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A quadratic programming algorithm is presented for studying the design
tradeoffs of active–passive vibration isolation systems. The novelty of the
technique is that the optimal control problem is posed as a quadratic optimization
with linear constraints. The quadratic cost function represents the mean square
response of the payload acceleration and isolator stroke, and the linear constraints
represent asymptotic tracking requirements and peak response constraints. Posing
the problem as a quadratic optimization guarantees that a global optimal solution
can be found if one exists, and the existence of an optimal solution guarantees
that the vibration isolation system satisfies the specified design constraints. The
utility of the technique is demonstrated on a comparison of passive vibration
isolation and active–passive vibration isolation utilizing relative displacement
feedback.
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1. INTRODUCTION

Passive vibration isolation is a proven approach to the reduction of energy
transmission between structural components. Conventional vibration isolation
systems consist of mounts placed between the source of vibration and the isolated
structure. Given specifications on the level and spectral content of the input
disturbance, the stiffness and damping of the mount is tailored to minimize the
motion of the isolated structure while keeping within the material constraints of
the isolator. Traditional design methods for passive isolation systems can be found
in several handbooks and textbooks on shock and vibration analysis [1–3].

A recent development in vibration isolation technology is the use of active
control techniques to improve the performance of conventional isolation systems.
In contrast to a conventional isolation system, an active isolation system consists
of sensors, actuators, and control electronics that reduce energy transmission
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through feedforward or feedback control. Although currently more expensive and
complex than a passive approach, advances in transducer technology and control
theory are making active isolation a practical alternative to passive methods for
several applications [4].

Although active isolation systems can achieve better performance than their
passive counterparts, they are typically implemented in conjunction with a
passive isolator to take advantage of the strengths of both methods. The
strength of a passive isolator is its simplicity and inherent robustness: design
techniques are well established and materials are readily available for traditional
isolation applications. The strength of an active isolation system is its potential
for superior isolation and its ability to adapt to changes in the operating
environment. For these reasons, a combination of active and passive isolation
often provides the best tradeoff between broadband performance, adaptability,
and robustness.

The primary benefit of active–passive vibration isolation is that it allows more
design freedom than a conventional passive approach. Several of the design
tradeoffs associated with isolation design do not hold for an active–passive
isolation system. For example, low frequency passive isolation is severely
constrained by the tradeoff between isolator stiffness and static sag. Purely passive
systems typically require complex mechanical design to achieve isolation
frequencies near or below 1 Hz, whereas an active–passive approach can achieve
isolation frequencies of the order of 0·2 Hz. One method of achieving low
frequency isolation is to combine a stiff passive isolator in series with an active
mount. The stiff passive isolator minimizes static sag and provides isolation at
frequencies well above resonance, while the active mount provides isolation at low
frequencies without reducing the static stiffness of the mount. Thus, combining
active and passive methods provides superior performance without the
complications that occur with a purely passive approach.

The use of active control technology has introduced new tradeoffs into the
design of vibration isolation systems. The combination of active and passive
control enables more design freedom in trading off key performance specifications
such as peak payload acceleration and peak isolator stroke. In a passive isolation
system, for example, minimizing the mean square acceleration of the payload
constraint the peak value of the response, making it impossible to trade off these
two performance specifications. Active isolation eliminates this constraint between
the two performance specifications and enables peak values to be traded off against
mean square responses.

The tradeoffs associated with active–passive vibration isolation have directed
researchers towards the use of optimal control techniques for isolator design.
Tanaka and Kikushima [5] used parameter optimization techniques for active
vibration isolation design and derived a necessary set of optimality conditions.
They also developed an iterative quasi Newton algorithm for solving the
optimization problem. Parameter optimization techniques were also developed by
Cunningham [6] and, more recently, by Sciulli and Inman [7] for understanding
design tradeoffs. State space optimal control techniques were investigated by Hyde
and Crawley [8] and experimentally implemented by Hyde [9]. Their work
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concentrated on the use of H2 synthesis techniques for the design of multiaxis
isolation systems.

The objective of this work is to develop an efficient numerical technique for
studying the tradeoffs in active–passive isolator design. The novelty of the
technique is that the problem is posed as a quadratic programming problem with
linear constraints. Posing the problem as a quadratic optimization guarantees that
the global optimum can be found if a feasible solution exists, thus enabling design
tradeoffs to be studied using a series of numerical optimizations. Furthermore, the
global solution is determined without regard to the actual implementation of the
device, enabling a one-to-one comparison between active–passive and purely
passive isolation systems. In contrast to H2 optimal control techniques studied by
Hyde, this method also enables the explicit tradeoff of peak response specifications
with mean square response specifications.

