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The objective of the present paper is to analyze coupled bending and torsional
vibrations of distributed-parameter beams. The governing coupled set of partial
differential equations is solved by separating the dynamic response in a quasistatic
and in a complementary dynamic response. The quasistatic portion that may also
contain singularities or discontinuities due to sudden load changes is determined
in a closed form. The remaining complementary dynamic part is non-singular and
can be approximated by a truncated modal series of fast accelerated convergence.
The solution of the resulting generalized decoupled single-degree-of-freedom
oscillators is given by means of Duhamel’s convolution integral, whereby the
acceleration of the loads is the driving term. The proposed procedure is illustrated
for a dynamically loaded simply supported beam with channel cross-section, and
the improvement in comparison to the classical modal analysis is demonstrated.
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1. INTRODUCTION

The dynamic behavior of structural elements such as beams has received much
attention and is the subject of many textbooks and papers. It is significant that
most of the work reported in the literature deals with beams of doubly symmetric
cross-section (centroid and shear axis are coincident), i.e., bending and torsion are
decoupled. In many engineering structures such as beams with channel
cross-sections, bridges, aircraft wings and propeller blades, however, the centroid
and shear axis do not coincide which results in coupling between flexural
vibrations and torsional vibrations.

For example, the free vibration analysis of simply supported beams with
monosymmetric cross-sections can be found in the textbook of Weaver et al. [1].
Dokumaci [2] determined the eigenfrequencies of beams with other boundary
conditions. Bishop et al. [3] extended these investigations to allow for warping of
the cross-section and they showed that neglecting of warping makes a large
difference to the eigenfrequencies of thin-walled beams with open cross-section.
Coupled bending–torsional vibrations of Timoshenko beams were studied by
Bishop and Price [4] and more recently, Bercin and Tanaka [5] took into account
the warping stiffness to determine the free vibration modes of shear deformable
beams. However, the number of investigations which study forced vibrations of
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coupled bending–torsional beams is rather limited. Recently, Eslimy-Isfahany et
al. [6] calculated the response of bending–torsion coupled beams to deterministic
and random loads. They solved the governing boundary value problem by classical
modal analysis, where the geometric displacement co-ordinates (the lateral
displacement and the angle of twist) are transformed to a single set of the modal
amplitudes.

However, this procedure leads to solutions which are slowly convergent or even
divergent. Hence, this paper introduces a different approach. Thereby, the
dynamic response is separated into a quasistatic and a complementary dynamic
response, and a modal expansion is performed only for the complementary
dynamic part of the solution. The quasistatic portion is determined separately and
in a closed form by means of weighted integration of the corresponding influence
function. Such a splitting is numerically efficient and also more accurate since the
quasistatic part may contain singularities or discontinuities that are properly
accounted for and which would be poorly modelled by a truncated modal series
solution. The remaining complementary dynamic response is non-singular and can
be approximated by a finite modal series of fast accelerated convergence. This type
of solution procedure has been first suggested by Boley and Barber [7] for the
analysis of rapidly heated beams and plates and was later picked up by Ziegler
et al. [8-11], in order to analyze the elastic-plastic behvior of beams and plates.
The proposed procedure is illustrated for a simply supported beam with channel
cross-sections, and the improvement in comparison to the classical modal analysis
is shown.

2. GOVERNING EQUATIONS

In the present paper coupled bending and torsional vibrations of a thin-walled
monosymmetric beam with open cross-section are considered, which consists of
a linear elastic material with mass density r. The centroid and the shear-center
are denoted by S and M, respectively, and they are separated by the distance c
(see Figure 1). The beam is referenced to a Cartesian system of co-ordinates x,
y, z, where the shear center axis is taken to be the x-axis and the y-axis coincides
with the symmetry axis of the cross-section. Furthermore, it is assumed that the
beam is loaded by a given transverse force per unit length q(x, t) distributed along
the centroidal axis and an external torque of intensity m(x, t), Figure 1. The
deformation is determined by the lateral deflection w(x, t) of the shear center axis
and by the angle of twist q(x, t) of the cross-section. As, for example Weaver et
al. [1] have shown, the dynamic response is governed by the following set of
coupled differential equations of motion:

EJyw,xxxx + rA(ẅ+ cq� )= q, (1a)

EA88q,xxxx −GITq,xx + r(I0 + c2A)q� + rAcẅ=m+ cq, (1b)

where EJy is the bending rigidity of the beam with respect to the y-axis, EA88

denotes the warping rigidity, GIT refers to the torsional rigidity for uniform
torsion, I0 represents the centroidal polar moment of inertia of the cross-section,
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and A is the cross-sectional area. ( ),x and ( ˙ ) stand for the spatial and time
derivatives.

