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This paper presents numerical results for the power output of a sound source
in the vicinity of an elastic structure. The source is a monopole characterized by
a constant rate of volume injection. The structure is a thin elastic plate of infinite
extent. The coupling of the plate’s flexural motion and the acoustic field is taken
into account. The acoustic energy emitted by the source is carried away to infinity
by acoustic radiation as well as by flexural waves that travel along the plate,
accompanied by a coupled, subsonic surface wave in the fluid. For the case of steel
plates in water, numerical results have been obtained for the total power delivered
by the source as well as for the various power flows involved. The dependence of
these results upon two parameters is investigated by extensive numerical
calculations. These parameters are: (i) the diffraction or Helmholtz number k0d,
where k0 is the fluid wavenumber and d is the distance from the source to the plate,
and (ii) the ratio of the plate thickness h and d. The power output of the source
depends strongly upon the region of interest in this two-parameter space. For
k0de 1 the total power output approaches the free field value, but also shows the
typical modulation due to the finite distance to the plate. For h/de 0·1 this
modulation effect is comparable to that for an infinite rigid wall, while for
h/dE 0·01 it resembles the effect for a free surface. For k0dQ 1 and h/dE k0d/20
the results do not vary with h/d, but the effect of the plate is very close to that
for a perfectly compliant surface. In a third regime, i.e., for 0·1e h/de k0d/10,
the efficiency of the source is independent of k0h, but increases strongly with
decreasing k0d2/h.
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1. INTRODUCTION

This paper presents numerical results for the power output of a monopole sound
source in the vicinity of a water-loaded plate. The source is characterized by a
constant source strength: i.e., its volume velocity is not affected by the type of
geometry of the surrounding space or the acoustic properties of the ambient
medium. A typical example of such a source is a cavitating ship propeller beneath
the aft body of a ship; see e.g., reference [1]. For flat bottom ships like roll-on
roll-off container carriers sailing at moderate or high speed—i.e., above the
cavitation inception velocity—cavitation volumes of about 1 m3 have been
observed, cf. reference [2], at the suction side of the blades (sheet cavitation) of

0022–460X/99/120251+22 $30.00/0 7 1999 Academic Press



. 252

a 6·8 m diameter propeller. This type of cavitation appears on the blades upon
entrance of the upper part of the propeller disk and disappears after about a
quarter revolution. This phenomenon is hydrodynamically controlled and its
acoustical source characteristics (i.e., the rate of volume injection) are not sensitive
to variations in the acoustic impedance of the surrounding space.

The acoustical source strength of a cavitating propeller can be determined
theoretically: i.e., by numerical prediction of the flow around the propeller, see e.g.,
reference [3], or experimentally by means of a reciprocity experiment as described
by Ten Wolde and De Bruijn [4].

The importance of considering such a source with an elastic structure in its
near field lies in the observation that a cavitating propeller is a severe source of
sound on board ships. Although other sources like vibrating machinery and
main or auxiliary engines can produce considerable noise and vibration levels,
their effectiveness in transfer of vibrational energy to the ship’s structure has
been largely reduced by successful application of resilient mounting systems.
Besides, additional measures like the application of sound absorbing material
and the construction of floating floors are important for high frequency
noise control, but usually fail at low frequencies. Therefore, cavitation noise is
still the dominating source of low frequency noise and vibration levels on board
ships.

In this paper the various power flows from the source to infinity are investigated
for the model problem of a point monopole source at a finite distance from a
fluid-loaded plate. Among the extensive literature on fluid-loaded plates, most
papers are concerned with the scattering of plane waves by the plate or with the
vibration and radiation phenomena of a mechanically driven plate, while relatively
few papers deal with the case of a plate irradiated by a point source. Among the
latter Krasil’nikov [5] investigated the structure of the far field in the fluid and of
the surface wave and its associated plate wave. His analysis, however, is restricted
to the low frequency range. Dealing with both classical plate theory as well as thick
(Timoshenko–Mindlin) plate theory and assuming that the same fluid is present
on both sides of the plate Schmidt [6] studied the power flows from the source to
infinity. Schmidt also presented numerical results for wooden and steel plates in
air for a wide range of frequencies. His results, however, remain incomplete since
he gave no results for steel plates in water, which is a case of considerable practical
importance. Moreover, his results are restricted to the case where the point source
is located at zero distance from the plate. Finally, Saadat and Filippi [7], using
a modified inverse Fourier–Hankel transform representation, derived a series
expansion for the far field of both the acoustic pressure and the plate displacement
and also presented expressions for the power flows. However, no numerical results
were included.

Heckl, in a more qualitative but illuminating study [8] analyzed the excitation
of structure-borne sound in simple structures (like membranes, plates and
cylindrical shells) placed in the near field of localized hydro-acoustic sources.
Although his analysis is restricted to the transmission of energy from the source
to the structure, Heckl has provided an important physical explanation for the
phenomenon that the structural sound energy can be considerably higher than the
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energy radiated by the source under free field conditions. Following remarks by
Rayleigh [9], he argued that part of the reactive power in the hydrodynamic near
field of the source can be transformed to an active power flow by the action of
a resonator or a wave-bearing object.

