

FUNDAMENTAL FREQUENCY OF TRANSVERSE VIBRATION OF ORTHOTROPIC PLATES OF REGULAR POLYGONAL SHAPE CARRYING A CONCENTRATED MASS

P. A. A. LAURA AND R. H. GUTIERREZ

Institute of Applied Mechanics (CONICET) and Department of Engineering, Universidad Nacional del Sur 8000, Bahía Blanca, Argentina

(Received 17 September 1998)

1. INTRODUCTION

The present study deals with the solution of the title problem using a conformal mapping approach coupled with the optimized Rayleigh–Ritz method [1, 2]. By conformally transforming the given shape in the z-plane onto a unit circle in the ζ -plane it is possible to construct co-ordinate functions which satisfy the essential boundary conditions in the case of simply supported and clamped plates. For the sake of simplicity, the azimuthal variation in the ζ -plane is disregarded and the following co-ordinate functions are used.

(1) Simply supported plates:

$$W \simeq W_a = C_1(1-r^p) + C_a(1-r^{p+1}) + C_2(1-r^{p+2}), \qquad \zeta = r e^{i\theta}.$$
 (1)

(2) Clamped plates:

$$W \simeq W_a = C_1(1 - r^p)^2 + C_2(1 - r^{p+1})^2 + C_3(1 - r^{p+2})^2$$
 (2)

where p is Rayleigh's optimization parameter [2].

It should be pointed out that orthotropic plates are commonly used in engineering practice, e.g., printed circuit boards used in electronics applications.

2. APPROXIMATE SOLUTION

Following Lekhnitskii's standard notation [3] one expresses the governing functional in the form

$$J(W) = \iint_{p} (D_1 W_{x^2}^2 + 2D_1 v_2 W_{x^2} W_{y^2} + D_2 W_{y^2}^2 + 4D_k W_{xy}^2) dx dy - \rho h \omega^2$$

$$\iint W^2 \, \mathrm{d}x \, \mathrm{d}y - M\omega^2 W^2(0,0), \tag{3}$$

where it has been assumed that the concentrated mass M is rigidly attached at the center of the plate.

In the case of regular polygons of degree "s" the mapping function is given by [1]

$$z = A_s a_p F(\zeta) = A_S a_p \int_0^{\zeta} \frac{\mathrm{d}\zeta}{(1 + \zeta^s)^{2/s}},\tag{4}$$

where a_p is the apothem of the polygon.

Defining now

$$U_1 + V_1 i = \frac{1}{4} \frac{e^{-2\theta i}}{F'^2(\zeta)}, \qquad U_2 + V_2 i = \frac{1}{2} \frac{F''(\zeta)}{F'^3(\zeta)} e^{-\theta i}, \tag{5}$$

and substituting equations (4) and (5) into equation (3) one obtains the transformed energy functional in the form

$$\frac{A_{s}^{2}a_{p}^{2}}{D_{1}}J(W_{a}) = \iint_{c} \left\{ \left[2\left(\left(W_{a} - \frac{W_{ar}}{r} \right) U_{1} - W_{ar} U_{2} \right) + \frac{1}{2} \frac{W_{ar^{2}} + \frac{W_{ar}}{r}}{|F'(\zeta)|^{2}} \right]^{2} \right. \\
\left. - 8v_{2} \left[\left(W_{ar^{2}} - \frac{W_{ar}}{r} \right) U_{1} - W_{ar} U_{2} \right]^{2} + \frac{v_{2}}{2} \frac{\left(W_{ar^{2}} + \frac{W_{ar}}{r} \right)^{2}}{|F'(\zeta)|^{4}} \right. \\
+ \frac{D_{2}}{D_{1}} \left[-2\left(\left(W_{ar^{2}} - \frac{W_{ar}}{r} \right) U_{1} - W_{ar} U_{2} \right) + \frac{1}{2} \frac{W_{ar^{2}} + \frac{W_{ar}}{r}}{|F'(\zeta)|^{2}} \right]^{2} \right. \\
+ 16 \frac{D_{k}}{D_{1}} \left[\left(W_{ar^{2}} - \frac{W_{ar}}{r} \right) V_{1} - W_{ar} V_{2} \right]^{2} \left. \left| |F'(\zeta)|^{2} r \, dr \, d\theta \right. \\
- \frac{A_{s}^{2}}{16tg^{4} \frac{\pi}{c}} \Omega^{2} \left[A_{s}^{2} \iint_{c} W_{r}^{2} |F'(\zeta)|^{2} \, dr \, d\theta + \mu stg \frac{\pi}{s} W_{(0)}^{2} \right], \tag{6}$$

where the fact that W_a , defined in equations (1) and (2), does not contain the azimuthal variable θ has been taken into account, and $\mu = M/M_p$, $M_p =$ plate mass, $tg\pi/s = \tan \pi/s$, and $\Omega_1^2 = (\rho ha^4/D_1)\omega_1^2$.

3. NUMERICAL RESULTS

Tables 1 and 2 depict values of the fundamental frequency coefficient Ω_1 in the case of isotropic, simply supported and clamped plates, respectively. Reasonably

Figure 1. Orthotropic plate of regular polygonal shape carrying a central, concentrated mass, M.

good agreement with values available in the literature, for the case where $\mu=0$, is obtained. Pentagonal, exagonal and heptagonal plates are considered in the present investigation.