The solution of equations (1) depends on the initial conditions at time instant
t=0 and on the actual boundary conditions at point xb . It is assumed that the
beam is of length l so that these conditions are imposed at the sections xb =0 and
xb = l. In the following, three classical boundary conditions are summarized,
compare e.g., reference [3]:
(i) Simply supported end:

w(xb , t)=0, w,xx (xb t)=0, q(xb , t)=0, q,xx (xb , t)=0. (2a)

(ii) Clamped end:

w(xb , t)=0, w,x (xb , t)=0, q(xb , t)=0, q,x (xb , t)=0. (2b)

(iii) Free end:

w,xx (xb , t)=0, w,xxx (xb , t)=0, q,xx (xb , t)=0,

−EA88q,xxx +GITq,x =0. (2c)

The free-vibration analysis of equations (1) can be found in reference [3].

Figure 1. Channel cross-section
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The bending moment My , the shear force Qz , the bimoment B8 , the primary
torque MTp and the torque of constrained twisting MT8 are related to the deflection
and to the angle of twist as follows:

My =−EJyw,xx , Qz =−EJyw,xxx , (3a)

B8 =−EA88q,xx , MTp =GITq,x , MT8
=−EA88q,xxx . (3b)

3. DYNAMIC RESPONSE ANALYSIS

Within a linear theory of beam structures the quasistatic response can always
be represented in a closed form. The quasistatic part of the solution possibly
contains singularities or discontinuities, whereas the remaining dynamic part of the
solution is non-singular. Due to its smooth behavior, this remaining part can be
described by means of a relatively small number of mode shapes. Consequently,
the total response w(x, t), q(x, t) will be formulated as the sum of its analytic
quasistatic part (denoted by a superscript ( )S) and a modal expansion of its
complementary dynamic portion (denoted by a superscript ( )D) [7–11],

w(x, t)=wS(x, t)+wD(x, t), q(x, t)= qS(x, t)+ qD(x, t). (4)

Replacing w(x, t) and q(x, t) of equations (1) by the expressions of equations (4)
renders:

EJywS
,xxxx +EJywD

,xxxx + rAẅS + rAẅD + rAcq� S + rAcq� D = q, (5a)

EA88q
S
,xxxx +EA88q

D
,xxxx −GITq

S
,xx −GITq

D
,xx + r(I0 + c2A)q� S

+r(I0 + c2A)q� D + rAcẅS + rAcẅD =m+ cq. (5b)

Considering the differential equations of the quasistatic response,

EJywS
,xxxx = q, EA88q

S
,xxxx −GITq

S
,xx =m+ cq, (6)

the equations of motion of the complementary dynamic response can be separated
from equations (5):

EJywD
,xxxx + rA(ẅD + cq� D)=−rA(ẅS + cq� S), (7a)

EA88q
D
,xxxx −GITq

D
,xx + rA$0I0

A
+ c21q� D + cẅD%

=−rA$0I0

A
+ c21q� S + cẅS%. (7b)

The solution of equations (7) is found by modal analysis. Thereby, the quasistatic
parts wS, qS and the complementary dynamic portions wD, qD are transformed to
a set of modal amplitudes. These transformations are expressed as

wS(x, t)= s
a

n=1

YS
n (t)Fn (x), qS(x, t)= s

a

n=1

YS
n (t)Cn (x), (8a)
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wD(x, t)= s
a

n=1

YD
n (t)Fn (x), qD(x, t)= s

a

n=1

YD
n (t)Cn (x). (8b)

The modal series equations (8) are inserted into equations (7), multiplied by Fm

and Cm , respectively, and added. Integration over the beam length l and
considering the orthonormality relation equation [12],

g
l

0 $FnFm + c(CnFm +FnCm )+0I0

A
+ c21CnCm% dx= dnm , (9)

leads to a formally decoupled system of single-degree-of-freedom oscillator
equations for the complementary dynamic variables YD

n (t):

Y� D
n +v2

nYD
n =−Y� S

n . (10)

In equation (9) dnm denotes the Kronecker Delta function. In the next step, YS
n is

evaluated by the same procedure. Thereby, equations (8a) are inserted into
equations (6), and after some algebra the quasistatic modal amplitudes become

YS
n (t)=

1
rAv2

n
Pn (t), (11)

where

Pn (t)=g
l

0

[q(x, t)Fn (x)+m(x, t)Cn (x)+ cq(x, t)Cn (x)] dx (12)

is the generalized loading associated with the mode shapes Fn and Cn . Finally, the
solution of equation (10) is given by means of Duhamel’s convolution integral [13],