More recently, for steel plates in water, numerical results for the surface
pressure and the plate response directly below the source were obtained by
Van Gent et al. [10] and by De Bruijn [11, 12]. A comparison with some
experimental results was also given by De Bruijn. Most of the results of Van
Gent et al., however, were restricted to a few, very low frequencies and three
values for the plate’s thickness (0·02Q k0dQ 0·189 and 0·01Q h/dQ 0·133).
Their most intriguing result is the ratio of the total pressure to the pressure
induced by a rigid wall at the epicenter, i.e., the position on the plate directly
below the source, and shows a pressure drop for frequencies in the range
10–100 Hz. De Bruijn presented values for the ratio of the total pressure to the
incident pressure at the epicentre for a wider frequency range, 10–500 Hz, but
did not vary the plate’s thickness. His results include the pressure drop, but also
indicate that, for very low frequencies, the pressure rises to values well above the
free field reference value. His conclusion that sources may behave quite differently
(compared to the free field case) if an elastic structure is placed in its near field,
is certainly correct. However, it lacks quantitative information about the
conditions on the parameters of interest which this occurs. These authors have
raised the question whether the plate behaves like a free surface rather than like
a rigid plane. A comparison with the free surface behaviour has not been made,
however, since that would require a comparison of the surface velocity instead of
the surface pressure. Moreover, this comparison should not be restricted to the
epicentre, but should involve an area of several acoustic wavelengths. Since
the parameter plane was covered only partly—dimensionless parameters were not
used—it is instructive to see where the behaviour of the plate changes from that
of a free surface to that of a perfectly rigid wall. Additionally, rather than studying
field quantities (surface pressure and plate velocity) the present work is
concentrated on the power flows.

The aim of this paper is to clarify the influence of the distance from the source
to the plate on the various power flows involved in the fluid-plate system and on
the power output of the source. This is done by presenting numerical results for
a wide frequency range. All numerical results are obtained for steel plates in water,
but cover the full two-dimensional parameter space 0·001E h/dE 1·0 and
0·01E k0dE 10·0, where h is the plate thickness, d is the distance from the source
to the plate and k0 is the wavenumber in the fluid. A physical interpretation is
sought by comparing the results to those for a point source in the vicinity of a
rigid wall and a free surface.

The paper is organized as follows. In the next section a useful formula is recalled
for the power output of a point source in the vicinity of a scattering object. In
section 3, the theory is presented and the formulas for the various power flows
are derived. Section 4 presents the numerical results and concludes with a
discussion of the characteristic features of the solution in the various parts of the
parameter space.
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2. POWER OUTPUT OF A MONOPOLE SOURCE IN THE VICINITY OF
A SCATTERER

In this section a general formula is presented for the power output of a
monopole sound source in the vicinity of a scattering object. This formula is due
to Schmidt [6] and was derived along classical lines. Despite its simplicity and
generality, the formula has not been included as yet in any textbook or reference
work on acoustics. Therefore, a short discussion of this formula is given below.
For later use and reference it will be applied to the special case of a monopole
above a plane, infinite boundary of either zero or infinite normal impedance.

Consider a point monopole of strength qs , located at position x� s , radiating
sound waves into the domain DWR3 at constant circular frequency v. The
acoustic pressure p(x� ) satisfies the Helmholtz equation

{D+ k2
0}p(x� )=−qs d(x� − x� s ), x� $D, (1)

where k0 =v/c0 is the acoustic wavenumber and c0 is the speed of sound. The
complex time-harmonic dependence exp(−ivt) is suppressed throughout.

The geometry of the scattering object is described by its boundary G. The
boundary condition for p can be written in the general form

ap+ b
1p
1n

=0, x� $G, (2)

where n� is the unit normal on G pointing away from the scattering object, and
1/1n0 n� · 9. For sound absorbing scatterers, a and b satisfy the condition
Im (b/a)Q 0. Equation (2) describes a locally reacting surface by specifying its
normal impedance in terms of a and b, which may vary along G. For a rigid
scatterer a=0 and b=1, while for a perfectly compliant or sound soft object
a=1 and b=0.

If D is unbounded, the Sommerfeld radiation condition should be fulfilled, i.e.,

lim
s:a

s61p
1s

−ik0p(x� )7=0, s= =x� =. (3)

For the present purpose it suffices to write the pressure in the form

p(x� )= pinc (x� )+ pscat (x� ), x� $D, (4)

where pinc is the incident pressure radiated by the source if it were placed in free
space, and is given by

pinc (x� )= qs
exp(ik0R)

4pR
, R= =x� − x� s =, (5)

while pscat represents the pressure due to the presence of the scatterer.
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The power output by the source can be evaluated by integrating the power
flow through a closed surface S containing the source, namely,

P=g gS

n� · I� dS, (6)

where n� is the outward unit normal on S and I� is the acoustic intensity vector
defined by I� = 1

2Re [pv� *], while v� is the acoustic velocity perturbation and the
asterisk * denotes complex conjugation. If S is a sphere of radius e and center x� s ,
expression (6) becomes

P=
1
2

Re $g
2p

0

df g
p

0

e2 sin u dup(x� )6 1
r0iv

1p
1R7*%, (7)

where p is evaluated at R= e. The linearized momentum equation, i.e.,
v� =(r0iv)−19p has been used to relate the radial component of v� to 1p/1R. In this
expression r0 is the volume density of mass of the fluid. Spherical co-ordinates
around x� s have been introduced: R is the radius, u is the polar angle and f is the
azimuthal angle. Substitution of equation (4) leads to an expression for P that
consists of four additive terms. It can be shown that for e:0 only two terms do
not vanish. The first term, which is equal to expression (7) except that p is replaced
by pinc , represents the power output of the source in free space. Taking the limit
for e:0 yields

Pa =
1
8p

=qs =2
r0c0

. (8)

Upon noting that pscat is finite and sufficiently smooth at x� s , the second
non-vanishing term follows. The result is

lim
e:0

1
2

Re $g
2p

0

df g
p

0

e2 sin u dupscat (x� )6 1
r0iv

1pinc

1R 7*%
=lim

e:0

1
2

Re $g
2p

0

df g
p

0

sin u due2pscat (x� )6 qs

r0iv 0ik0 −
1
e1 exp(ik0e)

4pe 7*%
=

1
2r0v

Re [−iq*s pscat (x� s )].

