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DYNAMICS AND ROBUST CONTROL OF A
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Recently there has been an increasing demand for optical disk drives to have
higher speed as well as high information density, especially for applications like
CD-ROM drives. To this end improvement of their optical pickup structure
and control is recognized as a very challenging issue. In this paper, the pickup
is ®rst analytically modelled in a plane to describe its coupled auto-focusing
and auto-tracking systems. With its immeasurable parameters being estimated
based on experimental data, an approximate 1-DOF linear model is obtained
neglecting the coupling terms. To design the high speed and robust positional
servo controller realistic design speci®cations are addressed, and the H1
control method is employed. Finally taking as an example the pickup in a
commercial CD-ROM drive, the performance of the designed controller is
veri®ed through realtime experiments.
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1. INTRODUCTION

Recently optical disk drives are being widely used as computer CD-ROM drives
as well as CDP, LDP, DVD, etc. However, CD-ROM drives currently available
are still not fast enough compared to the competing hard disk drives so that
further design innovations are in need. Aside from the structural point of view
[1, 2], this paper is intended to aid such a trend by proposing a model describing
key dynamics of the optical pickup, which is the major component of optical
disk drives, and its robust servo controller.
In Figure 1, a very popular linear-tracking, wire-supported type optical pickup

in a commercial 8 fold speed CD-ROM drive is illustrated. Among a total of ®ve
servo systems involved [3], two possess the most unique features and are
regarded as very challenging techniques for increasing its data access speed. One
is the auto-focusing (AF) servo, which keeps the waist of the laser beam passing
through the objective lens always on the disk pit's re¯ection surface. The other is
the auto-tracking (AT) servo to radially position the focus ®nely onto the spiral
track following the action of a coarse tracking motor. Those two servos are
desired to independently function in mutually orthogonal directions despite the
ordinary de®ciencies and vibrations of the disk while it rotates with a constant
linear velocity [3].
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Even if some researchs have been done exclusively on the AT servo [4, 5], AF
and AT servos are basically problems of the same nature in that they are both
position control systems of a ¯exible supporter's tip using the voice coil type
actuators. Hence, this paper mainly deals with the AF servo system.

2. SYSTEM EQUATION

The AF control system generally consists of a feedback controller, a power
amp., a pickup structure, and a position error sensor, as in Figure 2. Among
such components, the equations of motion for the pickup are ®rst to be derived
and others will be treated subsequently to form the overall system equation.

2.1. EQUATIONS OF PICKUP MOTION

The way of supporting the bobbin varies with manufacturers, but basically the
bobbin is made to translate in parallel with the ®xed holder. It is due to the
parallelepiped structure composed of ¯exible supporting elements with some
viscoelastic materials glued on to increase motional damping. Hence, taking the
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Figure 1. Schematic diagram of a pickup.
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pickup in Figure 1 as a typical one, its equations of motion are to be derived. In
general, vibration of the pickup can be simply modelled as a lumped mass±
spring±damper system in the operating frequency range due to the rigidity of
bobbin material and the high mass ratio of bobbin to suspension wires [6]. That
is, higher bending modes of suspension wires can be neglected.
However, in the process of pickup assembly, it is almost impossible to exactly

match the mass center with the centroid where the resultant actuator forces are
acting. This causes some undesirable dynamics coupling the AF and AT motions
by way of the torsional mode of the bobbin. In spite of the damping treatment,
such a coupling mode is hard to remove completely. On the other hand, the
remaining 3 motional DOF's of the bobbin in space are relatively hard to obtain
due to the parallelepiped suspension mechanism, which means that their natural
frequencies exist far beyond the operating frequency range [1, 2].
Therefore, in this section, it will be analytically investigated how the torsioal

motion occurs through a planar model of the pickup. In Figure 3, the bobbin is
assumed rigid. Therefore it can translate along the X and Y axes, and rotate
about the Z axis, being restrained by massless springs. And, the electromagnetic
actuator forces from the actuators are assumed to be uniformly distributed over
the bobbin and acting along the body-®xed co-ordinate frame xyz.
Here, it is taken into account that the mass center does not coincide with the

centroid. To derive equations of motion, the displacement vector w of a typical
point on the bobbin is ®rst found with respect to the origin of the inertial XYZ
co-ordinate frame.

w � R� 0C1r �1�
where R=[X Y]T is the position vector of the centroid form the origin O,