YD
n (t)=YD

n (0) cos vnt+
Y� D

n (0)
vn

sin vnt−
1

rAv3
n g

t

0

P� n (t) sin [vn (t− t)] dt, (13)

where YD
n (0), Y� D

n (0) represent the initial conditions at t=0:

YD
n (0)=Yn (0)−

1
rAv2

n
Pn (0), (14a)

Y� D
n (0)=Y� n (0)−

1
rAv2

n
P� n (0). (14b)

In equations (14) Yn (0), Y� n (0) are derived from the initial conditions at t=0 by
modal decomposition of w(x, 0), q(x, 0), ẇ(x, 0) and q� (x, 0) according to
equations (8). Note, that in general YD

n (0), Y� D
n (0) do not vanish also in case of quiet

initial conditions. Details of how the convolution integral in equation (13) can be
evaluated in the case of loading functions with arbitrary time history are given in
Appendix A.

An additional convenient feature of that kind of modal approach is the
incorporation of viscous damping, that is introduced via modal damping
coefficients; see e.g., reference [14].
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4. APPLICATION

The proposed procedure is applied to a simply supported beam. The free
response analysis according to reference [3] renders the mode shapes

Fn (x)=An sin lnx, Cn (x)=Bn sin lnx, ln =
np

l
, (15)

and the corresponding eigenfrequencies

v2
n2 =(I0 + c2A)6V� 2

n +V
 2
n 2$(V� 2

n +V
 2
n )2 −4

I0

I0 + c2A
V� 2

nV
 2
n%

0·5

7/2/I0, (16)

with

V� 2
n = l4

n
EJy

rA
, V
 2

n = l2
n
EA88l

2
n +GIT

r(I0 + c2A)
. (17)

Note, that for each n two modes of vibration are obtained: a higher one vn+ and
a lower one vn−. Coefficients An2, Bn2 are determined as follows:

An2 =X2
l $1+2can2 +0I0

A
+ c21an2%

−1/2

,

Bn2 = an2An2, an2 =
V� 2

n −v2
n2

cv2
n2

. (18)

In the following, results obtained by the proposed procedure are compared with
those derived by means of the classical modal analysis [6]. The latter represents
the total deflection and the total angle of twist,

w(x, t)= s
a

n=1

Yn (t)Fn (x), q(x, t)= s
a

n=1

Yn (t)Cn (x), (19)

where the modal coefficients are of the form

Yn (t)=Yn (0) cos vn (t)+
Y� n (0)
vn

sin vnt+
1

rAvn g
t

0

Pn (t) sin [vn (t− t)] dt. (20)
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At time t=0 a single time-harmonic lateral force at midspan,
q(x, t)=F0d(x− l/2)× sin nt, is switched on. d(x− l/2) denotes the Dirac delta
function at x= l/2. In that particular case, the quasistatic deflection and the
quasistatic angle of twist read [15]:

wS(x, t)=
F0l3

48EJy
j(3+4j2) sin nt, 0E xE l/2, (21a)

wS(x, t)=
F0l3

48EJy
j�(3+4j�2) sin nt, l/2E xE l, (21b)

qS(x, t)=
F0cl
2GIT $j−

2 sinh (0·5o) sinh (oj)
o sinh o % sin nt, 0E xE l/2, (21c)

qS(x, t)=
F0cl
2GIT $j�−

2 sinh (0·5o) sinh (oj�)
o sinh o % sin nt, l/2E xE l, (21d)

with

o= lX GIT

EA88

, j=
x
l

, j�=1−
x
l

. (22)

The corresponding quasistatic internal actions are given by equations (3), when
substituting wS for w, qS for q and their derivatives.

The dynamic analysis according to equations (5), (8) and (13) renders the
complementary dynamic quantities:

wD(x, t)=
F0n

rA
s
a

n=1,3,5 . . .

sin
npx

l $Ln−

v3
n−

gn−(t)+
Ln+

v3
n+

gn+(t)%, (23a)

qD(x, t)=
F0n

rA
s
a

n=1,3,5 . . .

sin
npx

l $an−Ln−

v3
n−

gn−(t)+
an+Ln+

v3
n+

gn+(t)%, (23b)

MD
y (x, t)=

F0nEJy

rA
s
a

n=1,3,5 . . . 0np

l 1
2

sin
npx

l $Ln−

v3
n−

gn−(t)+
Ln+

v3
n+

gn+(t)%, (23c)