Without loss of generality it is assumed that qs is real and the total power takes
the form

P=Pa +
qs

2r0v
Im [pscat (x� s )]. (9)

In order to illustrate the use of formula (9) one can consider the case of a point
source at distance d above a plane boundary of infinite extent. The normal
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impedance is taken infinite or zero, respectively. The method of images gives the
scattered field, i.e.,

pscat (x� )=2qs
exp(ik0R')

4pR'
, R'= =x� − x� s'=, (10)

where x� s' is the position of the image source (at distance d below the plane
boundary), while the 2 signs correspond to the perfectly rigid plane and the
perfectly compliant surface, respectively. Inserting this expression into equation (9)
and using that =x� s − x� s'==2d one arrives at the well-known formula, cf. reference
[13],

P=Pa$12
sin (2k0d)

2k0d %. (11)

It is noted, however, that this formula was obtained in reference [13] by integrating
the directivity of the combined ‘‘source–image source’’ configuration over a
hemisphere at infinity.

It is noted that the formula for the power emitted by the source applies equally
well to a more general class of scattering objects than those described by equation
(2), which describes a locally reacting surface scatterer in terms of its normal
impedance. Formula (9) is also valid for volume scatterers consisting of
acoustically passive or lossy material. Such scatterers typically show a non-local
reaction to an incident wave. In this paper the formula is applied to the case of
a thin, elastic plate which is neither a locally reacting surface nor a volume
scatterer, but a wave-bearing surface. However, as stated by Schmidt [6] and as
is evident from its derivation, the only restriction on the type of scatterer is that
pscat is finite and sufficiently smooth at x� s .

3. THEORY

3.1.  

Consider a perfect acoustic fluid, characterized by its density of mass r0 and
speed of sound c0. The fluid occupies the halfspace zq 0. A point monopole source
is located on the z-axis at distance d above the plane z=0, where a thin, elastic
plate of infinite extent is in continuous contact with the fluid. See Figure 1. The
acoustic pressure p(x� ) satisfies the Helmholtz equation

{D+ k2
0}p(x� )=−qs d(x� − x� s ), zq 0, (12)

the Neumann condition derived from the continuity of plate and fluid velocities
at the plate’s surface

1p
1z

= r0ivv(x, y), −aQ x, yQa, z=0, (13)



x

d

z

y

h

Fluid

Vacuum

  -  257

Figure 1. Sketch of problem configuration.

and the Sommerfeld radiation condition (3). According to classical plate theory
the out-of-plane flexural vibrations of the plate are governed by

DDDu−mv2u(x, y)=−p(x, y, 0), −aQ x, yQa, (14)

where the right-hand-side represents the acoustic pressure that drives the plate and
also accounts for the fluid-loading. In equation (14), D=Eh3/12(1− n2) is the
bending stiffness, m= rph is the mass per unit area of the plate, E is Young’s
modulus, n is Poisson’s ratio, rp is the volume density of mass of the plate and
h is the plate thickness. For time-harmonic motions the plate displacement u is
related to the plate velocity v by u= v/−iv. At infinity, i.e., for
r=(x2 + y2)1/2:a, a radiation condition and a boundedness condition are
required to ensure a unique and physically meaningful solution for u.

3.2.   –  

Since the configuration shows rotational symmetry around the z-axis the
solution will be axisymmetric. Fourier–Hankel integral transformations are used
because they are particularly suitable to cope with this type of symmetry.

As a preparatory step the pressure p(x� ) is decomposed into three parts as
follows:

p(x� )= pinc (x� )+ pspec (x� )+ pdiff (x� ). (15)

Here pinc + pspec is the solution of the non-homogeneous Helmholtz equation (12)
subject to a homogeneous Neumann condition at z=0, while pdiff satisfies the
homogeneous Helmholtz equation subject to the non-homogeneous Neumann
condition (13). pinc is the incident pressure field radiated by the source in free space
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and pspec is the specularly reflected part of the pressure which would be present if
the plate would be perfectly rigid. pinc and pspec are given by

pinc (x� )= qs
exp(ik0R+)

4pR+
, R+=zr2 + (z− d)2, (16)

pspec (x� )= qs
exp(ik0R−)

4pR−
, R−=zr2 + (z+ d)2. (17)

Since the plate is neither rigid nor perfectly compliant pdiff represents the pressure
field radiated by the vibrations of the plate.

