inertia properties of the absorber are optimally tuned to match the torsional
natural frequency of the system. A lumping technique is used to produce the
dynamic model with non-linear flexible coupling. The results of the basic model
are verified by using the results of previously published work on the modelling
of non-linear flexible couplings. The numerical results on the dual dynamic
absorber show excellent reduction in the vibration amplitudes as well as noticeable
reduction in the vibration duration. Furthermore, the results of this study indicate
that this kind of dynamic vibration absorber will contribute to solving, practically,
the problem of torsional vibrations in systems driven by synchronous motors.
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1. INTRODUCTION

The problem of vibrations encountered in torsional systems has become of great
concern to designers and maintenance engineers as well as theoreticians. The
concern has increased recently due to the need for using synchronous motors to
drive large rotational systems. Synchronous motors are known to have mainly a
two-part driving torque. One part is the average driving torque while the second
part is the varying frequency oscillatory component. The oscillatory torque
frequency varies from 0 to 120 Hz, which is twice the slipping frequency. In the
start-up, generally, the frequency of the oscillating torque matches one or more
of the torsional natural frequencies of the driven system. This leads to a high
vibration amplitude that can cause failure of different system components and
definitely reduces the fatigue life of system couplings. It has become evident that
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a reliable and practically possible method for reducing these transient vibrations
is highly demanded. This method is crucial to design, maintenance and to
increasing the fatigue life of plants in service. It is noteworthy to mention that the
meaning of transient vibrations in the literature, when synchronous motors are
involved, should not be understood as caused by initial conditions. Actually, the
porblem is of forcing type, but with a property of changing forcing frequency.
Furthermore, a resonance condition is encountered when the frequency of
excitation matches one of the system’s natural frequencies. This resonance
condition ceases when the forcing frequency moves away from the natural
frequency of the system and this is the reason for the name transient vibrations.

Due to the nature of the problem, very few publications could be found. Most
of the experimental and/or theoretical studies on this problem have been
conducted by manufacturers who are usually conservative in releasing reports on
their studies. According to Arnot [1], studies on transient torsional vibrations have
been developing since the 1960s. In reference [1], a non-linear flexible coupling was
introduced to reduce the transient vibrations in torsional systems. The study
included both numerical and experimental results for a number of synthetic-
rubber-compound hardness grades. Shadely et al. [2] reported a torsional vibration
computational model for design purposes. They reported a transient-torsional
vibration record for an actual coupling failed in torsion. In addition, they
concluded their work by confirming the existence of a type of self-excited torsional
vibrations in both numerical and laboratory results. Furthermore, Shadely et al.
[2] observed unstable growth in torsional vibrations amplitudes when the mass
moment of inertia of the load is more than twice the moment of inertia of the
motor. In a paper on the transient analysis of synchronous motor trains by Szenasi
and von Nimitz [3], the philosophy of optimum location of torsional critical speeds
and resonance frequencies was discussed. It was concluded that for systems with
massive motors, the presence of natural frequencies in the range of 0–120 Hz is
usually unavoidable. At the same time, the authors of reference [3] recommended
seeking proper designs of couplings to reduce the transient torsional vibrations
and the resulting dynamic stresses to acceptable levels. Chen et al. [4] proposed
a simplified reduced order model to study the transient behaviour in systems driven
by synchronous motor. The intent was to work with a single differential equation
only in the time interval were transients are expected. Chen [5] reported results of
a study on the torsional vibrations of synchronous motor trains. A P-version of
the finite element method was proposed; however, a conventional lumping
technique example was demonstrated. It was concluded that non-linear analysis
is required for systems with flexible couplings. Recently, Hamouda et al. [6]
studied the effect of torsional vibrations on the salient pole synchronous
motor-driven compressor. Their results showed that there is a need for taking care
of torsional vibrations in the design stage. Among their results, Hamouda et al.
[6], stated that sustained oscillations might continue even after the synchronous
speed is reached if there is insufficient damping in the system. They recomended
using shaft material that can withstand the expected high stresses.