The technique is based upon work performed by Boyd and Barratt [10] in the
field of convex optimization techniques for linear control design. In a previous
book, Boyd and Barratt developed a general framework for posing linear control
problems as convex and quasi convex optimization problems. They demonstrated
that many types of practical design tradeoffs for linear control, such as peak
response constraints and mean square responses, could be placed within the
framework of convex optimization and solved efficiently using numerical search
techniques.

The present work applies the convex optimization approach to the study of
design tradeoffs for single axis active–passive vibration isolation. Three types of
isolation systems will be studied: an isolation system modelled as a spring and a
dashpot in parallel, a ‘‘three-parameter’’ isolator that is modelled as a spring in
parallel with a series spring and dashpot, and an active–passive isolator that uses
relative displacement as the sensor signal for a feedback control law (see Figure 1).
These three isolators model a wide range of elastic, elastomeric, viscoelastic, and
fluid mounts for vibration isolation.

The paper is divided into four sections. Models for the three isolators are stated
in the first section and normalized so that they can be directly compared to the
optimal active–passive designs. The second section focuses on the development of
the quadratic programming approach to studying active–passive design tradeoffs.
The third section is a numerical study that highlights the utility of the optimization

Figure 1. Isolation systems studied in this work: (a) a parallel spring and dashpot arrangement,
(b) a spring in parallel with a series spring and dashpot, and (c) an active–passive isolation system.
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Figure 2. Block diagram of the vibration isolation control system.

technique, and the final section summarizes the work and states the main
conclusions.

2. ISOLATOR MODELS AND CONTROL FORMULATION

Figure 2 is a block diagram of the single axis isolation control system. The
disturbance input is the base acceleration and the isolator is designed to tailor the
transmissibility between the base and the rigid payload. The relative displacement
between the base and the payload is denoted d and its Laplace transform is
denoted D(s). For the active–passive vibration isolation system, the Laplace
transform of the applied force is

Fap (s)=K(s)D(s), (1)

where K(s) is a function of the linear control law. This control law assumes that
the feedback signal is simply the relative displacement between the base and the
payload. Although this model does not encompass all types of active isolation
systems, it does encompass many practical systems and it allows one to directly
compare passive isolators with a specific type of active system. For the ‘‘three
parameter’’ model of the passive isolator,

Ftp (s)= [(k1 + k2)cs+ k1k2]/(cs+ k2)D(s), (2)

where k1, k2, and c are the spring and damping coefficients of the isolation system.
Finally, the force applied by a pure spring and dashpot is equivalent to

Fp (s)= (cs+ k)D(s). (3)

The spring and dashpot constants for the spring and dashpot isolator are denoted
k and c, respectively. Comparing equations (2) and (3), one sees that as k2:a,
the ratios k1/k2 and c/k2 approach zero and equation (2) reduces to equation (3).
This simple analysis demonstrates that a pure spring–dashpot isolator is simply
a subset of a three-parameter isolator, enabling one to limit the analysis to a
comparison of active–passive control and a general three-parameter model of a
passive isolator.

The pertinent design variables are the transfer function between the base
acceleration and payload acceleration and the transfer function between base
acceleration and actuator stroke. The block diagram shown in Figure 2 can be
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Figure 3. Standard block diagram of the multi-input-multi-output control system.

placed into the standard form of a multiinput–multioutput linear control system
(see Figure 3 for block diagram) by defining

z=$ẍp

d% , w= ẍb , y= d, u= f, (4)

where ẍb is the base acceleration, ẍp is the payload acceleration, and f is the applied
force. With these variable definitions, one can transform the system into the
Laplace domain and write the partitions of the open loop block diagram:

Pzw (s)=$ 0
1/s2% , Pyw (s)=1/s2, Pzu (s)=$ 1/M

−1/Ms2% ,

Pyu (s)=−1/Ms2. (5)

Using the Q parameterization of the closed loop system, H(s) [10]:

H(s)=Pzw (s)+Pzu (s)Q(s)Pyw (s), (6)

where Q(s)= (1/Ms2)K(s)(I−Pyu (s)K(s))−1, one can express the closed loop
system as a matrix function of the open loop partitions:

H(s)=$ 0
1/s2%+$ 1

−1/s2%Q(s) (7)

or,

H(s)=$ Q(s)
(1/s2)(1−Q(s))% . (8)

One denotes the Laplace transforms of the base acceleration, payload acceleration
and actuator stroke as Ab (s), Ap (s), and D(s), respectively. With this notation, the
two transfer functions of interest are

H11(s)=Ap (s)/Ab (s)=Q(s), H21(s)=D(s)/Ab (s)= (1/s2)(1−Q(s)). (9)
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Equation (9) illustrates that the two transfer functions of interest are affine with
respect to the free parameter Q(s).

Equation (9) represents the result for a general linear control system. For a
passive isolator modelled by equation (2), one can substitute in the expression for
the applied force and determine the closed loop transfer functions in terms of the
isolation parameters:

Hp11(s)=
(k1/k2 +1)2zvns+v2

n

(2z/vn )(k1/k2)s3 + s2 + (k1/k2 +1)2zvns+v2
n
,

Hp21(s)= (1/v2
n )

(2zvnk1/k2)s+v2
n

2z/vn (k1/k2)s3 + s2 + (k1/k2 +1)2zvns+v2
n
. (10)

The break frequency of the isolation system, vn , is defined as zk1/m and the
definition 2zvn = c/m has also been substituted into equation (10). Again, note
that as k1/k2:0 the transfer functions reduce to those of a pure spring and dashpot
isolator.

3. PERFORMANCE SPECIFICATIONS

The first step in the control analysis is to express the physical performance
specifications in terms of the closed-loop transfer functions, H11(s) and H21(s).
Three sets of performance specifications will be considered for both the actuator
stroke and the payload acceleration: (1) the DC value for a constant base
acceleration, (2) the maximum value for a step input acceleration to the base and
(3) the root mean square response to a bandlimited random noise input to the base.

Each of these specifications will be discussed in the following sections.

3.1.       

An isolation system is typically designed such that the relative acceleration
between the payload and the base is equal to zero for a constant base acceleration.
This performance specification is equivalent to the following constraint on the
closed loop transfer matrix:

H11(0)=1. (11)

Examining equation (9), one sees that this constraint on H(s) is equivalent to the
constraint on Q(s):

Q(0)=1. (12)

Satisfying this expression ensures that the transmissibility is equal to 1 at s=0.

3.2.       

The second steady state performance specification ensures that the isolation
system responds with a finite payload acceleration for a constant, bounded, base
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acceleration. The corresponding performance specification on the closed loop
transfer function matrix H21(s) is

H21(s)
s:0

= adc-stroke , (13)

where adc-stroke is a finite scalar value. In terms of the free parameter Q(s), this
constraint is

(1−Q(s))1=s2

s:0

= adc-stroke . (14)

Specifying a finite value for H21(s) as s approaches zero is equivalent to requiring
that the term 1−Q(s) have two free integrators in its numerator.

3.3.           



The second set of design specifications constrain the peak actuator stroke and
peak payload acceleration for a constant base acceleration. The time response of
the payload acceleration and actuator stroke to a unity step input can be written
in terms of the impulse response functions:

z1(t)=g
t

0

h11(t) dt, z2(t)=g
t

0

h21 (t) dt, (15)

where h11(t) and h21(t) are the inverse Laplace transforms of the transfer functions
H11(s) and H21(s). Assuming that the DC values of the actuator stroke and payload
acceleration are adc-stroke and 1, respectively, the maximum values can be written

max (z1(t))=1+ aos-acc max (z2(t))= adc-stroke (1+ aos-stroke ), (16)

where aos-acc and aos-stroke represent the overshoot of the payload acceleration and
actuator stroke. The constraint on the peak acceleration is defined

max (z1(t))Q 1+ aos-acc max (z2(t))Q adc-stroke (1+ aos-stroke ) (17)

in terms of the DC value of the actuator stroke and the overshoot of the payload
acceleration and isolator.

3.4.   