0C1 � cy ÿsy
sy cy

� �
is the rotation matrix between the two frames, r=[x y]T is the position vector
of the typical point from the centroid o, and cy and sy are abbreviations of cos y
and sin y, respectively.
Considering the time derivative of equation (1), one can get the kinetic energy

expression as follows:
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T � 1

2

�
m

_wT _w dm

� 1

2
m� _X2 � _Y2� � 1

2
Ioz _y2 ÿ _X _y�Sxsy� Sycy� � _Y _y�Sxcyÿ Sxsy�, �2�

where Ioz is the mass moment of inertia of the bobbin about its centroid while

Sx �
�
m x dm and Sy �

�
m y dm are ®rst mass moments of inertia. Here, it is

noteworthy that those ®rst mass moments of inertia do not vanish as long as the

centroid is not coincident with its mass center. Next, the potential energy is

derived as

V � 1

2
�kxX2 � kyY

2 � kyy
2� �mgY, �3�

where kx , ky , and ky denote spring stiffness in each direction, and g the

gravitational acceleration. The non-conservative virtual work is obtained as in

equation (4)

d �W �
�
A

�0C1f�Tdw dA

� �Fxcyÿ Fysy�dX� �Fxsy� Fycy�dY, �4�
where Fx and Fy represent the actuator forces resulting at the centroid

respectively in the AT and AF directions. Note that no provisions are yet made

for actuating the torsional motion in the contemporary optical pickups.

Plugging equations (2) through (4) into the standard Lagrangian equation [7],

the equations of bobbin motion can be readily obtained:

M�q� Kq� b� g � f, �5�
where q=[X Y y]T is the generalized co-ordinate, M and K are overall mass

and stiffness matrices, b is the centrifugal and Coriolis force term, and f is the

actuator force vector. Their detailed expressions are as follows:

M �
m 0 ÿ�Sxsy� Sycy�
0 m �Sxcyÿ Sysy�

ÿ�Sxsy� Sycy� �Sxcyÿ Sysy� Ioz

264
375,

K � diag�kx, ky, ky�, f � �Fxcyÿ Fysy, Fxsy� Fycy, 0�T,

b � ÿ
_y2�Sxcyÿ Sysy�
_y2�Sxsy� Sycy�

_X _y�Sxcyÿ Sysy� ÿ _Y _y�Sxsy� Sxcy�

264
375, g �

0

mg

0

264
375:

In the stiffness matrix above ky is in fact related to the other elements such

that
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ky � B2 �H2

16
���������������������������������
c2a=k2x � s2a=k2y

q , �6�

where the angle, a, equals p/2ÿtanÿ1(H/B), and B and H are respectively the
horizontal and vertical gaps between the suspension points. Therefore, to make
the torsional stiffness increase, it is recommended that there be as wide a spacing
between suspensions as possible.

2.2. LINEARIZED OVERALL SYSTEM EQUATION

To design a linear controller and identify system parameters based on the
frequency response functions (FRF), the equations of motion need to be
linearized. That is, assuming y to be small and neglecting second and higher
order perturbation terms, equation (5) can be recast as

Ml�q� C _q� Kq� g � fl, �7�
where the damping term is addtionally introduced to re¯ect the effect of the
viscoelastic materials, and the centrifugal and Coriolis terms have disappeared
with the following new coef®cients being

Ml �
m 0 ÿSy

0 m Sx

ÿSy Sx Ioz

24 35, C �
cx 0 0
0 cy 0
0 0 cy

24 35, fl � Fx Fy 0� �T:

From equation (7), it seems clear that the non-zero Sx and Sy quantities play the
role of coupling AF and AT motions. Hence, to reduce the undesirable AT
motion caused by AF servo, at least one of them has to be tailored to be as
small as possible unless some provision is made for actively suppressing the
torsional mode.
Now, an expression for the transfer function G(s) needs seeking from the

controller output Vfb to the measured bobbin displacement Ys in Figure 2, since
extra devices such as a power ampli®er, an actuator, and a displacement sensor
are always involved. In this paper, a voltage type power ampli®er with unity gain
is used, as shown in Figure 4. Thus the output current io is not proportional to
the input voltage Vm . Instead, due to the back EMF (electromotive force)
generated by the motion of the suspension wires serving also as electric conduits
across the magnetic ¯ux, equation (8) holds from Kirchhoff's voltage law.