One can conclude that torsional vibrations are very destructive and need to be
considered in the design stage as well as after the system starts its operation. The
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use of flexible couplings is one method that is practically available to reduce these
torsional vibrations. Although flexible couplings, due to their inherent
non-linearity, are able to provide good practical means of reducing transient
vibrations, they are not without their drawbacks and problems. One important
problem is that flexible rubber couplings put more restrictions on rotor balancing.
Furthermore, flexible rubber couplings exhibit permanent deformations and
hardening that lead to changes in their properties and affect their performance.
The need for reducing the torsional vibrations in conjunction with the problems
associated with flexible couplings highlighted the need for seeking other practical
means for reducing these vibrations. A well known resort, when resonance
conditions are encountered, is the dynamic absorber. The dynamic vibration
absorber has received the attention of investigators over years [7–10]. Recently Lee
and Moorhem [11] reported analytical and experimental analysis of a
self-compensating balancer in rotating machinery. Despite the amount of research
on dynamic vibration absorbers, little can be found on the application of the
dynamic absorber to systems with rigid body and flexible modes. One problem that
arises for these systems is where to attach this absorber. Furthermore, no
application was found on using the dynamic absorber when the forcing frequency
is time dependent.

The present work is devoted towards introducing a dynamic vibration absorber
to reduce the torsional vibrations encountered in systems driven by synchronous
motors. The work starts by developing the basic torsional system mathematical
model and describing the characteristics of synchronous motors. The dual dynamic
absorber is designed to be attached to both the motor and compressor sides and
the equations of motion of the model including the dynamic absorber are derived.
A numerical example that allows comparison of the results of the present work
to those previously published is solved by using the Newmark-beta integration
technique. Furthermore, results of numerical experiments that investigate the
effect of the non-linear coupling are presented. Finally, the validity of the proposed
dual dynamic absorber in reducing the torsional vibrations is investigated for both
linear and non-linear couplings.

2. BASIC MODEL

2.1.   

Synchronous motors of the salient-pole type normally have a pulsating torque
component with a frequency spectrum from 0 to 120 Hz during start-up
conditions. The oscillatory component of the start-up torque develops as a result
of slipping between the motor rotor and stator. The slipping frequency continues
to decrease until full synchronization is reached. According to reference [12], the
motor driving torque Tm at any instant can be expressed in the form

Tm =Tavg +Tosc sin (vexct), (1)

where Tavg is the average torque, Tosc is the amplitude of the oscillating torque, and
vexc is the oscillating torque frequency (a list of nomenclature is given in the
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Appendix). The oscillating torque frequency is twice the slipping frequency which
is usually represented as

vexc =2p(2fl )0Nsyn −Nm

Nsys 1 rad/s, (2)

where fl is the line frequency which is normally 60 Hz, Nsyn =120fl /(pole rpm and
Nm is the motor rotor instantaneous speed.

For easier numerical programming, the motor torque can be expressed in terms
of rotor angular displacement as

Tm =Tang +Tosc sin (uexc ), (3)

where

uexc =2p(2fl )0t− um

Nsyn2p/601. (4)

For each specific machine, the load–torque–speed relationships are normally
supplied by the manufacturer.

2.2.   

The conventional lumping technique in conjunction with Lagrange’s equations
is used to develop the model for the torsional vibrations of the system shown in
Figure 1. In the lumping technique one considers that equivalent masses are
concentrated at stations which are connected together by massless shafts. The
shafts are considered to have stiffness effect as well accompanying damping effect.
The model shown in Figure 1 which consists of a three-stage centrifugal
compressor driven by a synchronous motor through a rubber coupling, spacer,
and gear coupling, is considered. This model is similar to the one used by Chen
[5]. The reduced order model obtained by considering the flexibility in the rubber
coupling and the gear coupling in series is shown in Figure 2. By using Lagrange’s

Figure 1. A multi-stage centrifugal compressor.
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Figure 2. Reduced two degrees of freedom model.

equations, the equations of the two degrees of freedom model can be written in
the form

$J1

0
0
J2%6F� 1

F� 27+$ Ceq

−Ceq

−Ceq

Ceq%6F� 1

F� 27+$ Keq

−Keq

−Keq

Keq%6F1

F27=6 Tm

−TL7, (5)

where J1 and J2 are the motor inertia and the equivalent compressor inertia,
respectively. The equivalent damping in the couplings is found with the fact that
the gear and the rubber coupling are connected in series. This gives the equivalent
damping as

Ceq =CGCR /(CG +CR ), (6)

where CG and CR are the damping coefficients for the gear coupling and the rubber
coupling, respectively. Similar treatment of the stiffness results in an equivalent
stiffness coefficient as

Keq =KGKR /(KG +KR ), (7)

where KG and KR are the gear and rubber couplings stiffness coefficients,
respectively.