One of the primary performance specifications on the isolation system is the
reduction of mean square payload acceleration for a random base acceleration.
The properties of the base acceleration is specified in terms of a power spectral
density function, Gw (f), where f is the frequency in cycles/s, and the following
expression is used to compute the expected value of the response variable to the
input:

�z�2 =g
fmax

0

>H( f )>2Gw ( f ) df, (18)
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where >H( f )> is the magnitude of the frequency response between the base
acceleration and the response variable and ��2 denotes the mean square value of
the variable. The mean square value is computed between zero frequency and the
maximum frequency over which the power spectral density is defined, and it is
assumed that the power spectral density is normalized such that its integral is equal
to the mean square value of the input [11], i.e.,

�w�2 =g
fmax

0

Gw ( f ) df. (19)

For the present problem, the relevant design variables are the payload acceleration
and actuator stroke, therefore the mean square value of the response variables are
expressed by the functions

�z1�2 =g
fmax

0

>H11( f )>2Gw ( f ) df, �z2�2 =g
fmax

0

>H21( f )>2Gw ( f ) df. (20)

Substituting the expressions for the closed loop transfer functions, equation (9),
into the previous expression yields the mean square performance specifications as
a function of the free parameter, Q(s):

�z1�2 =g
fmax

0

>Q( f )>2Gw ( f ) df, �z2�2 =
1

16p4 g
fmax

0 B(1−Q( f ))
1
f 2B

2

Gw ( f ) df.

(21)

These two expressions will be used for the numerical control optimizations.

4. FINITE DIMENSIONAL PARAMETERIZATION OF THE
CLOSED-LOOP SYSTEM

The performance specifications and constraint equations can be expressed as a
finite dimensional expression by substituting the expansion

Q(s)= s
N

i=1

xiQi (s) (22)

for the free parameters. The functions Qi (s) are specified, N is the number of terms
in the expansion, and the scalar variables xi are the design variables for the control
optimization. For the present analysis, the following parameterization of the
closed loop system will be used:

Qi (s)= (1/[s+vn ])i, (23)

where, by the definition of H11(s), the parameter vn is the break frequency of the
isolation system. The parameterization is normalized with respect to the break
frequency of the isolation system by substituting

s=vns (24)
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into equation (23). Combining equations (22) through (24) yields

Q(s)= s
N

i=1

xi

vi
n 0 1

s+11
i

. (25)

Substituting ji = xi /vi
n into equation (25) yields the nondimensional parameteriz-

ation

Q(s)= s
N

i=1

ji 0 1
s+11

i

. (26)

The non-dimensional parameterization, equation (26), is used to write H11(s) and
H21(s) as a function of the non-dimensional frequency, s:

H11(s)=Q(s)= s
N

i=1

ji0 1
s+11

i

,

H21(s)=
1

v2
ns

2 (1−Q(s))=
1

v2
ns

2 01− s
N

i=1

ji0 1
s+11

i

1 . (27)

These two expressions will be the basis for the quadratic optimization procedures
described in the following sections.

4.1.  

Using the finite dimensional expansions of the closed loop systems, equation
(27), enables the two transfer functions of interest to be written as

H11(s)=
a1s

N−1 + a2s
N−2 + · · ·+ aN−1s+ aN

sN + b1s
N−1 + · · ·+ bN−1s+ bN

,

H21(s)=
sN +(b1 − a1)sN−1 + · · ·+ (bN−1 − aN−1)s+(bN − aN )

v2
ns

2(sN + b1s
N−1 + · · ·+ bN−1s+ bN )

, (28)

where the scalar functions ai , i=1, . . . , N, are functions of the design variables
j1. Satisfying the two DC constraints yields the following three equations:

bN−2 − aN−2 =v2
nbNadc-stroke , bN−1 − aN−1 =0, bN − aN =0. (29)

Since the scalar variables ai are linear functions of the design variables, these three
equations are linear constraints on j:

Fj+G=0. (30)

The matrices F$R3×N and G$R3 are real-valued matrices whose coefficients vary
as the number of terms in the finite dimensional approximation to H(s) is
increased.
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4.2.       