Fourier–Hankel transform pairs are introduced by

ṽ(k)=2p g
a

0

v(r)J0(kr)r dr, (18)

v(r)=
1
2p gC+

ṽ(k)J0(kr)k dk=
1
4p gC

ṽ(k)H(1)
0 (kr)k dk, (19)

where the contour C runs along the real axis in the complex k-plane. Poles located
on this contour are accounted for by taking the Cauchy principal value of the
integral, while the radiation condition implies that integration along the associated
semi-circular paths around these poles must be taken in clockwise direction for
poles on the negative real axis and in counterclockwise direction for poles on the
positive real axis. The contour C+ is that part of C that runs along the positive
real axis from 0 to a. Taking the transforms of equations (15), (12), (13) and (14)
and using ũ= ṽ/−iv yields

p̃(k; z)= p̃inc (k; z)+ p̃spec (k; z)+ p̃diff (k; z), (20)

6 d2

dz2 + (k2
0 − k2)7p̃diff (k; z)=0, (21)

dp̃diff

dz
(k; 0)= r0ivṽ(k), (22)

Zp (k)ṽ(k)=−p̃(k; 0), Zp (k)=
1

−iv
(Dk4 −mv2). (23)

The solution of equations (21) and (22) that represents either outward travelling
waves or an exponentially decaying wavefield for z:a—and thus meets the
Sommerfeld radiation condition—is

p̃diff (k; z)=Za (k)ṽ(k) exp(ikzz), Za (k)= r0v/kz , (24)

where the branch of the two-valued function kz =(k2
0 − k2)1/2 is chosen such that

for real values of k

kz =6 =k2
0 − k2=1/2

i=k2 − k2
0 =1/2

for
for

−k0 Q kQ k0;
=k=q k0.

(25)
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Finally, the transforms of equations (16) and (17) can be found by recalling that
these expressions are the solution of the Helmholtz equation (1) in free space with
a point monopole source at x� s =(0, 0, 2d), respectively. Taking the Fourier–Han-
kel transform of equation (1) and solving the transformed problem for the two
source positions gives (details are given in the Appendix)

p̃inc (k; z)=−qs
exp[ikz =z− d=]

2ikz
, zq 0, (26)

p̃spec (k; z)=−qs
exp[ikz (z+ d)]

2ikz
, zq 0. (27)

Solving equations (20), (23), (24), (26) and (27) for ṽ(k) and p̃diff (k; z) yields

ṽ(k)= qs
exp(ikzd)/ikz

Zp (k)+Za (k)
, (28)

p̃diff (k; z)= qs
Za (k)

Zp (k)+Za (k)
exp[ikz (d+ z)]

ikz
. (29)

Inserting these expressions into the second form of the inverse transformation (19)
gives the integral representations for v(r) and pdiff (r, z):

v(r)=
qs

4p gC

exp(ikzd)/ikz

Zp (k)+Za (k)
H(1)

0 (kr)k dk, (30)

pdiff (r, z)=
qs

4p gC

Za (k)
Zp (k)+Za (k)

exp[ikz (d+ z)]
ikz

H(1)
0 (kr)k dk. (31)

The total acoustic pressure p(r, z) can be found by inserting expressions (16), (17)
and (31) into formula (15).

In order to make the integral representations (30) and (31) suitable for numerical
evaluation, the integrals are rewritten by means of the residue theorem. This
procedure has been described elsewhere [14] for the line-driven plate (2D case). In
the 3D case, however, the resulting expressions are singular for r=0. This
singularity can be avoided if one adopts an alternative choice for the
representation of the pressure as given by Filippi [15]. For the present purpose,
however, i.e., for the calculation of the imaginary part of the scattered pressure
at the position of the source, it suffices to turn to the first form for the inverse
transformation (19) and to evaluate this integral directly. This is done in the next
section.

3.3.     

In order to apply formula (9) the scattered pressure at the position of the source,
i.e., pscat (x� s ), is evaluated as follows. First, it is noted that

pscat (x� )= pspec (x� )+ pdiff (x� ), (32)



Im(k)

–k0 k1

k0 C+ Re(k)
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while

pspec (x� s )= qs
exp(2ik0d)

8pd
. (33)

Inserting expression (29) into the first form of the inverse transformation (19) and
specifying for r=0 and z= d gives

pdiff (x� s )=
qs

2p gC+

Za (k)
Zp (k)+Za (k)

exp(2ikzd)
ikz

k dk. (34)

Since k0 is a branch point of kz , the range of integration splits up naturally into
two parts separated by k0. Furthermore, it has been shown [16] that the
denominator of the transform, i.e., Zp (k)+Za (k), has one real-valued, positive
zero. This pole corresponds to an unattenuated, outgoing surface wave in the fluid
and is coupled to a plate bending wave travelling along the plate towards infinity
at subsonic speed. The pole is denoted by k1 (k1 qmax {k0, kp} always holds;
kp =(mv2/D)1/4, see below) and is located on the contour of integration.
Consequently, the Cauchy principal value of the integral must be taken while an
additional residue contribution accounts for the presence of the pole. The contour
of integration C+ and the singularities of the integrand in the complex plane are
shown in Figure 2. By writing down the various expressions it is easy to show that
the residue contribution to pdiff (x� s ) is purely imaginary, while the principal value
integral over k0 Q kQa is purely real. The integral over the finite range
0Q kQ k0 is complex. This fits perfectly into the physical picture, since the pole
corresponds to an outward travelling wave that carries energy away from the

Figure 2. Contour of integration C+, real-valued pole k1 and branch points 2k0 in the complex
k-plane.
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source, while plate waves with subsonic wavenumbers cannot radiate effectively
sound energy. The expression for pdiff (x� s ) is

pdiff (x� s )=
i
2

qsr0

m
k�1

4k�3
1 + (o/M)k�1(k�2

1 −M2)−3/2

exp[−2kpd(k�2
1 −M2)1/2]