Figure 3. System with single dynamic absorber.
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Figure 4. System with dual dynamic absorber.

One can now conclude that there are two types of coupling in the system; one
is the gear coupling that is usually considered as linear due to its small deformation
and it usually introduces a linear damping in the form of viscous damping. The
second coupling is the flexible rubber coupling that exhibits large deformations
and non-linear stress–strain relation.

2.3. - 

The stiffness and damping properties of flexible rubber couplings are usually
supplied by the manufacturer in the form of torque–angular deflections plots.
Reference [1] contains experimental results on the stiffness and damping properties
of the Holset rubber coupling. The linearized coupling stiffness and damping are
given, respectively, in the form [1]

KR = 1(Ts )/1(Du), CR =KR /Mvexc , (8, 9)

Figure 5. Torque–speed curve for the synchronous motor.



70

10

20

30

40

50

60

0
0.50.0 1.0 1.5 2.0 2.5

Deflection (°)

C
o

u
p

li
n

g
 t

o
rq

u
e 

(k
N

m
)

     735

T 1

Motor torque eighth order polynomial constants (% rated torque)

A0 A1 A2 A3 A4 A5 A6 A7 A8

Tav 191·4 −748·8 1162·0 −924·6 407·1 −98·8 12·4 −0·400 0·30
Tos 20·72 −145·38 323·81 −336·82 184·21 −53·19 7·54 −0·269 0·25
T1 61·50 −224·23 318·75 −218·43 69·48 −6·17 −0·53 −0·139 0·07

where TS is the instantaneous torque, M is the dynamic magnifier, which is a
function of the coupling hardness grade, and vexc is the forcing frequency. Details
on Holset flexible couplings can be found in references [1, 5].

3. DYNAMIC VIBRATION ABSORBER

Although the rubber type coupling has reduced the vibrations of the system
treated in reference [5], to an extent, it has a disadvantage from the lateral dynamic
point of view. The heavy overhung weight caused by this type of coupling makes
it difficult for the manufacturer to design and to balance such a rotor. Therefore,
it was decided in this study to explore other alternatives as an attempt to lower
these torsional vibrations. One natural resort is a torsional absorber as a passive
controller to this torsional vibration problem. In this study, the torsional absorber
is an inertia ring which is to be connected to the system by using a spring-like
material.

Figure 6. Rubber coupling torque versus angular deflection.
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Figure 7. Rubber coupling torsional stiffness versus angular deflection.

3.1.   

The single dynamic absorber arrangement is shown in Figure 3, where the
dynamic absorber is attached to the compressor side of the system. By utilizing
the system kinetic and potential energies in Lagrange’s equations and considering
the virtual work for the damping forces, the equations of motion of the
system–absorber assembly can be represented in the matrix form

&J1

0
0

0
J2 + Ja

Ja

0
Ja

Ja'8F� 1

F� 2

C� 9+ & Ceq

−Ceq

0

−Ceq

Ceq

0

0
0
Ca'8F� 1

F� 2

C� 9+ & Keq

−Keq

0

−Keq

Keq

0

0
0
Ka'8F1

F2

C9
= 8 Tm

−TL

0 9, (10)

where F1 is the rotational degree of freedom of the motor, F2 is the compressor
side degree of freedom and C is the dynamic absorber rotational degree of freedom
relative to the compressor rotational motion. The inertia, stiffness and damping
properties of the absorber (i.e., Ja , Ka , Ca ) are to be designed according to the
original system natural frequencies. As a result, a modal analysis should be done
as the system is semi-definite system with one rigid body mode. A procedure for
dealing with such systems can be found in reference [13]. The kinetic energy of
the original system can be written in the matrix form

T=
1
2 6F� 1

F� 27
T

$J1

0
0
J2%6F� 1

F� 27. (11)
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Similarly the system potential energy is

U=
1
2 6F1

F27
T

$ Keq

−Keq

−Keq

Keq%6F1

F27. (12)

The rigid body mode with zero natural frequency is one solution of the eigenvalue
problem. Consequently, any other natural mode must be orthogonal to the rigid
body mode. The constraint for this rigid body mode can be represented by the
equation

{F(0)}[J]{F}=0. (13)