The peak values of the actuator and payload acceleration can be written as a
linear constraint on the design variables, ji . With the parameterization defined by
equation (23), the time response of the payload acceleration can be written in terms
of the inverse Laplace transform of Qi (s):

z1(t)= s
N

i=1

ji

(i−1)! g
t

0

ui−1 e−u du, (31)

where t is a non-dimensional variable, t=vnt. To satisfy the constraint equation

z1(t)Q 1+ aos-acc , (32)

the following expression must be satisfied:

s
N

i=1

ji

(i−1)! g
t

0

ui−1 e−u duQ 1+ aos-acc , (33)

which can be rewritten as the linear matrix expression

Dpk-accj+Epk-acc Q 0 (34)

by discretizing t. The matrices of equation (33) are defined by the expressions

(Dpk-acc )ji =
1

(i−1)! g
tj

0

ui−1 e−u du, (Epk-acc )j =−(1+ aos-acc ). (35)

where tj is the non-dimensional time at the jth step, j=1, . . . , nt .
The peak actuator constraint can be written in a similar way by examining the

step response of z2(t):

z2(t)=
1

2v2
n
t2 −

1
v2

n
s
N

i=1 g
t

0 g
u

0 g
u'

0

ji

(i−1)!
u0i−1 e−u0 du0 du' du. (36)

To satisfy the constraint

z2(t)Q adc-stroke (1+ aos-stroke ), (37)

the following linear matrix expression must be satisfied:

Dpk-strokej+Epk-stroke Q 0, (38)

where

(Dpk-stroke )ji =−g
tj

0 g
u

0 g
u'

0

1
(i−1)!

u0i−1 e−u0 du0 du' du,

(Epk-stroke )j = 1
2t

2
j −v2

nadc-stroke (1+ aos-stroke ). (39)
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Equations (34) and (38) can be combined into one linear matrix expression by
defining

D=$ Dpk-acc

Dpk-stroke% , E=$ Epk-acc

Epk-stroke% (40)

and rewriting the constraint as

Dj+EQ 0, (41)

which is, as expected, an affine expression in the design variables ji .

4.3.   

The expression for the mean square values of the design variables can also be
placed in matrix form. Substituting f= fns into equation (27) and normalizing the
power spectral density with respect to the maximum value of Gw ( f ), i.e.,
Gw ( f )=GwGw (s), where Gw is the maximum value of the power spectral density,
the expressions for the mean square response of z1 and z2 can be written:

�z1�2 =Gwfn g
smax

0

>Q(s)>2Gw (s) ds,

�z2�2 =
Gw

16p4 f 3
n g

smax

0 B(1−Q(s))
1
s2B

2

Gw (s) ds. (42)

Rearranging terms results in two non-dimensional performance functions that
define the mean square response of the payload acceleration and isolator stroke:

1
Gwfn

�z1�2 =g
smax

0

>Q(s)>2Gw (s) ds,

16p4f 3
n

Gw
�z2�2 =g

smax

0 B(1−Q(s))
1
s2B

2

Gw (s) ds. (43)

Expanding the vector form of the finite dimensional parameterization allows one
to write the expressions in equation (21) as

1/Gwfn�z1�2 = jTArms-accj,

16p4f 3
n /Gw�z2�2 = jTArms-strokej+BT

rms-strokej+ crms-stroke , (44)

where

(Arms-acc )ij =g
smax

0

[R(Qi (s))R(Qj (s))+I(Qi (s))I(Qj (s))]Sw (s) ds,
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(Arms-stroke )ij =g
smax

0

[R(Qi (s))R(Qj (s))+I(Qi (s))I(Qj (s))]
Sw (s)

s4 ds,

(Brms-stroke )i =−g
smax

0

R(Qi (s))
Sw (s)

s4 ds, crms-stroke =g
smax

0

Sw (s)
s4 ds. (45)

All of the terms in the previous four expressions can be evaluated numerically for
the specified finite dimensional parameterization of Q(s).

5. QUADRATIC OPTIMIZATION

The previous sections describe a method for posing the vibration isolation and
design problem as a constrained quadratic optimization of the form

min jTAj+Bj+ c, s.t. Dj+EQ 0, Fj+G=0. (46)

A series of numerical analyses were performed to illustrate the use of the quadratic
programming techniques for vibration isolation design. The tradeoff between
mean square payload acceleration and mean square actuator stroke can be
determined by solving a series of quadratic optimizations. For a specified number
of terms in the finite dimensional parameterization of Q(s), the coefficient matrices
of the cost function can be defined as

A= l1Arms-acc + l2Arms-stroke , B= l2Brms-stroke , c= l2crms-stroke , (47)

where l1 and l2 are scalar constants normalized such that

l1 + l2 =1. (48)

Varying the scalar constants varies the relative weight of the mean square
acceleration and mean square actuator stroke in the cost function and enables the
tradeoff curve to be plotted.

