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This paper presents new insights obtained from analyzing the active-passive
hybrid piezoelectric network (APPN) concept. It is shown that the shunt circuit
not only can provide passive damping, it can also enhance the active action
authority if tuned correctly. Therefore, the integrated APPN design is more
effective than a system with separated active and passive elements. However, it
is also recognized that a systematic design/control method is needed to ensure that
the passive and active actions are optimally synthesized. Such a method is
developed and presented. The characteristics of the closed-loop system are
analyzed.
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1. INTRODUCTION

Because of their active and passive damping features, piezoelectric materials have
been explored for their active–passive hybrid control abilities, which could have
the advantages of both the passive (stable, fail-safe, low power requirement) and
active (high performance, feedback or feedforward actions) systems. An
active–passive hybrid piezoelectric network (APPN) concept has been proposed
[1–4] for this purpose. This actuator configurations integrates piezoelectric
materials with an active voltage source and a passive R (resistance) L (inductance)
shunting circuit (Figure 1). On one hand, structural vibration energy can be
transferred to and dissipated in the tuned shunting circuit passively. On the other
hand, the control voltage will drive the piezo-layer, through the circuit, and
actively suppress vibration of the host structure. Feasibility studies have
demonstrated [1–4] that such an APPN-based adaptive structure could suppress
vibration and noise radiation effectively, and could achieve better performance
with less control effort as compared to a purely active system.
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2. PROBLEM STATEMENT AND OBJECTIVE

While previous investigations on APPN have illustrated promising results, there
are still some fundamental and important issues that need to be addressed. These
items are summarized as follows.

(1) While the APPN configuration includes both the active and passive
elements, the interactions between these elements are not clear. Do the passive
elements always complement the active actions?

(2) If the active and passive elements do not always complement each other,
should we separate them? In other words, if we separate the active and passive
elements, will the active–passive hybrid actions be affected? If they are, will they
be enhanced or reduced?

(3) Should we be designing the active and passive control parameters
simultaneously or sequentially? Will there be significant differences?

(4) Since the APPN is conceptually an active–passive hybrid tuned damper, it
should have bandwidth limitations. How would this issue affect the design?

The objective of this investigation is to address the fundamental issues presented
above. In other words, we want to provide more insight and basic understandings
to the APPN configuration, and eventually achieve a truly beneficial active–passive
hybrid structure for the purpose of vibration suppressions.

3. SYSTEM MODEL

For the purpose of discussion, a cantilever beam partially covered with a pair
of PZT (lead zirconate titanate ceramics) actuator–sensor layers is used to
illustrate the concept. A schematic of the configuration is shown in Figure 2. The
actuator is connected to an external voltage source in series with an RL circuit.
The sensor layer is mounted on the other side of the beam at the same axial
location.

The system equation is derived based on the following assumptions: (1) the
poling direction of the PZTs is in the positive w-direction; (2) the rotational inertia
is negligible; (3) only uni-axial loading of the PZTs in the u-direction is considered;
(4) the piezoelectric material layers are thin and short compared to the beam; (5)
the applied voltage is uniform.

Figure 1. Adaptive structure with active–passive hybrid piezoelectric networks.
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Figure 2. Schematic of a cantilever beam with APPN.

Using Hamilton’s Principle, one can construct

g
t2

t1

[dTb − dUb − dUc + dWv ] dt=0, (1)

where Tb is the beam kinetic energy, Ub is the beam strain energy, Uc is the
mechanical and electrical energy of the piezoelectric material, and dWv is the
virtual work term.

For one-dimensional structure with uni-axial loading, the constitutive equation
of the piezoelectric material [5] can be written as

$ t

Ev%=$ CD
11

−h31

−h31

b33 % $ o

D%, (2)

where D is the electrical displacement (charge/area in the transverse direction), Ev

is the electric field (volts/length along the transverse direction), o is the mechanical
strain in the x-direction, and t is the material stress in the x-direction. CD

11 is the
elastic stiffness, b33 is the dielectric constant, and h31 is the piezoelectric constant
of the PZT. Based on the above constitutive equation, and assuming D is constant
along the PZT thickness for thin materials, one can derive
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1
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The other functions are presented as follows