Vm ÿ ioRÿ L
dio
dt
ÿ kb _Y � 0, �8�

where R, L, and kb represent the voice coil's resistance, inductance, and back
EMF constant, respectively.
De®ning the force constant kF and the sensor gain ks , one can get the desired

AF transfer function as in the Appendix from equations (7) and (8). Likewise,
the AT transfer function can be obtained with the exception of negligible back
EMF constant.
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2.3. SYSTEM PARAMETER IDENTIFICATION

Given the experimental FRF in the AF or AT direction, it is feasible to
estimate the immeasurable system parameters like kx , ky , kb , etc. Among
numerous methods, the least square error curve ®t method is adopted here. That
is, unknown parameters are to be estimated so as to minimize a certain
performance index

J � jjjG� jo�j ÿ jĜ� jo�jjj2 �
X
i

�jG� joi�j ÿ jĜ� joi�j�2, i � 1, 2, . . . , �9�

in which k.k denotes the Euclidean vector norm, and Ĝ� jo� the estimate of
G( jo). As long as the number of data, i, is large enough compared to that of
unknowns, such a non-linear optimization problem can be ef®ciently solved by
the Levenberg±Marquardt method [8] with a reasonable initial guess of unknown
parameters.

3. H1 FEEDBACK CONTROLLER DESIGN

Prior to controller design the required performance and stability goals have to
be speci®ed in consideration of actual operating circumstance. For instance, in
the case of the AF system the disk vibration in the Y direction corresponds to
the reference input whereas the vibration of the CD-ROM drive base is
transmitted as the disturbance force d in Figure 2. Such a disturbance can be
readily found, c _Ye � kYe referring to Figure 5, where Ye represents the
oscillatory displacement of the base. Its effect on the control performance needs
to be investigated.
On the other hand, for the controller design the linearized mathematical

model derived above is to be used with its coupling term neglected. Therefore, it
will always contain model uncertainties to some degree in addition to those
arising from neglected non-linearities in the high frequency range, parameter
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Figure 4. Power ampli®er.
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variations, etc. This should be taken into account for stability speci®cation.
Furthermore, robust performance and stability should be secured within the
available power supply from computers, which means in turn that a control
input higher than a few volts in either direction could be fatal to the life of voice
coils.
For performance speci®cation magnitude of the sensitivity [9], S equal to e(s)/

Yref(s), should be predetermined in the frequency domain. Among others, the
disk vibration is mainly caused by its surface de®ciency even though it is being
regulated not to exceed a certain level by ISO [10]. For instance, the FRF's of
disk vibration at inner tracks are experimentally obtained to be presented in
Figure 6. In general, as in a 2nd order vibrational system the vibration
magnitude keeps increasing up to the resonance frequency coincident with the
spindle speed, and afterwards decreases with a constant acceleration. And, the
peak magnitude tends to decrease with the spindle speed due to the larger
stiffening centrifugal force, which will look more evident in Figure 11 than here.
Hence, given the desired maximum spindle speed for a CD-ROM drive, a

curve seems acceptable as the reference input magnitude, which constantly has
the peak magnitude below the resonance frequency and a constant slope of
ÿ40 dB/Dec, above it. However, some extra DC gain is necessary to attenuate
the effects of low frequency disturbances such as the base vibration, the
inclination of the turn table, and so on. On the other hand, the required
positional accuracy in the AF direction is smaller than 21 mm. Thus, from the
following equation one can get the conditions to meet the desired performance in
terms of the loop transfer function, L(s), in the low frequency range;

jS�o�j � 1

1� L�o�
���� ���� � jL�o�ÿ1j: �10�

Moreover, the cut-off frequency oc should be as high as possible for fast
speed. However, taking into account the destabilizing effect of unmodelled high
frequency vibrational modes and an excessive power demand during the
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transient state, some trade-off is inevitable. Thus, it is recommended that oc be
decided for the open loop system to cover only up to the frequency where the so-
called reference input magnitude of disk vibration equals the required positional
accuracy.
For securing the stability in the presence of unmodelled dynamics, the roll-off

rate of L(s) should be limited to ÿ20 dB/Dec, in the oc neighborhood, and
afterwards steeper than it. Due to the small magnitude of L(s) in the high
frequency range, equation (11) holds for the complementary sensitivity:

T�s� � L�s�
1� L�s� � L�s�: �11�

On the other hand, some means is also necessary to counteract the bobbin
de¯ection caused by its weight. Otherwise the focus error signal itself could not
be obtained whatsoever in actual CD-ROM drives, and the feedback control
voltage Vfb could be too high in the transient state due to the large control gain.
This can be handled by feeding forward an additional constant input