QD
z (x, t)=

F0nEJy

rA
s
a

n=1,3,5 . . . 0np

l 1
3

cos
npx

l $Ln−

v3
n−

gn−(t)+
Ln+

v3
n+

gn+(t)%, (23d)

BD
8 (x, t)=

F0nEA88

rA
s
a

n=1,3,5 . . . 0np

l 1
2

sin
npx

l $an−Ln−

v3
n−

gn−(t)+
an+Ln+

v3
n+

gn+(t)%,
(23e)
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MD
Tp (x, t)=

F0nGIT

rA
s
a

n=1,3,5 . . .

np

l
cos

npx
l $an−Ln−

v3
n−

gn−(t)+
an+Ln+

v3
n+

gn+(t)%,
(23f)

MD
T8 (x, t)=

F0nEA88

rA
s
a

n=1,3,5 . . . 0np

l 1
3

×cos
npx

l $an−Ln−

v3
n−

gn−(t)+
an+Ln+

v3
n+

gn+(t)%. (23g)

Ln is the nth participation factor due to a single force at midspan,

Ln2 =−A2
n2(1+ can2)(−1)(n+1)/2, (24)

and gn (t) denotes the nth complementary dynamic unit response due to a
sinusoidal force excitation,

gn2(t)=
n

n2 −v2
n2

(n sin vn2t−vn2 sin nt)− sin vn2t. (25)

In contrast, the results according to the classical modal analysis, equations (19),
(20), become:

w(x, t)=
F0

rA
s
a

n=1,3,5 . . .

sin
npx

l $Ln−

vn−
fn−(t)+

Ln+

vn+
fn+(t)%, (26a)

q(x, t)=
F0

rA
s
a

n=1,3,5 . . .

sin
npx

l $an−Ln−

vn−
fn−(t)+

an+Ln+

vn+
fn+(t)%, (26b)

My (x, t)=
F0EJy

rA
s
a

n=1,3,5 . . . 0np

l 1
2

sin
npx

l $Ln+

vn+
fn+(t)+

Ln−

vn−
fn−(t)%, (26c)

Qz (x, t)=
F0EJy

rA
s
a

n=1,3,5 . . . 0np

l 1
3

cos
npx

l $Ln−

vn−
fn−(t)+

Ln+

vn+
fn+(t)%, (26d)
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B8 (x, t)=
F0EA88

rA
s
a

n=1,3,5 . . . 0np

l 1
2

sin
npx

l $an−Ln−

vn−
fn−(t)+

an+Ln+

vn+
fn+(t)%,

(23c)

MTp (x, t)=
F0GIT

rA
s
a

n=1,3,5 . . .

np

l
cos

npx
l $an−Ln−

vn−
fn−(t)+

an+Ln+

vn+
fn+(t)%,

(26f)

MT8 (x, t)=
F0EA88

rA
s
a

n=1,3,5 . . . 0np

l 1
3

cos
npx

l $an−Ln−

vn−
fn−(t)+

an+Ln+

vn+
fn+(t)%,

(26g)

with

fn2(t)=
1

n2 −v2
n2

(n sin vn2t−vn2 sin nt). (27)

In order to show the improvement of the proposed procedure compared to the
classical modal analysis the rate of convergence of the series solutions equations
(26) and of the corresponding complementary dynamic series equations (23) is
checked. Thereby, the series are approximated by a finite number of N modes
(1ENE 51) and the error according to, e.g., for the deflection,

error(N)= b(wS +wD,N)−wref

wref b×100, error(N)= bwN −wref

wref b×100, (28)

is calculated for each number of N. In equations (28) the superscript ( )N denotes
the number of modes used in the approximation of the corresponding expression,
and wref is the reference solution, where the number of modes is chosen to be
N=999. This solution is referred as ‘‘exact’’, since the results determined
numerically by both solution procedures are in agreement. Equations (21), (23)
and (26) are evaluated for a beam with channel cross-section according to Figure
1 at time instant t/T1− =1·69 (T1− =2p/v1−) and an excitation frequency of
n=4v1−. The geometric and mechanical properties of the beam are characterized
by the following parameters: l=2·2 m, h=200 mm, b=80 mm, t=6 mm,
s=6 mm, E=210 000 MN/m2, G=80 000 MN/m2, r=7850 kg/m3.