Tb =
1
2 g

Lb

0

rbAb01w
1t1

2

dx, Ub =
1
2 g

Lb

0

EbIb012w
1x21

2

dx, (4, 5)

dWv =Va (t) g
Lb

0

bsdDa (H(x− x1)−H(x− x2 )) dx

+Vs (t) g
Lb

0

bsdDs (H(x− x1)−H(x− x2)) dx

+g
Lb

0 0f(x, t)− cb
1w(x, t)

1t 1dw(x, t) dx. (6)

Note that the voltage is related to the external circuit:

Va =−L
d2Qa

dt2 −R
dQa

dt
−Vc , (7)

Va =Eva (hs − hb ), Vs =Evs (hs − hb ), (8)

Qa = bs (x2 − x1)Da, Qs = bs (x2 − x1)Ds . (9)

Here, w(x, t) is the transverse displacement of the beam, Eb is the beam elastic
modulus, CD

11 is the piezoelectric elastic modulus with an open circuit, Lb is the
beam length, rb is the beam density, bs is the width of the beam and PZT, hb is
the distance from the beam neutral axis to the outside surface of the beam, hs is
the distance from beam neutral axis to the outside surface of the PZT, Ab , Ac are
the cross-sectional area of the beam and PZT, respectively. cb is the uniform
damping constant, and Ib and Ic are the beam and PZT layer moments of inertia,
respectively. Also, Js = bs (h2

s − h2
b )/2, (x2 − x1) is the length of the PZT, R is the

resistance, L is the inductance, Vc is the external voltage for control, Vs is the sensor
voltage, Da , Ds are the electric displacement of the actuator and sensor,
respectively. Qa , Qs are the electric charge of the actuator and sensor, Eva , Evs are
the electric field of actuator and sensor, respectively. f(x, t) is the external load
distribution, and H is the Heaviside’s function. The other parameters are defined
in Appendix B.
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Substituting the above equations into Equation (1) and further assuming that
the field within and electrical displacement on the surface are uniform for the
piezoelectric material, one can derive the system model. The structure equation is

rbAb
12w
1t2 + cb

1w
1t

+EbIb
14w
1x4 +02CD

11Ic
14w
1x4 + h31Jc

12Da

1x2 1(H(x− x1)

−H(x− x2))+04CD
11Ic

13w
1x3 +2h31Jc

1Da

1x 1(d(x− x1)− d(x− x2))

+02CD
11Ic

12w
1x2 + h31JcDa1(d'(x− x1)− d'(x− x2))= f(x, t), (10)

where d is the Dirac delta function and 0Q xQLb . The boundary conditions are

w(0, t)=
1w(0, t)

1x
=

12w(Lb , t)
1x2 =

13w(Lb , t)
1x3 =0. (11)

The actuator circuit equation is

0Vc+L
d2Qa

dt2 +R
dQa

dt
+

b33(hs − hb )
bs (x2 − x1)

Qa+
h31 Jc

bs

12w
1x21((H(x− x1)−H(x− x2))=0.

(12)

Assume an open circuit (Ds =0), the sensor equation is

0Vs +
h31Jc

bs

12w
1x2 Qa +

h31Jc

bs

12w
1x21((H(x− x1)−H(x− x2))=0. (13)

Galerkin’s method [6] can be used to discretize equations (10–13) into a set of
ordinary differential equations. The comparison functions f are chosen to be the
eigenfunctions of a uniform fixed-free beam.

For the structure, one can obtain

Mb q̈+Cb q̇+Kbq+
h31(h2

s − h2
b)

2(x2 − x1)
[f� '(x2)−f� '(x1)]Qa = f
 . (14)

Mb and Cb are the mass and damping matrices derived from the rbAb 12w/1t2 and
cb 1w/1t terms in equation (10), respectively. Kb is the stiffness matrix derived from
the terms containing 14w/1x4, 13w/1x3 and 12w/1x2 in equation (10); f
 is the external
disturbance vector.