Vff � Rio � R
mg

kF
: �12�

To meet the aforementioned speci®cations, various control design methods
can be considered. However, since disk drives use the laser sensor only to
measure the gap in between the pit and the objective lens for the AF servo,
many candidates are eliminated including a series of modern control methods
which estimate state variables from the system outputs other than errors. This is
a good reason for using the conventional PID control with phase compensations
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in this application. However, the loop shaping process by ®nding its suitable
associated parameters is indeed a time-consuming iterative job.
Hence, to avoid such an inef®ciency the H1 control method [11] is applied

which guarantees the robustness with the advantage of a fully mechanized design
process. In order to get the H1 controller satisfying the design speci®cations, the
minimization problem of a mixed sensitivity is proposed as

W1S

W3T

� ����� �������� ����
1
< 1, �13�

where k.k1 means the H1 norm, and W1 and W3 denote weight functions to be
de®ned in the frequency domain consistently with the aforementioned desired
loop shape of L(s). Note here that if equation (13) is optimally solved, W1 will
approximate L(s) below the cut-off frequency whereas Wÿ13 will approximate
L(s) above it. Given equations (13) and the weight functions, the H1 feedback
controller can be synthesized by simply following the procedure in reference [11].

4. NUMERICAL SIMULATION AND EXPERIMENTS

All the contents addressed hereto are applied to the pickup in Figure 1.

4.1. PARAMETER IDENTIFICATION

Using a dynamic signal analyzer and a laser Doppler vibrometer, FRF's in
both AF and AT directions are obtained as in Figure 7. In so doing, an impulse
signal was input from the PC and the output signals were sampled at the period
of 0�1 ms. Even though there remain some noisy signals, the FRF's show the
three vibrational modes mentioned in section 2 clearly in the concerned
frequency range. In fact, the next vibrational mode was found around 5 kHz.
Compared to the AF direction the pickup has higher stiffness in the AT
direction. As a result, in the AT direction the DC gain is smaller, and the
resonance frequency is higher so that the cross-coupling torsional mode is almost
invisible.
After all the measurable parameters are found as in Table 1, the other system

parameters can be estimated according to equation (9) based on the data in
Figure 7. Here the lumped mass±spring±damper model is used for pickup
dynamics neglecting the cross-coupling, since such a simple model is to be
adopted for the controller synthesis. Making use of the ®rst 100 data points of
each FRF curve, ®nal estimates are obtained as in Table 2.
Accordingly, it can be deduced from the mass and natural frequencies that

k̂x =30�9511 N/m and k̂y =13�2264 N/m. Moreover the damping coef®cient in
each direction can be computed from the relation c � 2z

�������
mk
p

. In this case the
simple model takes the FRF in Figure 7(b) with some estimation errors.
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4.2. CONTROLLED PERFORMANCE

The weight functions are de®ned as

W1 � 103
s

o2
� 1

� �2�
s

o1
� 1

� �3

, and W3 � 105s3=o3
3

as plotted in Figure 8 where the relevant corner frequencies o1, o2, and o3 are
set respectively at 56102, 36103, and 106 rad/s. The following are taken into
account: the maximum spindle speed amounts to about 70 Hz, the peak
vibrational magnitude about 100 mm, the extra DC control gain about 20 dB,
the corner frequency about 3�2 kHz, and the roll-off rate in high frequency range
ÿ60 dB/Dec.
With such weight functions the transfer function of the designed H1 feedback

controller turns out to be

Gc�s� �
3257s5 � 1�8396108s4 � 7�63761011s3 � 1�041

61015s2 � 7�30161016s� 2�69161019

s5 � 4�8136104s4 � 1�1566109s3 � 1�666
61012s2 � 8�31461014s� 1�5161017
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TABLE 1