(k�2
1 −M2)

−
1
2p

qsr0

m g
M

0

exp[2ikpd(M2 − p2)1/2]
(p4 −1)(M2 − p2)1/2 − io/M

p dp
(M2 − p2)1/2

+
1
2p

qsr0

m
PV g

a

M

exp[−2kpd(q2 −M2)1/2]
(q4 −1)(q2 −M2)1/2 − o/M

q dq
(q2 −M2)1/2. (35)

In expression (35) all wavenumbers are normalized with respect to kp , i.e.,
k�1 = k1/kp , p, q= k/kp while the non-dimensional parameters o and M are defined
by

o= r0c0/mvc , M= k0/kp =(v/vc )1/2. (36)

Here kp =(mv2/D)1/4 is the plate bending wavenumber and vc = c2
0 (m/D)1/2 is the

coincidence frequency. From equations (32), (33) and (35) the power delivered by
the source can be found by using formula (9). The result is

P� =P/Pa =1+
sin (2k0d)

2k0d

+
2po

M2

k�1

4k�3
1 + (o/M)k�1(k�2

1 −M2)−3/2

exp[−2kpd(k�2
1 −M2)1/2]

(k�2
1 −M2)

−
2o

M2 g
1

0

[M4(1− t2)2 −1]t sin (2k0 dt)+ (o/M2) cos (2k0 dt)
[M4(1− t2)2 −1]2t2 + o2/M4 dt. (37)

It is noted that in order to simplify the integral the (dummy) integration variable
has been changed from p to t by means of the successive transformations
p=M cos u and sin u= t.

3.4.      

The acoustic energy emitted by the source is carried towards infinity by acoustic
waves in the fluid and flexural waves in the plate. In this section the various power
flows involved are evaluated directly from the far field expressions for the
corresponding wavefields.

3.4.1. Radiated acoustic power

Upon introducing spherical co-ordinates (s, u) by r= s sin u, z= s cos u, the far
field expression for the acoustic pressure becomes

p(s, u)0 exp(ik0s)
s

D(u), 0E uE p/2, s:a, (38)



. 262

where D(u) is the directivity function given by

D(u)=
qs

4p
2 cos (k0d cos u)−

r0iv
2p

ṽ(k0 sin u) (39)

and ṽ(k) is given by equation (28). The first term in the formula for the directivity
function follows straightforwardly from the incident and specularly reflected
pressure fields, cf. reference [13]. The second term stems from the well-known
relation between the directivity and the Fourier–Hankel transform of a plane
velocity distribution; cf. reference [17]. Upon noting that kz (k0 sin u)= k0 cos u the
directivity function reduces to

D(u)
qs /2p

=cos (k0d cos u)+ i
o

M2

exp(ik0d cos u)
(M4 sin4 u−1) cos u−io/M2. (40)

The power radiated into the halfspace zq 0 can be found by integrating the far
field acoustic intensity over a hemisphere at infinity, i.e.,

Prad =lim
s:a

1
2

Re $g
2p

0

df g
p/2

0

s2 sin u dup(s, u)6 1
r0iv

1p
1s7

*

%
=

p

r0c0 g
p/2

0

D(u)D*(u) sin u du.

Inserting the expression for D(u) from (40), integrating the first term analytically
and rewriting the integral by replacing the (dummy) integration variable u by t
according to cos u= t yields the following expression for the radiated acoustic
power:

P� rad =Prad /Pa =1+
sin (2k0d)

2k0d

−
2o

M2 g
1

0

[M4(1− t2)2 −1]t sin (2k0 dt)+ (o/M2) cos (2k0 dt)
[M4(1− t2)2 −1]2t2 + o2/M4 dt. (41)

3.4.2. Power flows along the plate: plate wave and surface wave

In the previous section it was remarked that the pole k1 is associated to a surface
wave in the fluid that travels along the plate at subsonic speed accompanied by
a flexural wave on the plate. The corresponding expressions for the acoustic
pressure and the plate velocity can be obtained from equations (31) and (30) by
closing the contour C by a semicircle at infinity in the upper halfplane and applying
the residue theorem. The residue contribution of the pole k1 gives the surface wave
and its coupled counterpart on the plate. The other complex-valued pole(s) and
the remaining integral along the branch cut of kz do not contribute to this
unattenuated wave, but to acoustic radiation as well as non-propagating near field
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components. By turning to cylindrical co-ordinates (r, f, z) the coupled field of
the plate wave and surface wave can be represented in the form

v(r)0 vaH(1)
0 (k1r), r:a (42)

p(r, z)0 paH(1)
0 (k1r) exp[−(k2

1 − k2
0 )1/2z], r:a, (43)

where pa and va are given by

va =−
1
2

qskp

mv

k�1

4k�3
1 + (o/M)k�1(k�2

1 −M2)−3/2

exp[−kpd(k�2
1 −M2)1/2]

(k�2
1 −M2)1/2 , (44)

pa =
i
2

qsr0

m
k�1

4k�3
1 + (o/M)k�1(k�2

1 −M2)−3/2

exp[−kpd(k�2
1 −M2)1/2]

(k�2
1 −M2)

, (45)

It is noted that these expressions satisfy the condition (13) since

pa/va =Za (k1)=−r0iv/(k2
1 − k2

0 )1/2.