For the actuator and sensor circuits,

LQ� a +RQ� a +
b33(hs − hb )
bs (x2 − x1)

Qa +
h31(h2

s − h2
b )

2(x2 − x1)
[f'(x2)−f'(x1)]Tq=−Vc , (15)

h31(h2
s − h2

b )
2(x2 − x1)

[f'(x2)−f'(x1)]Tq=−Vs , (16)
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where q, q̇, and q̈ are vectors of generalized displacement, velocity, and
acceleration. (

.
) and (') are derivatives with respective to time and x, respectively.

The discretized adaptive structure model, equations (14) and (15), can be
expressed in a standard state–space form:

ẏ=A(R, L)ẏ+B1f+B2(R, L)u� , (17)

z=C1y, y=[qT Qa q̇T Q� a ]T, u� =Vc ,

where y is the state vector, u� is the control input, f is the external disturbance
vector. The system matrix, A, and control matrix, B2, are functions of the passive
resistance and inductance.

The system described above has (N+1) modes, where N is the number of terms
in the Galerkin expansion. The (N+1)th mode is due to the passive circuit.
Because the comparison functions in the expansion are chosen to be the
eigenfunctions of a fixed–free beam, the ith generalized co-ordinate will closely
resemble the ith structural modal co-ordinate (i=1, 2, 3, . . . , N).

The model is used for system analysis and controller development, as discussed
in the following sections. The system parameters used for the investigation
reported in this paper are shown in Table 1 unless stated otherwise.

4. PRELIMINARY OPEN LOOP SYSTEM ANALYSIS

In this section, the system model is used to investigate the open-loop effects of
the circuit parameters (resistance and inductance) have on the passive damping
ability and active control authority of the APPN. Also, the APPN is compared
to the configuration with separated active and passive elements.

4.1.          



For a linear system described in the previous section, the overall structural
response will be a sum of the response contributed from the excitation force f and
the response contributed from the control voltage Vc . We define Y1 to be the
magnitude of the transfer function w1/f and Y2 to be the magnitude of the transfer
function w2/Vc . Here, w1 and w2 are the responses close to the beam tip
(x=0·92Lb ) caused by the point excitation force at x=0·95Lb and the control

T 1

System parameters

tb =3·175 mm bs =19·05 mm
cb =0·12 N-s/m2 Eb =7·1×1010 Pa
CD

11 =7·4×1010 Pa hs =0·0016 m
b33 =7·331×107 volt-m/coulomb h31 =7·664×108 N/C
tc =0·25 mm x1 =0·0127 m
Lb =0·1524 m x2 =0·0762 m
rb =2700 kg/m3 rc =7600 kg/m3
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Figure 3. The passive damping index Y1 : ——, without shunt circuit; – – –, with shunt.

voltage, respectively. With Vc =0, Y1 represents the structural vibration amplitude
without active control. That is, Y1 is an index of the system’s passive damping
ability (the smaller the better). On the other hand, Y2 represents the structural
vibration amplitude created by the active actuator. Larger Y2 indicates that the
actuator has more authority to excite the host structure for the given voltage input.

Figure 4. The active control authority index Y2 for the purely active and APPN systems: ——,
purely active; – – –, APPN.
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Figure 5. The active control authority index Y2 with different resistors: – – –, R=500 V;
–··–··–··–, R=1·0 KV; ——, R=2·3 KV; -·-·-·-·-·-, R=5·0 KV.

Thus, Y2 is used as an index for the system’s active control authority (the larger
the better).

To illustrate the basic concepts and observations, the first modal response is
focused on in the analysis presented in this section, thus only a one-term Galerkin
expansion is used. First, the APPN is compared with the purely active system. The
R and L values are chosen to be the optimal values for the passive system following
the procedure described in Appendix A. Figures 3 and 4 show the passive damping
index Y1 and the active authority index Y2 for both systems. The Y1 plot reconfirms
that the passive shunt circuit behaves like a tuned resonant damper [7]. In other
words, the RL circuit will enhance the passive damping ability around the first
resonant frequency. Figure 4 (Y2 plot) illustrates that the shunt circuit is
broadening the actuator active authority bandwidth around the tuned frequency,
while reducing the peak value. However, since the R and L values here are chosen
to optimize the passive system, it is not obvious that they will be the best for
maximizing the active action. For example, while the resistor is designed to
dissipate the structure vibration energy, it could be dissipating the control power
from the active element as well. This can be observed in Figure 5, where Y2 is
shown to be decreasing with increasing R. In other words, the resistor is reducing
the active authority of the actuator.