For the rigid body mode let {F(0)}= {1 1}T; this will lead to the equation

J1F1 + J2F2 =0 (14)

from which F2 = (−J1/J2)F1. This condition can be represented by the operation

6F1

F27=$ 1
−J1/J2%{F1}. (15)

The transformation vector that eliminates the rigid body mode from the kinetic
and potential energy expressions can be written as

{A}=$ 1
−J1/J2%. (16)

To this end, the reduced system kinetic and potential energy expressions can be
compared to those for the complete system to yield the model inertia and modal
stiffness, respectively, as

JM = {A}T[J]{A}, KM = {A}T[K]{A}. (17, 18)

The resulting modal inertia and modal stiffness are the ones to be used in designing
the optimum dynamic absorber parameters. For this purpose, one defines the
frequency ratio

q=va /v, (19)

where va is the absorber’s natural frequency and v is the modal system natural
frequency. Similarly one defines the inertia ratio m as

m= Ja /JM , (20)

T 2

Non-linear coupling torque and stiffness

A0 A1 A2 A3 A4 A5 A6 A7 A8

Torque (kN m) 6·07 −45·80 143·84 −244·99 246·57 −143·0 42·0 5·38 0·045
Stiffness (MN m/rad) 3·42 −27·69 91·056 −154·94 144·71 −72·37 17·42 −1·217 0·509
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Figure 8. (a) Motor speed; (b) coupling deflection; (c) coupling torque. Linear rubber coupling
with KR =0·47 MN m/rad.

where Ja is the absorber mass moment of inertia and JM is the system modal inertia.
Following the optimization reported by Kelly [14], the parameters for the damped
dynamic absorber can be found such that

q=
1

1+ m
, Ka =(qv)2JM and zopt =X 3m

8(1+ m)
, (21)

where, z is the optimum absorber damping ratio. The process of designing the
dynamic absorber properties starts by assuming an appropriate inertia ratio m;
then the stiffness and damping parameters can be calculated from equation (21).

One important issue that arises when one thinks of the dynamic absorber for
the system in hand is to which side the absorber should be attached, i.e., to the
motor side or to the compressor side of the coupling. Absorbers are usually
attached to locations with the highest possible motion of the system to extract
maximum vibration energy. As shown in section 4, the system flexible mode shape
shows maximum deflection at both ends, with the nodal point of zero deflection
in between. This finding creates the idea of having two similar absorbers, at both
sides of the system.

3.2.   

A schematic diagram of the system after installing the two similar
dynamic absorbers is shown in Figure 4. By using Lagrange’s equations,
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the system–dual absorber equations of motion can be expressed in the matrix
form

Ja Ja 0 0 C� 1 Ca 0 0 0

Ja J1 + Ja 0 0 F� 1 0 Ceq −Ceq 0G
G

G

K

k

G
G

G

L

l

g
G

G

F

f

h
G

G

J

j

G
G

G

K

k

G
G

G

L

l
0 0 J2 + Ja Ja F� 2

+
0 −Ceq Ceq 0

0 0 Ja Ja C� 2 0 0 0 Ca

C� 1 Ka 0 0 0 C1 0

F� 1 0 Keq −Keq 0 F1 Tmg
G

G

F

f

h
G

G

J

j

G
G

G

K

k

G
G

G

L

l

g
G

G

F

f

h
G

G

J

j

g
G

G

F

f

h
G

G

J

j

×
F� 2

+
0 −Keq Keq 0 F2

=
TL

. (22)

C� 2 0 0 0 Ka C2 0

4. NUMERICAL RESULTS AND DISCUSSION

In order to gain insight into the behaviour of the torsional vibrations of systems
driven by synchronous motors and to test the validity of the proposed method for
reducing these vibrations, the data of Example 2 reported in reference [5] is
simulated in the following sections.

Figure 9. (a) Motor speed; (b) coupling deflection; (c) coupling torque. Linear rubber coupling
with KR =0·987 MN m/rad.
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Figure 10. (a) Motor speed; (b) coupling deflection; (c) coupling torque. Non-linear rubber
coupling.

4.1.  