The energy that is carried away by the surface wave in the fluid can be found by
integrating the acoustic intensity over a cylindrical surface at infinity, i.e.,

Psw.fl =lim
r:a

1
2

Re $g
2p

0

r df g
a

0

dzp(r, z)6 1
r0iv

1p
1r7*%.

Upon inserting for p from expression (43) this becomes

Psw.fl =(pap*a/r0v)/(k2
1 − k2

0 )1/2,

where the following properties of Hankel functions have been used:

d
dr

H(1)
0 (k1r)=−k1H(1)

1 (k1r),

H(1)
n (k1r)00 2

pk1r1
1/2

exp$i0k1r−
np

2
−

p

41%, r:a.

Inserting for pa from equation (45) yields the expression for the power flow in the
surface wave:

P� sw.fl =Psw.fl /Pa =
2po2

M3

k�2
1

{4k�3
1 + (o/M)k�1(k�2

1 −M2)−3/2}2

exp[−2kpd(k�2
1 −M2)1/2]

(k�2
1 −M2)5/2 .

(46)

The elastic energy that propagates through the plate is found by integrating the
elastic energy flux density, cf. reference [5], along a circle at infinity, i.e.,

Psw.pl =lim
r:a

1
2

Re $g
2p

0

r df
D

−iv 6 1

1r
(Dv)v*− (Dv)

1v*
1r 7%.
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Upon using that DH(1)
0 (k1r)=−k2

1H(1)
0 (k1r), as well as the properties of Hankel

functions mentioned above, it follows that

Psw.pl =4(Dk2
1 /v)vav*a.

Inserting for va from equation (44) gives the result:

P� sw.pl =Psw.pl /Pa =
8po

M2

k�4
1

{4k�3
1 + (o/M)k�1(k�2

1 −M2)−3/2}2

exp[−2kpd(k�2
1 −M2)1/2]

(k�2
1 −M2)

.

(47)

It is noted that the suffix sw.pl in expression (47) indicates that the plate wave is
intimately coupled to the surface wave in the fluid. Actually, both waves cannot
exist without supporting each other. The total energy that propagates along the
plate to infinity (both in the fluid and in the plate) is

P� sw =P� sw.fl +P� sw.pl =
2po

M2

k�1

4k�3
1 + (o/M)k�1(k�2

1 −M2)−3/2

exp[−2kpd(k�2
1 −M2)1/2]

(k�2
1 −M2)

.

(48)

It is easily verified that the following energy balance holds:

P� =P� rad +P� sw.fl +P� sw.pl . (49)

This relation states that all energy emitted by the source is carried to infinity by
the various wave mechanisms of the fluid/plate system.

It is interesting to consider the low frequency limit of the ratio of the power flows
in the plate and in the surface wave in the fluid, i.e.

P� sw.fl

P� sw.pl
=

1
4

o

M
1

k�2
1(k�2

1 −M2)3/2. (50)

At low frequencies the following asymptotic relations hold:

k= k1�k0, so k�1�M, (51)

k= k1�kp , so k�1�1. (52)

Consequently, the dispersion relation Zp (k1)+Za (k1)=0 reduces to

Dk4
1

−iv
+

r0v

ik1
=0, so k�5

1 =
o

M
. (53)

Using inequality (51) and subsequently inserting for k�1 from equation (53) yields

P� sw.fl

P� sw.pl
0 1

4
. (54)

This result is due to Krasil’nikov [5] and is fully confirmed by the numerical results
presented in the next section.

4. NUMERICAL RESULTS AND DISCUSSION

All numerical results that are presented here were obtained for the case of steel
plates in water. This choice determines the value of o which was taken o=0·132.
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The other non-dimensional parameters that appear in the expressions for the
various power flows are M, k0d and kpd, all being frequency dependent. However,
only two parameters can be chosen independently, since M= k0d/kpd. In addition,
it is advantageous to have only one frequency parameter. Therefore, a different
combination of parameters is chosen in this paper, namely k0d and h/d. The
Helmholtz number k0d is the frequency parameter containing the frequency of the
incident wave as well as the distance d, while h/d is a geometrical parameter
containing the plate thickness h. It is noted that

h
d
=

vch
c0

M2

k0d
, (55)

where vch/c0 = o−1r0/rp =0·966 for steel plates in water. Except for the special
case d=0 the various power flows vary with both k0d and h/d and the aim of this
section is to investigate these variations, i.e., the dependencies of the power flows
upon k0d and h/d, by presenting numerical results for a wide range of values in
this two-dimensional parameter space.

For the case of a point source placed directly on the plate, i.e., d=0, the results
depend on one parameter only, but neither k0d nor h/d is a suitable choice for this
case. A convenient choice for the frequency parameter is M as given by equation
(36). Inserting d=0 in expressions (37), (41), (46) and (47) gives the various power
flows for this case. The results are presented in Figure 3. At low frequencies
(M�1) all energy emitted by the source is transmitted to infinity by the surface
wave and its plate companion, while at higher frequencies radiation becomes more
important. Actually, for frequencies well above coincidence (M�1) radiation
becomes the dominating mechanism of power transmission to infinity. These
qualitative features are characteristic for fluid-loading and may be summarized as
follows: P�:P� sw and P� rad:0 for M:0, while P�:P� rad and P� sw:0 for M:a.