4.2.       

One simple-minded approach to resolve the problem discussed above is to
separate the passive shunt circuit from the active source (Figure 6). While this is
still an active–passive hybrid configuration, the active and passive elements do not
interact directly anymore. This is, we are simply applying active control on an
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optimized (tuned circuit) passive system. The structure equation of motion for
such a separated configuration is

rbAb
12w
1t2 + cb

1w
1t

+EbIb
14w
1x4 +02CD

11Ic
14w
1x4 + h31Jc

12Da

1x2 + h31Jc
12Ds

1x2 1
×(H(x− x1)−H(x− x2))+04CD

11Ic
13w
1x3 +2h31Jc

1Da

1x
+2h31Jc

1Ds

1x 1
×(d(x− x1)− d(x− x2)+02CD

11Ic
12w
1x2 + h31JcDa + h31JcDs1

×(d'(x− x1)− d'(x− x2))= f(x, t). (18)

The shunt circuit and actuator equations are

0L d2Qs

dt2 +R
dQs

dt
+

b33(hs − hb )
bs (x2 − x1)

Qs +
h31Jc

bs

12w
1x21(H(x− x1)−H(x− x2))=0,

(19)

0Va +
b33(hs − hb )
bs (x2 − x1)

Qa +
h31Jc

bs

12w
1x21(H(x− x1)−H(x− x2))=0. (20)

The sensor equation is

0Vs +
b33(hs − hb )
bs (x2 − x1)

Qs +
h31Jc

bs

12w
1x21(H(x− x1)−H(x− x2))=0. (21)

Figure 6. Schematic of a cantilever beam with separated active and passive elements.
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Figure 7. The passive damping index Y1 for the APPN and separated systems.

Here, the sensor voltage Vs is the voltage across the shunt circuit. Since the two
configurations are the same without the active source, the passive damping index
Y1 plot is the same for the two (Figure 7). This implies that the two configurations
have the same passive damping ability. However, the active authority index Y2 plot
shows that the APPN can drive the host structure much more effectively than the
separated treatment (Figure 8). This is because the circuit can increase the voltage
input into the piezoelectric layer around the resonant frequency, even when the

Figure 8. The active control authority index Y2 for the APPN and separated systems: ——,
separated; – – –, APPN.
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RL parameters are not optimized for enhancing the active action. This fact
illustrates the merit of the integrated configuration over the separated design.
Therefore, a sensible thing to do is to use the coupled APPN configuraton with
better selected R and L values (instead of the R and L values optimized for the
purely passive system). In order to achieve such a purpose, a concurrent
design/control method is developed and presented in the next section.

5. ACTIVE–PASSIVE CONTROL LAW DESIGN

A scheme is synthesized to concurrently design the passive elements and the
active control law. This approach will ensure that the active and passive elements
are configured in a systematic and integrated manner. The strategy developed is
to combine the optimal control theory with an optimization process and to
determine the active control gains together with the values of the passive system
parameters (the shunt circuit resistance and inductance). The procedure contains
three major steps as outlined in the following paragraphs.

5.1.   

In order to examine the system response under different bandwidth excitations,
the disturbance is modelled as the result of passing a Gaussian, white noise process
through a second order low pass Butterworth filter. The bandwidth of the filter
is defined to be the radian cut-off frequency at which the filter output has a 3-dB
attenuation of its value at zero frequency. The filter bandwidth is in fact the
bandwidth of the external disturbance. The equations that describe such a process
are

ṡ=Af s+Bfd� , f=Cf s, (22)

ẏ=A(R, L)y+B1f� +B2(R, L)u� . (23)

The inputs in d� are Gaussian and white. Here, the mean and spectral density of
d� are given byE[d� (t)]=0 and E[d� (t)d� T(t)]=D(t)d(t− t). Here, E[ ] is the
expectation operator.