A schematic diagram of the system is shown in Figure 1 with the reduced two
degrees of freedom system shown in Figure 2. The motor is a four-pole 2237 kW
rated at a speed of 1500 rpm. The motor rotor inertia J1 =139 kg-m2 and the
driven side compressor has an equivalent inertia J2 =224 kg-m2 referred to the
motor side. The motor–torque and the load–torque are shown in Figure 5. The

Figure 11. Original system flexible mode shape.
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Figure 12. Original system interference diagram.

coefficients of the eighth order polynomial, that are obtained by curve fitting for
the torque–speed relation of Figure 5, are shown in Table 1. The motor side and
the compressor side are connected through gear and rubber couplings in series.
The gear coupling has a linear stiffness KG =9·77×107 Nm/rad. On the other
hand, the rubber coupling torque–deflection and stiffness–deflection curves, as
taken from experimental data [5], are shown in Figures 6 and 7, respectively. Curve
fitting is performed for the torque–deflection relation, Figure 6, and the coefficients
are shown in Table 2.

Figure 13. System interference diagram when a single absorber is attached to the compressor side.
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Figure 14. (a) Motor speed; (b) coupling torque; (c) coupling deflection; (d) absorber deflection.
Linear rubber coupling with KR =0·987 MN m/rad and a single dynamic absorber.

4.2. - 

The Newmark-beta method is known as an unconditionally stable numerical
integration technique that can handle second order differential equations. The
Newmark-beta algorithm [15] is programmed for this study where the time step
is selected to be 1/10 of the highest frequency in the system. The constant
parameters a and b are chosen as 0·5 and 0·25, respectively, to obtain an
unconditionally stable scheme.

4.3.  :   -

In order to validate the numerical technique used in this study, it is necessary
to simulate cases reported in previous investigations [5]. For the linear rubber
coupling with stiffness KR =0·47 MN m/rad, the system responses are shown in
Figure 8, in which part (a) shows the motor speed, part (b) shows the coupling
deflection and part (c) shows the coupling dynamic torque. Figure 9 shows the
same curves of Figure 8 but with a linear rubber coupling stiffness
KR =0·987 MN m/rad. It is clear that exactly the same results were obtained in
reference [5]. The coupling deflection, as expected, is reduced when a higher
coupling stiffness is used. This supported the need for using the actual non-linear
analysis in reference [5]. The transient response obtained by using the actual
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non-linear properties of the rubber coupling as supplied by the manufacturer are
shown in Figure 10. It is shown that the maximum coupling deflection during
transient vibration has reduced from 3·7° peak to peak in the linear case to 2° peak
to peak in the non-linear simulation. Comparing the transient responses, from
both linear and non-linear analysis, with the results of reference [5] shows excellent
agreement and confirms the numerical technique adopted.

4.4.   

The first step in designing the dynamic absorber is to find the characteristics of
the original system. Eigenvalue analysis showed that the system has a torsional
undamped natural frequency of 11·75 Hz. The corresponding mode shape is shown
in Figure 11. This mode shape shows maximum deflection at both ends and one
nodal point of zero deflection in between. The interference diagram, Figure 12,
shows that the torsional excitation frequency matches the system natural
frequency at around 80% of the motor running speed. Based on this information,
the dynamic absorber is designed with the absorber inertia equal to 0·25 of the
modal inertia which is 225 kg m2. The optimum damping ratio for the absorber
is chosen to be 0·278. After including the single dynamic absorber on the
compressor side, the system natural frequencies are 10·97 and 12·84 Hz. The
corresponding interference diagram is shown in Figure 13. The transient response

Figure 15. (a) Motor speed; (b) coupling torque; (c) coupling deflection; (d) absorber deflection.
Linear rubber coupling with KR =0·987 MN m/rad and dual dynamic absorber.
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Figure 16. Frequency response of (a) the coupling deflection, (b) the motor side dynamic absorber
and (c) the compressor side dynamic absorber.

analysis after fixing the absorber to the linear model with rubber coupling stiffness
KR =0·987 MN m/rad is performed and the results are shown in Figure 14. The
motor speed is shown in Figure 14(a), Figure 14(b) shows the coupling torque,
Figure 14(c) shows the coupling deflection and Figure 14(d) shows the absorber
deflection. Comparison of the results of Figure 14 to the corresponding results of
Figure 7 shows no significant reduction in the maximum peak to peak transient
amplitudes, but the duration of the transient has reduced from about 4 s in
Figure 7 to only around 2·5 s in Figure 14 when the absorber is installed. In Figure
14(b), the coupling torque is shown to be reduced, if compared to the torque of
Figure 7, as a result of the dynamic absorber. The mode shape of the original
system, Figure 11, and the fact that a single absorber attached to the compressor
side has no significant effect, suggest attaching two similar absorbers at both sides
of the system. The properties of both absorbers are the same and are calculated
based on the modal properties of the system.
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4.5.   