Figure 3. Normalized power flows for monopole sound source on fluid-loaded plate (d=0) versus
frequency parameter M. Solid line, total power output P� ; dotted line, radiated power P� rad ; dash-dot
line, power flow in surface wave P� sw.fl ; dashed line, power flow through plate P� sw.pl .
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Moreover, P�:2 for M:a, which is the value for a point source on a rigid wall,
according to formula (11). This means that the plate is not excited at high
frequencies and thus behaves like a rigid wall. At low frequencies, however, the
plate is excited considerably and P� becomes unbounded, while the radiated power
P� rad goes to zero as in the case of a free surface. This comparison is not
unreasonable because the plate is highly compliant to the incident pressure at low
frequencies.

In the neighbourhood of coincidence, i.e., for M1 1, a dip appears in the
radiated power, while the power flow in the surface wave shows a peak here and
the power flow through the plate drops to zero rapidly. This behaviour is typical
for frequencies in the coincidence range and also shows up in the case of a
fluid-loaded plate excited by a localized mechanical forcing like a point force, a
line force or a line moment. Although there is a considerable redistribution of
energy among the three transmission paths, which involves about 30% of the total
energy, it is noted that the total power output changes only gradually and is not
affected on passage through coincidence.

For the case of a point source at finite, non-zero distance from the plate (d$ 0)
numerical results for the various power flows were obtained for parameter values
ranging from 0·001E h/dE 1·0 and 10−2 E k0dE 10. In Figures 4–7 the power
flows are presented as a function of the frequency parameter k0d for h/d=1·0, 0·1,
0·01 and 0·001, respectively. For comparison and easy reference the radiated
power for the case of a point source at distance d below a pressure release surface
has been included as well. It is observed that the results show the typical structure
which is characteristic for fluid-loading: at low frequencies, i.e., for k0d�1, all
energy emitted by the source is transferred to the plate wave and its subsonic
surface wave comparison in the fluid, while at high frequencies (k0d�1) acoustic

Figure 4. Normalized power flows for monopole sound source near fluid-loaded plate (h/d=1·0)
versus frequency parameter k0d. Solid line, total power output P� ; dotted line, radiated power P� rad ;
dash-dot line, power flow in surface wave P� sw.fl ; dashed line, power flow through plate P� sw.pl ; doubly
dashed line, power output of source at distance d below free surface.
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Figure 5. As Figure 4 but for h/d=0·1.

radiation dominates the transmission of energy from the source to infinity. It is
also observed that in some intermediate region P� sw balances P� rad . However, the
break-even point depends on the value of h/d and runs from k0d1 0·017 for
h/d=0·001 to k0d1 0·25 for h/d=0·1 and back to k0d1 0·11 for h/d=1·0.
Moreover, the power output by the source attains its minimum for values of k0d
close to this break-even point. Detailed numerical results for the total power
output of the source as a function of both k0d and h/d are presented at the end
of this section. For k0d�1 the radiated power P� rad approaches the freefield value,
which is 1, but also shows the typical modulation effect due to the finite distance
from the source to the plate. For h/d=1·0 and 0·1 this modulation is comparable
to that for a perfectly rigid wall, while for h/d=0·01 and 0·001 the modulation

Figure 6. As Figure 4 but for h/d=0·01.
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effect is close to that for a free surface. On the other hand, at low frequencies, it
is evident from Figures 4–7 that P� sw:a for k0d:0, while it is noted that
Krasil’nikov’s asymptotic result (54) is confirmed numerically. Additionally,
P� rad:0 for k0d:0. The latter result can be put more precisely as follows:
P� rad =O((k0d)2) for k0d:0. For h/d=0·01 and 0·001 the numerical constant in
this asymptotic relationship goes to 2/3, i.e., P� rad:2

3(k0d)2, which is the low
frequency limit for the pressure release surface, according to formula (11).
Nevertheless, the trend P� rad =O((k0d)2) is also present for higher values of h/d, as
can be seen from Figures 4 and 5. This is the reason to refer to this low frequency
behaviour as a free surface effect. Actually, this description is physically correct,
because the plate behaves like a pressure release surface, which, by definition, is
called a free surface.

Figure 4 also shows a redistribution of energy among the various transmission
paths for frequencies close to coincidence, i.e., for M=1, which corresponds to
k0d1 1·03488 for h/d=1·0. This redistribution involves about 25% of the total
energy in the system. The total power output of the source, however, shows no
dips or peaks at coincidence.

Finally, the total power output of the source was calculated for the full range
of parameters 0·001E h/dE 1·0 and 10−2 E k0dE 10. The results are presented in
Figure 8. In this figure, equal level contour lines are drawn for the total power
output of the source. The spacing between two adjacent lines is approximately
3·05 dB and ranges from −36·2 dB at (k0d, h/d)= (0·0166, 0·001) to +12·7 dB
at (k0d, h/d)= (0·01, 0·0646). Since the absolute value of P� ranges over five
decades, the modulation effect, for k0de 1, cannot be made visible on this scale,
so the results in Figure 8 were restricted to the region k0dE 1. Both parameter
axes in Figure 8 have logarithmic scaling, so M is constant along the straight lines

log10 (k0d)+ log10 (h/d)= log10 (vch/c0)+2 log10 (M)= constant,

Figure 7. As Figure 4 but for h/d=0·001.
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Figure 8. Equal level contour lines for total power output 10 log10 P� as a function of frequency
parameter k0d and geometrical parameter h/d. Spacing between adjacent lines is 3·05 dB and runs
from −36·2 dB at (k0d, h/d)= (0·0166, 0·001) to +12·7 dB at (k0d, h/d)= (0·01, 0·0646).

which follows from relation (55). Upon recalling that vch/c0 =0·966 for steel
plates in water, it is easy to verify that M2 runs from 10−5 for (k0d, h/d)= (0·01,
0·001) to 1 for (k0d, h/d)= (1·0, 1·0).