Measured system parameters

AF direction AT direction

R (O) 7�5 7�28
ks (V/mm) 1/320 1/320
L (mH) 0�144 0�0223
m (kg) 0�49e-3 0�49e-3
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In such a case the open loop transfer function appears as in Figure 9, where the
gain and phase margins are observed to be respectively 9�923 dB and 43�81� and
the bandwidth about 26104 rad/s. Such an analog controller is reduced by one
order using the balanced realization method [12] and cast into a discrete time
controller by the bilinear transform [13] with the sampling frequency of 32 kHz.
To see how the digital controller performs in practice, an experimental set-up

is built as in Figure 10. The vibrometer and the numerical integrator take the
place of the built-in focus error sensor, whereas the stored reference signal does
the vibration of the spinning optical disk.
With the initial conditions assumed to be zero, the AF system is servoed to

yield such results as in Figure 11, where the top four curves show the case of 16
speed and the other four curves the case of 86 speed. In so doing the number of
the original disk vibrational data has been increased by a linear interpolation to
match the sampling period of the discrete realtime control. In Figure 11 the
control performance proves good enough in terms of speed and accuracy within
the admissible range of control input voltage. This also implies the robustness of
the controller in that the experimental results satisfy the design speci®cations
even if the simple model contains some uncertainties. In fact, the controller was
also experimentally con®rmed to work even in the case of a 166 speed CD-

TABLE 2

Estimated system parameters

AF direction AT direction Remarkbkb (V/(m/s)) 0�1066569 Negligible

ẑ 0�1520755 0�1520755 Damping factorcon (rad/s) 164�2944561 251�3274123 Natural frequencybkF (N/A) 0�09837956 7�210e-2
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ROM drive assuming slightly smaller disk vibration than that of an 86 speed
one.
In addition, the disturbance effect can be evaluated by observing the

magnitude of the transfer function from Ye to Y in Figure 2. Referring to Figure
12, the effect is seen to be well suppressed by the designed feedback controller
over a wide frequency range. On the other hand, numerical simulations indicate
that the displacement in the AT direction caused by the AF servo system
oscillates within about 20�1 mm in case the eccentricity of 0�12 and 0�01 mm
exists in the x and y directions, respectively.

5. CONCLUSIONS

An optical pickup is modelled analytically in a plane to describe its coupled
AF and AT motions, and subsequently linearized combining actuator dynamics.
With its immeasurable system parameters estimated based on experimental data,
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such a model enables one to predict the interference between the AF and AT
servo systems and can be used in a decoupled form for designing the AF
positional servo controller. The desired servo performance and stability are
speci®ed in terms of the loop transfer function in the frequency domain. To
achieve loop shaping the H1 control scheme turns out to be appropriate and
ef®cient.
An experimental set-up is built involving the pickup in a commercial high

speed CD-ROM drive. A series of experiments prove the good performance and
stability robustness of the designed feedback controller under some realistic
power limitations.
Finally it may be worthwhile to mention three ways to further increase the

speed of the AF or AT servo system more than ever with the present pickup
structure retained. The ®rst is reducing the pickup weight further down. Second
is increasing the available power supply. The last is to apply a MIMO control
scheme employing extra light actuators to suppress the undesirable coupling
modes in the high frequency range.
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APPENDIX: AF TRANSFER FUNCTION OF THE PICKUP

G�s� � N�s�
D�s� ,

where

N�s� � kskFf�mIoz ÿ S2
y�s4 � �mcy � cxIoz�s3

� �mky � cxcy � kxIoz�s2 � �kycx � kxcy�s� kxkyg,

D�s� �Lm�mIoz ÿ S2
y ÿ S2

x�s7
� fRm�mIoz ÿ S2

y ÿ S2
x� � L�ÿcyS2

y ÿ cxS
2
x �mcyIoz �mcxIoz �m2cy�gs6

� fR�ÿcyS2
y ÿ cxS

2
x �mcyIoz �mcxIoz �m2cy�

� L�cxcyIoz �mkyIoz �mkxIoz �m2ky �mcxcy �mcycy ÿ S2
yky ÿ kxS

2
x�

� kFkb�mIoz ÿ S2
y�gs5

� fL�cxcycy �mkxcy �mkycy � kxcyIoz �mcxky � cxkyIoz �mcyky�
� R�cxcyIoz �mkyIoz �mkxIoz �m2ky �mcxcy �mcycy ÿ S2

yky ÿ kxS
2
x�

� kFkb�mcy � IozSx�gs4
� fL�kxkyIoz �mkxky �mkyky � kxcycy � cxcyky � cxkycy�
� R�cxcycy �mkxcy �mkycy � kxcyIoz �mcxky � cxkyIoz �mcyky�
� kFkb�mky � Iozkx � cxcy�gs3
� fR�kxkyIoz �mkxky �mkyky � kxcycy � cxcyky � cxkycy�
� L�cxkyky � kxcyky � kxkycy� � kFkb�kycx � kxcy�gs2
� fR�cxkyky � kxcyky � kxkycy� � Lkxkyky � kFkbkxkygs� Rkxkyky:
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