By defining an augmented state as x=[y s]T, the overall system state equations
become

ẋ=$A0 B1Cf

Af %x+$B2

0 %u� +$ 0
Bf%d� =Aax+B1a (R, L)u� +B2ad� . (24)

With a given set of passive parameters (R and L), the optimal control theory [8]
is used to determine the value of the active gains.
The cost function is

Je =lim
t:a

E[x� TQex� + u� TSu� ]. (25)
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Qe is a positive-semi-definite weighting matrix chosen to be

Kb

0 0

0G
G

G

G

G

K

k

G
G

G

G

G

L

l

Qe = Mb
, (26)

0 0

0

Here, x� TQex� represents the overall structure energy, while S is the positive-definite
weighting matrix on the control inputs. Since the purpose of this paper is to discuss
the characteristics of the APPN actuator, the sensor equation is not used here and
full state feedback is assumed for demonstration.

With this stochastic regulator control problem, the optimal control gain is given
by

Kc =S−1B2a
TPr , (27)

where Pr satisfies the Riccati equation

AT
a Pr +PrAa −PrB2aS−1BT

2aPr +Qe =0. (28)

The closed-loop system thus becomes

d
dt

x� =(Aa −B2aKc )x� +B1ad� =Aclx� + n� , (29)

where n� is Gaussian and white. Here, the mean and spectral density of n� are given
by E[n(t)]=0 and E[n� (t)n� T(t)]=V(t)d(t− t), respectively.

5.2.   

The objective function is selected to be the minimized cost function of the
stochastic regulator problem [8]

J=Min Je =trace(PlV). (30)

Pl is the solution to the following Lyapunov equation:

AclPl +PlAT
cl +V=0. (31)

5.3.          

Note that for each set of the passive control parameters R and L, there exists
an optimal control with the corresponding minimized cost function and control
gains. That is, J is a function of R and L. Utilizing a sequential quadratic
programming algorithm [9], one can determine the resistance and inductance
which further minimze J. As the passive parameters vary, the active gain will be
updated as well. In other words, by varying the values of the active gains and
passive parameters simultaneously, the ‘‘optimized’’ optimal control can be
obtained.
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Figure 9. The optimal resistance and inductance for different weighting S.

6. ANALYSIS OF THE OPTIMIZED CLOSED-LOOP SYSTEM

6.1.    

As stated earlier, the optimal resistance and inductance for the active–passive
hybrid system may not be the same as the optimal R and L for a purely passive
arrangement. In order to evaluate the differences, the optimal R and L for different
weightings on control effort are shown in Figure 9. Here, a three term Galerkin’s
expansion is used and the excitation bandwidth (bandwidth of the Butterworth
filter described in section 5.1) is set to be 192 Hz for us to focus on the first mode.

The optimal R and L for the passive case shown in Figure 9 are calculated using
the passive optimization process stated in Appendix A. Note that when the
weighting on control effort S increases (more limitation on control effort), the
optimal R and L values using the concurrent design approach those derived from
the passive optimization procedure. This is because the input control effort would
be very small under the condition of large S and passive damping is dominating.
However, it is seen that the optimal R, L values for the hybrid system depart quite
significantly from the R, L values for the purely passive system as the demand on
performance increases (i.e., S decreases). This indicates that the simultaneous
controller/circuit optimization process is necessary, especially when high system
performance is required. It is also shown in Figure 9 that the higher the S, the
smaller the resistance and inductance. In order to understand this trend and
further illustrate the effect of S on the system characteristics, another set of indexes
for passive damping (Ip ) and active authority (Ia ) are defined as follows:

Ip =(Jp[pa − Jp[ap )/Jp[pa , Ia =(Ja[ap − Ja[pa )/Ja[pa , (32, 33)

where Jp[pa and Jp[ap represent the total structure energy (potential and kinetic
energy) of the purely active and APPN systems under the same level of external
disturbances (without active control), respectively. Higher Ip indicates more
passive damping ability. Ja[pa and Ja[ap represent the total structure energy of the
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Figure 10. The passive damping Ip for different weighting S.

purely active and APPN systems when the structure is driven by the same level
of control voltage (without external disturbance). Larger Ia indicates more control
authority. Jp[pa , Jp[ap , Ja[pa and Ja[ap can be calculated from equation (A6) in
Appendix A. Both the external force and control voltage are modelled as white
noise passing through a low pass Butterworth filter with bandwidth of 192 Hz.
Figures 10 and 11 show that Ip decreases while Ia increases, as the weighting

Figure 11. The active authority Ia for different weighting S.
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Figure 12. The active control authority index Y2 for different weighting S: ——, S=1×10−1;
– – –, S=2×10−7.