Concerning the region k0de 1, which is not shown in Figure 8, the total power
is determined mainly by the radiated power and shows the typical modulation
effect due to the finite distance from the source to the plate. Referring to the
discussion of Figures 4–7, it was remarked that for h/de 0·1 this modulation effect
is similar to that for a rigid wall, while for h/dE 0·01 it resembles that for a free
surface. However, the parameter that controls the transition of the modulation
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effect from the free surface case to the rigid wall limit appears to be M2 rather
than h/d. Therefore, this observation can be put more precisely as follows:
for M2 =O(1) and larger, the modulation effect of the plate is similar to that of
a rigid wall and for M2�1 the effect of the plate is like a perfectly compliant
surface.

In the triangular region k0dE 1 and h/dE 1
20k0d the results do not vary

significantly with h/d, but the power output increases with k0d at a constant
rate of 20 dB/decade. This behaviour has been discussed before: in connection
with Figures 4–7 it was observed that P� rad =O((k0d)2) for k0d:0 and this
trend was called the free surface effect. Indeed, the radiated power still dominates
the power output of the source and the plate behaves like a pressure release
surface.

Finally, in a third region, i.e., for 0·1q h/dq 1
10k0d the contour lines are

all parallel to each other and perpendicular to the lines M2 = constant. In
this region the power output is independent of M, but increases strongly
with decreasing values of k0d2/h. It is noted, however, that the radiated power
is very small compared to the power output of the source, while almost all
energy emitted by the source is carried to infinity by the power flows along
the plate. So, although the radiated power coincides with the free surface case
and the plate is very compliant to the incident pressure, the total power
output of the source increases dramatically to orders of magnitude above the
freefield value. This is due to the strong excitation of the plate in this parameter
region.

The equal level contour lines in Figure 8 can be used to select those parameter
values for k0d and h/d which minimize the total power output of the source.
However, designers of ships have to conform to other, non-acoustical
requirements as well. For many ships, the parameter k0d, where k0 is based on the
fifth harmonic of the blade passage frequency, has a value within the range†
0·37E k0dE 0·45. This type of correlation between k0 and d is to be expected, since
large propellers operate at low r.p.m. numbers and conversely, small propellers
operate at higher frequencies. It is noted that for sheet cavitation the source
spectrum has a peak value at the fourth or fifth harmonic of the blade passage
frequency, while the center of cavitation is taken at aobut 0·8–0·9 radii above the
propeller axis. The results from Figure 8 indicate that for k0d1 0·40 the power
output of the source is independent of the value of h/d as long as this parameter
not exceeds the value 0·1.

It is noted, however, that this conclusion is based on the underlying model of
a point source below an infinite, homogeneous plate. This model does not account
for resonances that occur due to the finiteness of hullplates of ships. Therefore,
in certain frequency ranges, resonant vibrations of hullplates can greatly disrupt
the structure of the power output of the source from the one given in Figure 8.
This issue has been addressed in a separate study [18].

† M.J.A.M. de Regt, TNO Institute of Applied Physics, private communication.
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APPENDIX: FOURIER-HANKEL TRANSFORM OF THE FREE SPACE
GREEN FUNCTION

In this appendix the Fourier–Hankel transform is derived of the solution of the
Helmholtz equation in free space with a point monopole source at the origin.
Starting by transforming equation (1) with x� s =0� gives

6 d2

dz2 + (k2
0 − k2)7p̃(k; z)=−qs d(z). (56)

A general solution of equation (56) for z$ 0 is

p̃(k; z)=A2 exp(ikzz)+B2 exp(−ikzz), (57)

where the 2 signs correspond to zq 0 and zQ 0, respectively. The appropriate
branch of the two-valued function kz =(k2

0 − k2)1/2 is specified by formula (25). In
order to satisfy the radiation condition for z:2a it is required that A−=0 and
B+=0. Furthermore, from symmetry considerations, it follows that A+=B−0A.
The value of A is chosen such that the solution satisfies equation (56) for z=0
as well. This is accomplished by integrating both sides of equation (56) over the
range −rE zEr. Invoking the well-known filter property from the definition
of the delta function the right-hand-side becomes

g
r

−r

−qs d(z) dz=−qs .

The left-hand-side can be evaluated by using integration by parts. This gives

g
r

−r 6 d2

dz2 + k2
z7p̃ dz=$dp̃

dz%
r

−r

+ k2
z g

r

−r

p̃ dz

=A+ikz exp(ikzr)−B− · −ikz exp(−ikz · −r)+ k2
z g

r

−r

p̃ dz.

Taking the limit for r:0 and using that p̃ is finite and continuous at z=0 yields
−qs =(A++B−)ikz so A=−qs /2ikz . Combining the results for both zq 0 and
zQ 0 it follows that p̃ is given by

p̃(k; z)=−qs
exp(ikz =z=)

2ikz
. (58)

Finally, for the case of a point source at the z-axis which is not located at x� s =0� ,
expression (58) is easily modified by a simple shift of the origin.
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