At the extreme case of l1 =1, the cost function simply minimizes the mean
square payload acceleration, whereas the opposite extreme (l2 =1) yields a control
law that minimizes the mean square actuator stroke. Several studies were
performed to determine the number of terms that were required to achieve
convergence of the optimal solutions. All studies indicated that 10 terms were
sufficient to provide convergence of the quadratic cost function.

The optimal active–passive isolators were compared directly with the results of
a parameter study of passive control. The closed loop transfer functions for a
passive isolator (as shown in equation (10)) were non-dimensionalized by
substituting s=vns and k= k1/k2 into the equation, yielding the following
non-dimensional expressions:

H11(s)=
(k+1)2zs+1

2zks3 + s2 + (k+1)2zs+1
,

v2
nH21(s)=

2zks+1
2zks3 + s2 + (k+1)2zs+1

. (49)
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Nomenclature for the tradeoff curves

Symbol Definition

fn (Hz) isolator frequency
s – normalized frequency, f/fn

�z1� (m/s2) root mean square payload acceleration
�z2� (m) root mean square isolator stroke

Gw m2/s4/Hz maximum value of the input spectrum
aosacc – overshoot of the payload acceleration
aosstroke – overshoot of the isolator stroke

k – relative stiffness for a three-parameter isolator
(k=0 represents a spring–dashpot isolator)

The mean square and peak responses for passive isolation could be numerically
determined by simply solving these equations for a range of damping ratios and
stiffness ratios.

6. TRADEOFF STUDIES

Two sets of tradeoff studies were performed. The tradeoff studies compared
passive isolation systems with active isolation systems that utilize relative
displacement as the feedback signal. The first tradeoff study compared mean
square mitigation without any constraints on the peak value of the payload
acceleration and isolator stroke. The mean square mitigation was compared for
both broadband and bandlimited random disturbances, where the disturbances
were modelled with varying input power spectral densities. The second set of
tradeoff studies examined mean square mitigation for active–passive isolation in
the presence of increasingly stringent constraints on the isolator stroke and peak
payload acceleration.

6.1.       

A series of tradeoff studies were performed to compare mean square mitigation
without any constraints on the peak response of the payload acceleration or
isolator stroke (i.e., aosacc and aosstroke�1). The tradeoff curve for active–passive
isolation was determined by solving a series of quadratic optimizations using the
procedure described in the previous section. The tradeoff curve for passive
isolation was determined by computing the mean square payload acceleration and
mean square isolator stroke for values of z between 0 and 1 and k=0, 0·25, 0·50,
0·75, and 1·0. The nomenclature for the tradeoff curves is summarized in Table 1.

The plot on the left of Figure 4 is the tradeoff curve for the case of a broadband
input disturbance. The normalized spectral content of the input is shown above
the tradeoff curve. The lower curve on the plot is the tradeoff in mean square
performance for the active–passive vibration isolation system. Each point on the
curve represents a solution to the quadratic optimization for particular values of
l1 and l2 and the region above the tradeoff curve is the feasible region for the
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Figure 4. Tradeoff curves comparing passive isolation and active–passive isolation utilizing
relative displacement feedback: (a) broadband input spectrum and (b) bandlimited input spectrum.
The normalized input spectrums are displayed above the tradeoff curves.

active–passive isolation. The region below the curve represents the set of infeasible
solutions, i.e., there is no active–passive isolation system that will achieve these
values for mean square payload acceleration and mean square isolator stroke.

As the plot demonstrates, the mean square performance of the passive isolation
system lies inside the feasible region of the active–passive isolation system. This
is to be expected due to the fact that a passive compensator is simply a subset of
an active–passive design. The tradeoff curve also demonstrates that, for a
broadband input disturbance, a simple spring–dashpot isolation system (i.e.,
k=0) is the most effective passive isolation system; it achieves the smallest mean
square payload acceleration and mean square isolator stroke of any passive
isolator. This is attributed to the fact that a pure spring–dashpot isolation system
can achieve higher values of damping, and thus lower resonant peaks, than the
isolation system illustrated in the middle of Figure 1. The final conclusion that can
be drawn from this tradeoff study is that for equivalent isolator break frequencies,
an active–passive isolation system can achieve 66% greater reduction in mean
square payload acceleration than a passive isolator.