S decreases. This implies that when the demand on performance becomes higher
(lower S), the optimal R and L values will vary in a direction to increase active
authority while reducing passive damping. We therefore examine the frequency
response of Y2 (active authority index) in the cases of high and low weightings S.
It is clear from Figure 12 that when the demand on performance is high,
R becomes smaller to enhance the active authority peak magnitude, and

Figure 13. Contour of the cost function J under the excitation bandwidth 190 Hz: *, optimal
resistance and inductance; J=1·335.
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Figure 14. Contour of the cost function J under the excitation bandwidth 560 Hz: *, optimal
resistance and inductance; J=4·414.

L reduces to push the actuator frequency response up to cover a wider frequency
bandwidth.

6.2.     

In order to examine the APPN system under broadband excitations, a
three-mode expansion is used which covers modal frequencies up to 1·97 kHz. The

Figure 15. Contour of the cost function J under the excitation bandwidth 640 Hz: *, optimal
resistance and inductance; J=5·119.
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Figure 16. The active authority Y2 under excitation bandwidth 190 Hz: ——, purely active; – – –,
APPN.

APPN system is designed based on the algorithm presented in section 5. The
weighting on control efforts S is chosen to be 4×10−7. To evaluate the effects of
excitation frequency bandwidth (bandwidth of the Butterworth filter described in
section 5.1) on the optimal values of R and L, the contour of the function J for
different bandwidths (190, 560 and 640 Hz) are plotted in Figures 13 to 15. Figure
13 shows that there is only one global minimum for J when the excitation
frequency bandwidth is 190 Hz. When the bandwidth increases to 560 Hz, the
function J will have two local minima with the right one as the global minimum.
As the bandwidth increases to 640 Hz, the global minimum will jump from the
right to the left region. To explain the phenomenon of this jump, the active
authority index Y2 for bandwidths 190 and 640 Hz are shown in Figures 16 and
17. When the excitation bandwidth is narrow (190 Hz), the optimal R and L are
tuned to enhance the active authority around the first mode. Although the Y2 value
of the hybrid system is about 20 dB lower than that of the purely active system
for responses above 195 Hz, the system performance will not be affected. This is
because the response of the system at higher frequencies is very small when the
excitation bandwidth is low and narrow (190 Hz). However, when the excitation
frequency increases to 640 Hz, the large response at higher frequencies will affect
the objective function very significantly and the optimal R and L will jump to the
second mode region.

Figure 18 shows the minimum value of J versus excitation bandwidth for the
purely active and APPN cases. A different set of optimal APPN parameters is
designed for each given bandwidth. It is clear that the hybrid system outperforms
the purely active structure significantly when the bandwidth is low and narrow.
However, as the bandwidth increases, the APPN starts to approach the purely
active case. This shows that since a shunt is used to enhance the active action
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Figure 17. The active authority Y2 under excitation bandwidth 640 Hz: ——, purely active; – – –,
APPN.

Figure 18. Global minimum value of J versus excitation frequency bandwidth: ——, purely active;
– – –, APPN.

around a certain frequency, the results will become less effective when the number
of contributing modes greatly exceeds the number of actuators. Nevertheless,
the APPN will always outperform the purely active system, as illustrated in
Figure 18.
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7. CONCLUSIONS