Adding one dynamic absorber at each side of the system was inspired by the
system mode shape, Figure 11, and by taking note of the recommendation of
reference [2] to exclude the situation where self-excited vibration that are expected
to develop when the load inertia is more than twice the motor-rotor inertia. The
motor side is exhibiting forced oscillations coming from the slipping effect and the
compressor is oscillating as a result of the oscillatory torque transmitted through
the system couplings. The same dynamic absorber that was designed in the
previous section based on the modal inertia is added to each side of the system.
The transient analysis is performed after the dual dynamic absorber is added to
the linear system with KR =0·987 MN m/rad and the results are shown in
Figure 15. A significant reduction in the maximum peak to peak transient
amplitude of the coupling deflection is shown in Figure 15(b). This reduction is
almost the same as that obtained by using the non-linear rubber coupling analysis
shown in Figure 10. Furthermore, a significant reduction in the vibration duration
is shown, from that with the non-linear rubber coupling analysis. The dynamic
absorbers’ deflections are shown to be reasonable and can be tolerated; see
Figures 15(c) and 15(d). To gain more insight into the system after installing the
two dynamic absorbers, the frequency responses of the system are shown in
Figures 16(a, b, c). The coupling deflection is shown in Figure 16(a) to have an

Figure 17. (a) Motor speed; (b) coupling torque; (c) coupling deflection; (d) absorber deflection.
Non-linear rubber coupling with dual dynamic absorber.
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amplitude of about 2·2° at a frequency of around 10 Hz which is the original
system natural frequency and it is not affected by adding the absorbers.
Figures 16(b) and 16(c) show the frequency responses of the motor and the
compressor dynamic absorbers, respectively. One can recognize that using this
dual dynamic absorber is giving better results than the non-linear coupling.

To study further the effect of using the dual dynamic absorber, simulation
results on the system which is equipped with both the non-linear flexible rubber
coupling and the dual dynamic absorber are shown in Figure 17. Excellent
reduction in the coupling maximum peak to peak deflection is shown in
Figure 17(b), if compared to Figure 10(b) and to the results of reference [5]. The
peak to peak maximum amplitude in Figure 17(b) is about 1·2° while the
maximum peak to peak amplitude of the non-linear coupling deflection in
Figure 10(b) is 2·2°.

5. CONCLUSIONS

A dual dynamic absorber to reduce the torsional vibrations exhibited during
start-up of systems driven by synchronous motors has been described. The dual
dynamic absorber is two inertia rings connected, via spring-like material, to both
the driver side (motor) and the driven side (compressor). The stiffness and inertia
properties of the dual absorber are optimally tuned to match the torsional natural
frequencies of the system. A lumping technique is used to produce the dynamic
model with non-linear flexible coupling. The results of the basic model are verified
by using the results of previously published work on the modelling of non-linear
flexible couplings. The numerical results on the dual-dynamic-absorber show
excellent reduction in the transient vibration amplitudes as well as noticeable
reduction in the torsional vibration duration.
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APPENDIX: NOMENCLATURE

{A} transformation vector
[C] damping matrix
Ca dynamic absorber damping coefficient
C� eq equivalent damping coefficient
CG gear damping coefficient
CR rubber coupling damping coefficient
fl line frequency (60 Hz)
G gear coupling
[J] inertia matrix
J1 motor inertia
J2 compressor inertia
Ja dynamic absorber inertia
JM modal inertia
Ka dynamic absorber stiffness
Keq equivalent torsional stiffness
KG gear coupling stiffness
KM modal stiffness
KR rubber coupling stiffness
Nm motor speed
Nsyn synchronous speed
T kinetic energy
Tm motor torque
Tavg average motor torque
Tosc coefficient of the oscillating torque component
TL load torque
Ts instantaneous torque
t time
q frequency ratio
a Newmark-beta integration constant
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b Newmark-beta integration constant
F1 motor angular motion
F2 compressor angular motion
vexc excitation frequency (rad/s)
C1 motor dynamic absorber motion relative to the motor
C2 compressor dynamic absorber motion relative to the compressor
m inertia ratio
j damping ratio
jopt optimum damping ratio
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