The plot on the right of Figure 4 demonstrates that the performance tradeoffs
are a function of the frequency content of the input disturbance. For a power
spectral density function that has a significant increase in energy near the break
frequency of the isolator, the active–passive design achieves approximately a factor
of two greater reduction in the mean square payload acceleration than the most
effective passive design studied (k=0·25). Furthermore, in contrast to the tradeoff
for a broadband input spectrum, a pure spring–dashpot isolator is not the most
effective type of passive isolation system. As the curves for various values of k

demonstrate, a pure spring and dashpot arrangement results in significantly higher
mean square payload accelerations and higher mean square strokes than several
of the other types of isolators. This is attributed to the fact that the increased
rolloff of the isolator for values of kq 0 reduces the mean square response more
significantly than increased damping near resonance.
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Figure 5. Normalized closed loop transfer functions for active–passive control (solid), a pure
spring and dashpot isolator (short dash) and a three-parameter isolator (long dash): (a) payload
acceleration/base acceleration and (b) isolator stroke/base acceleration.

The differences in the optimal results can be illustrated by examining the optimal
closed loop transfer functions for the different types of isolators. Figure 5 is a plot
of the closed loop transfer functions H11(s) and H21(s) for active–passive isolation,
a pure spring–dashpot isolator (k=0), and a three-parameter isolator in which
k=0·25. All three are the optimal compensators for the bandlimited disturbance
shown on the right of Figure 4. The poor performance of the spring–dashpot
isolator is attributed to the high frequency rolloff of the transfer function H11(s).
The fact that the high frequency rolloff is constrained to be a slope of 20 dB/decade
at high frequencies increases the mean square value of the payload acceleration.

The three-parameter isolator (k=0·25) is able to achieve better mean square
mitigation due to the fact that it rolls off with a slope of 40 dB/decade above
resonance. The active–passive isolation system achieves the best reduction in mean
square acceleration by increasing the damping near the isolator resonance—as

Figure 6. Tradeoff curves for a bandlimited input spectrum with hard constraints on the stroke
and acceleration: (a) peak acceleration constraints, and (b) peak constraints on the isolator stroke.
The active control law utilizes relative displacement as the feedback signal.
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exhibited by its lower peak value—and rolling off with a slope slightly greater than
40 dB/decade above resonance.

6.2.       

A separate set of tradeoff studies were performed for the case of constrained
peak accelerations and constrained isolator strokes. Figure 6 is a plot of the
tradeoff curves for two sets of quadratic optimizations. The plot on the left
represents a series of tradeoff curves for the case of increasingly tight constraints
on the peak payload acceleration but without any constraint on the peak isolator
stroke. The plot on the right illustrates the tradeoff for increasingly tight
constraints on the peak isolator stroke but no constraint on the peak payload
acceleration.

The results indicate that the two constraints yield significantly different design
tradeoffs for mean square mitigation. Constraining the overshoot of the payload
acceleration between 15% and 25% does not significantly reduce the achievable
performance of active–passive isolation system. This is indicated on the tradeoff
curve by the fact that the maximum achievable reduction in the mean square value
of z1 is not appreciably affected when aos-acc is between 0·15 and 0·25. In contrast,
the tradeoff curve on the right of Figure 6 indicates that constraining the peak
value of the isolator stroke has a significant affect on the maximum achievable
reduction in the mean square acceleration. With no constraint on the peak
acceleration, the minimum value of �z1�2/fnGw 1 0·025, whereas the value increases
to 10·045 when the peak isolator stroke is constrained to be only 10% of the static
value.

6.2.1. Numerical example

A numerical example illustrates the use of the tradeoff curves obtained from the
convex optimizations. If one assumes that the power spectral density of the base
acceleration is modelled by the function

Gw ( f )=610−6 g2/Hz,
10−4 g2/Hz,

0·005Q fQ 50 Hz,
50Q fQ 5000 Hz, 7 (50)

T 2

Numerical results for a particular input disturbance and isolator frequency
(fn =5 Hz and Gw =0·00962 m2/s4/Hz)

Fig. 4(b)
ZXXXXXXXCXXXXXXXV Fig. 6(b)
k=0 k=0·25 a-p a-p

�z1�2/fnGw 0·061 0·047 0·025 0·045
16p4f 3

n /Gw�z2�2 0·038 0·022 0·050 0·015
�z1� (m/s2) 0·052 0·0476 0·0347 0·0465
�z1� (mg) 5·53 4·85 3·54 4·74
�z2� (mm) 43·3 33·0 49·7 27·2
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and that the isolator frequency is chosen to be 5 Hz, then the normalized power
spectral density is equivalent to those shown in Figure 4(b) and Figure 6.
Integrating the power spectral density over this frequency range yields a root mean
square base acceleration of approximately 0·70 g, or 6·87 m/s2. The peak value of
the power spectral density, Gw , is equal to 0·0001 g2/Hz, or 0·00962 m2/s4/Hz. The
values fn and Gw are the only parameters required to compute the root mean square
payload acceleration and isolator stroke.