Table 1 Frequency coefficients of simply supported isotropic plates of regular polygonal shape (v=0.30)

S	$\mu = 0$	0.10	0.20	0.30	0.40	$\mu = 0 [4]$
5	11·00	9·28	8·14	7·33	6·72	11·01
6	6·96	5·90	5·19	4·68	4·30	7·15
7	4·97	4·22	3·72	3·35	3·08	5·06

Table 2
Frequency coefficients of clamped isotropic plates of regular polygonal shape

S	$\mu = 0$	0.10	0.20	0.30	0.40	$\mu = 0 [5]$
5	19.24	15.11	12.76	11.23	10.13	19.71
6	12.56	9.91	8.39	7.39	6.68	12.81
7	8.91	7.05	5.97	5.27	4.76	9.08

Table 3 Frequency coefficients of simply supported orthotropic plates of regular polygonal shape $(v_2 = 0.30)$

D_2/D_1	D_k/D_1	S	$\mu = 0$	0.10	0.20	0.30	0.40	$\mu = 0 \ [6]$
4	0.85	5	17.08	14.41	12.64	11.38	10.42	17.03
		6	10.73	9.10	8.01	7.23	6.63	11.70
		7	7.68	6.51	5.73	5.17	4.75	_
1	0.85	5	12.49	10.54	9.24	8.32	7.62	12.54
		6	7.78	6.60	5.81	5.24	4.81	8.48
		7	5.50	4.67	4.12	3.71	3.41	_
1	0.10	5	10.17	8.58	7.53	6.78	6.21	10.45
		6	6.50	5.51	4.85	4.37	4.01	7.16
		7	4.68	3.97	3.49	3.15	2.89	_
0.25	0.10	5	8.33	7.04	6.17	5.56	5.10	8.65
		6	5.35	4.54	3.99	3.60	3.30	5.94
		7	3.84	3.26	2.87	2.59	2.37	_

Tables 3 and 4 present values of Ω_1 for simply supported and clamped orthotropic plates. The following orthotropic parameters have been considered: $D_2/D_1 = 4$, $D_k/D_1 = 0.85$, $v_2 = 0.30$; $D_2/D_1 = 1$, $D_k/D_1 = 0.85$, $v_2 = 0.30$; $D_2/D_1 = 1$, $D_k/D_1 = 0.10$, $v_2 = 0.30$; $D_2/D_1 = 0.25$, $D_k/D_1 = 0.10$, $v_2 = 0.30$.

In the case of bare plates ($\mu = 0$) the eigenvalues have been compared with those determined in reference [6].

Table 4 Frequency coefficients of clamped orthotropic plates of regular polygonal shape $(v_2 = 0.30)$

D_2/D_1	D_k/D_1	S	$\mu = 0$	0.10	0.20	0.30	0.40	$\mu = 0 \ [6]$
4	0.85	5	29.77	23.37	19.73	17.36	15.67	30.46
		6	19.42	15.31	12.96	11.41	10.31	20.18
		7	13.79	10.90	9.23	8.14	7.36	14.82
1	0.85	5	21.69	17.02	14.36	12.63	11.40	22.09
		6	14.13	11.14	9.43	8.30	7.50	14.52
		7	9.99	7.90	6.69	5.90	5.33	10.62
1	0.10	5	17.90	14.06	11.88	10.45	9.44	18.66
		6	11.70	9.23	7.82	6.89	6.22	12.25
		7	8.32	6.58	5.58	4.92	4.45	9.05
0.25	0.10	5	14.71	11.56	9.77	8.59	7.76	15.38
		6	9.62	7.59	6.43	5.67	5.12	10.18
		7	6.83	5.41	4.58	4.04	3.65	7.41

Present results are, in general, somewhat lower. Possibly the values determined in reference [6] are rather high upper bounds since a single approximating function was used.

ACKNOWLEDGMENTS

The present study has been sponsored by CONICET Research and Development Program, Secretaría General de Ciencia y Tecnologia of Universidad Nacional del Sur and Comisión de Investigaciones Científicas (Buenos Aires Province).

REFERENCES

- 1. R. Schinzinger and P. A. A. Laura 1991 Conformal Mapping: Methods and Applications. Elsevier: Amsterdam.
- 2. P. A. A. Laura 1995 *Ocean Engineering* 22, 235–250. Optimization of variational methods.
- 3. S. G. LEKHNITSKII 1968 *Anisotropic Plates*. New York: Gordon and Breach Science Publishers.
- 4. P. A. Shahady, R. Passarelli and P. A. A. Laura 1967 *Journal of the Acoustical Society of America* **42**, 806–809. Application of complex variable theory to the determination of the fundamental frequency of vibrating plates.
- 5. P. A. A. LAURA and R. H. GUTIERREZ 1976 *Journal of Sound and Vibration* **48**, 327–332. Fundamental frequency of vibration of clamped plates of arbitrary shape subjected to a hydrostatic state of in-plane stress.
- 6. P. A. A. LAURA, L. E. LUISONI and G. SÁNCHEZ SARMIENTO 1980 *Journal of Sound and Vibration* 70, 77–84. A method for the determination of the fundamental frequency of orthotropic plates of polygonal boundary shape.