Figures 2–8 show the error of the deformation and of the corresponding internal
actions at the specified point x (left support or midspan) computed by means of
the proposed procedure and classical modal analysis. It can be observed that the
separate treatment of quasistatic and complementary dynamic response
accelerates the rate of convergence. Especially the series solutions for the internal
actions according to equations (26) are slowly convergent compared to solutions
of equations (21) and (23).
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Figure 2. Convergence of the deflection at midspan. v=4v1−, b/T1− =1·69, x= l/2. –e–,
Classical modal analysis; - - w - - , proposed analysis.

Figure 3. Convergence of the angle of twist at midspan. v=4v1−, t/T1− =1·69, x= l/2.
Key as for Figure 2.
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Figure 4. Convergence of the bending moment at midspan. v=4v1−, t/T1− =1·69, x= l/2. Key
as for Figure 2.

Figure 5. Convergence of the shear force at the left support. v=4v1−, t/T1− =1·69, x=0. Key
as for Figure 2.
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Figure 6. Convergence of the bimoment at midspan. v=4v1−, t/T1− =1·69, x= l/2. Key as for
Figure 2.

Figure 7. Convergence of the primary torque at the left support. v=4v1−, t/T1− =1·69, x=0.
Key as for Figure 2.
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Figure 8. Convergence of the torque of constraint twisting at the left support. v=4v1−,
t/T1− =1·69, x=0. Key as for Figure 2.

5. CONCLUSIONS

The initial-boundary value problem of coupled bending-torsional vibrations of
elastic monosymmetric beams is solved. The solution of the corresponding set of
partial equations of motion is found by separating the response of the beam in
a quasistatic and in a complementary dynamic part. The quasistatic portion that
probably contains singularities can be represented in a closed form. The remaining
non-singular complementary dynamic part is approximated by a truncated modal
series of fast accelerated convergence. The solution of the resulting generalized
decoupled single-degree-of-freedom oscillators is given by Duhamel’s convolution
integral. An example is given for a simply supported composite beam under
harmonic excitation. The procedure described in detail shows high improvement
when compared to the classical modal analysis approach.
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APPENDIX A: NUMERICAL EVALUATION OF THE DYNAMIC RESPONSE

In the case of loading functions with arbitrary time history, the solution is found
incrementally. The convolution integral equation (13) is evaluated by assuming a
linear variation of the load variables q and m within the time increment
Dt= ta+1 − ta ,

q(x, t)= q(x, ta )+Dq(x)g(t�), m(x, t)=m(x, ta )+Dm(x)g(t�), t�= t− ta ,

(A1)

g(t�)=1, t�eDt; g(t�)= t�/Dt, 0E t�EDt; g(t�)=0, t�E 0. (A2)

In the following, subscripts ( . )a and ( . )a+1 refer to variables at the beginning and
at the end of the time step, respectively. When computing the dynamic modal
response according to equation (13), the time derivative g̈ enters, and, hence the
approximate variation of g(t�) within the time interval must have a unique second
derivative at ta and ta+1. This degree of smoothness is achieved by assuming at
least the linear ramp function g(t�) to start at t−

a immediately after ta , and to end
at t−

a+1 immediately before ta+1. Accordingly, the second derivative of Dq and Dm
become

Dq̈=Dq(x)[d(0)− d(Dt)]/Dt, Dm̈=Dm(x)[d(0)− d(Dt)]/Dt, (A3)
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with Dirac delta function d. The evaluation of equation (13) together with
equation (A3) renders the increments of the complementary dynamic coefficients
[14],

DYD
n =T� nYD

n (ta )+TnY� D
n (ta )−

1
v2

n
DnDPn , (A4)

with the following abbreviations:

T� n = cos vnDt−1, Tn =
1
vn

sin vnDt, Dn =
1
vn

1
Dt

sin vnDt. (A5)

DPn stands for the increment of the generalized load,

DPn =g
l

0

[Dq(x)Fn (x)+Dm(x)Cn (x)+ cDq(x)Cn (x)] dx. (A6)

Relation equation (A4) has to be completed by the increments of the velocity of
modal coefficients. They are given by [14],

DY� D
n =J� nYD

n (ta )+JnY� D
n (ta )−

1
v2

n
D� nDPn , (A7)

with

J� n =−vn sin vnDt, Jn =cos vnDt−1, D� n =
1
Dt

(cos vnDt−1). (A8)

Adding the exactly computed quasistatic increments to the complementary
dynamic increments leads to the total dynamic response,

Dw(x)=DwS(x)+ s
N

n=1

Fn (x)DYD
n , Dc(x)=DcS(x)+ s

N

n=1

Cn (x)DYD
n ,(A9)

whereby the infinite series are approximated by a finite number of N mode shapes.
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