Figure 4(b) is applicable if there are no constraints on the peak payload
acceleration or the peak isolator stroke. Table 2 lists the minimum value of
�z1�2/fnGw for the passive and active–passive isolators. The root mean square
payload acceleration and root mean square isolator stroke are computed from the
non-dimensional quantities and are listed at the bottom of the table. The results
indicate that a pure spring–dashpot isolator results in a root mean square
acceleration of 5·53 mg for an isolator stroke of 43·5 mm. A more effective passive
isolation system is a three-parameter isolator with a stiffness ratio of 0·25. This
type of design would reduce the root mean square payload acceleration to 4·85 mg
and would only require 33·3 mm of stroke. The most effective isolation system is
an active–passive design, which achieves a root mean square payload acceleration
of only 3·54 mg, but requires almost 50 mm of isolator stroke. Furthermore, the
active–passive isolators represent the limits of performance for any active control
system that utilizes relative displacement as the feedback signal.

Figure 6(b) is applicable if there are hard constraints on the maximum value
of the isolator stroke. Assuming that the base acceleration is a 1 g step input, the
static stroke of the isolator is equivalent to 9·81/(52 ×4p2) m, or approximately
1 cm. Constraining the isolator to less than 1·1 cm of stroke is equivalent to setting
aosstroke =0·1. The results for this case are listed in the rightmost column of Table 2.
The results indicate that the hard constraint on the isolator stroke increases the
root mean square payload acceleration from 3·54 mg to 4·74 mg (a 35%
performance drop) and reduces the stroke from approximately 50 mm to 27 mm.
The isolator performance with a hard constraint on the maximum stroke is
roughly equivalent to a three-parameter isolator with a stiffness ratio of 0·25.

The numerical analyses demonstrate the utility of the quadratic optimization
approach to the design of active–passive isolation systems. Several practical
tradeoffs were studied using the general framework developed in this paper,
including the tradeoff in mean square acceleration versus mean square isolator
stroke, the effect of peak constraints on the achievable performance, and the direct
comparison of an active–passive design with traditional passive isolation
techniques. Although the numerical analyses presented in this paper were for a
particular set of input disturbances and design constraints, the technique is useful
for any type of comparison between active–passive and passive isolation.

7. CONCLUSIONS

A unified approach to the design of active–passive isolation systems was
developed. The approach was based on a quadratic programming algorithm that
accounted for the tradeoffs between mean square response mitigation and peak
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response constraints. The quadratic programming algorithm was developed
through the Q parameterization of the closed loop transfer functions.
Parameterizing the closed loop transfer functions in this manner enabled the
optimal control problem to be posed as a quadratic minimization with linear
equality and inequality constraints. The quadratic functions represented the mean
square performance specifications and the linear constraints represented the
asymptotic tracking requirements and peak response constraints.

The optimal control problem was normalized so that a class of active–passive
isolation designs could be studied by solving a series of numerical optimizations.
For a particular input disturbance modelled by a power spectral density function,
the tradeoff between mean square performance requirements was solved by
performing a series of quadratic optimizations. Constraints on the peak response
of the payload and peak response of the isolator stroke could be included in the
analysis and another series of optimizations performed to determine the effect of
the additional requirements.

The utility of the technique was demonstrated for a class of input disturbances
and for a specific type of active control law. Active control systems utilizing
relative displacement feedback were compared to passive systems modelled as
springs and dashpots. The series of optimizations demonstrated that the design
tradeoffs were significantly affected by the shape of the input spectral density and
the value of the peak response constraints. The optimal active–passive isolation
system was compared directly with a purely passive approach to determine the
maximum amount of improvement that could be achieved with an active design.
The numerical studies indicated that the performance advantage gained by
implementing an active control system also varied significantly with the energy
content of the input disturbance. For the disturbance cases studied, the optimal
control technique demonstrated that active–passive control has significant
advantages over passive control when the input energy shows a large increase near
the break frequency of the isolation system.
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