This paper presents analysis results that provide understandings of the APPN
system. It is shown that the shunt circuit not only can provide passive damping,
they can also enhance the active action authority around the tuned frequency.
Therefore, the integrated APPN design is more effective than a system with
separated active and passive elements. Some of the phenomena predicted in this
open-loop analysis have also been observed experimentally [1, 10]. It is also clear
that the active authority will be degraded if the inductance is mistuned or if the
resistance is too high. Thus, a systematic design/control method is developed to
ensure that the passive and active actions are optimally synthesized. This paper
also addresses the effects of weighting and frequency bandwidth on the APPN
configuration. It is shown that the optimal resistance and inductance values for
the hybrid system could be quite different from that of the passive system,
especially when the demand on performance is high. It is concluded that the
difference between the APPN and purely active cases becomes smaller as the
excitation frequency bandwidth increases. One possible method to enhance the
system’s broadband performance is to increase the number of actuators. Another
approach is to integrate the APPN design with other broadband damping
elements, such as active constrained layer damping layers [11].
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APPENDIX A: OPTIMAL PASSIVE R AND L

For easy comparison with the active–passive hybrid system, instead of using the
classical procedure [7] to find the optimal passive resistance and inductance, a
different method is used. However, the concept and results are quite similar to
those proposed in reference [7].

The system equations can be expressed by the state space form

ẏ=A(R, L)y+B1f. (A1)

Here, the control action u� is not included since this system is a passive system. The
disturbance f can be modelled as the result of passing a Gaussian, white noise
process through a second order low pass Butterworth filter. The bandwidth of the
filter is defined to be the radian cut-off frequency at which the filter output has
a 3-dB attenuation of its value at zero frequency. The equations that describe such
a process are

ṡ=Afs� +Bfd� , f=Cfs� , (A2)

The inputs in d� are Gaussian and white. Here, the mean and spectral density of
d� is given by E[d� (t)]=0 and E[d� (t)d� T(t)]=D(t)d(t− t); E[ ] is the expectation
operator.

By defining an augmented state vector as x� =[y s� ]T, the overall system state
equations become

ẋ=$A0 B1Cf

Af %x� +$ 0
Bf%d� =Aax� +B1ad� . (A3)

The cost function is defined as

Jt =lim
t:a

E[x� TQex� ]. (A4)

Qe is a positive-semi-definite weighting matrix chosen to be
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Here, x� TQex� represents the overall structure energy. With a given set of passive
parameters (R and L), the cost function is

tr(B1aDBT
1aPl ). (A6)

The system response will consist of a state vector with zero mean and a variance
given by the solution (Pl ) to the Lyapunov equation

AT
a Pl +PlAa +Qe =0. (A7)

Utilizing a sequential quadratic programming algorithm [9], one can determine the
optimal passive R and L to minimize J .

APPENDIX B: NOMENCLATURE

A open-loop system matrix
Aa augmented system matrix
Ab cross-sectional area of beam
Ac cross-sectional area of PZT
Acl closed-loop system matrix
Af Butterworth filter system matrix
B1 excitation matrix of open-loop system
B1a excitation matrix of the augmented system
B2 control matrix of open-loop system
B2a control matrix of the augmented system
Bf Butterworth filter input matrix
bs width of beam and PZT
C1 output matrix of system A
Cf Butterworth filter output matrix
CD

11 elastic modulus of PZT with open circuit
cb uniform damping constant
Da electrical displacement of the upper PZT
Ds electrical displacement of the lower PZT
d� white noise
Eb elastic modulus of beam
Ev electrical field
E[ ] expected value operator
f(x, t) external loading function of the beam
f� disturbance input vector
hb distance from neutral axis of beam to outside surface of PZT
hs distance from neutral axis of beam to outside surface of PZT
h31 piezoelectric constant of PZT
Ib , Ic moment of inertia of beam and PZT
J objective function for overall system optimization
Je cost function for the stochastic regulator problem
Jc bs (h2

s − h2
b )/2

Kc control gains
L inductance of the PZTs
Lb length of the beam
Pl solution of the Lyapunov equation
Pr solution of the Riccati equation
Qa electrical charge of the upper PZT
Qs electrical charge of the lower PZT
Qe weighting matrix on states
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q generalized displacement vector
R resistance of the PZT
S weighting matrix on control input
t time
u� control input
Va external voltage of the PZT
Vc applied voltage
W output covariance matrix
w transverse displacement
x1 left end of the PZT
x2 right end of the PZT
x� state vector of augmented system Aa

y state vector of open loop system A
rb , rc density of beam and PZT
b33 dielectric constant of PZT
t mechanical stress
o mechanical strain
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