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Hybrid modal/ray acoustics models for high frequency multimode sound
propagation through ®nite-length dissipative duct silencers are being
investigated and in this paper, the very simplest of theseÐinvolving no mean
¯uid ¯ow, two-dimensional sound propagation, a locally reacting duct liner and
no area change in the silencerÐis described. A mode-matching scheme is also
presented. Numerical predictions of silencer attenuation from the hybrid model
and the mode-matching model are compared to experimental data taken from a
two-dimensional silencer apparatus, and favourable agreement is noted. Above
a certain lower frequency limit, the hybrid mode/ray model gives a good
approximation for the silencer attenuation, in comparison to mode-matching
predictions. Wave di�raction e�ects at the silencer terminations are also
discussed.

# 1999 Academic Press

1. INTRODUCTION

In predictive models for the acoustic attenuation of dissipative duct silencers
both with and without mean ¯uid ¯ow, it has often been assumed (see e.g., the
paper by Cummings and Sormaz [1]) that the axial attenuation rate of the least
attenuated acoustic mode will give a reasonableÐpossibly conservativeÐ
estimate of the silencer performance. Other, more complete, models (e.g., those
of Mechel [2, 3], Sormaz et al. [4], for ®nite length silencers without ¯ow and
Sormaz [5] for such silencers with ¯ow) involve mode-matching at the silencer's
terminations, and allow for a speci®ed multimode incident sound ®eld. Finite
element analysis and other numerical methods such as the method of weighted
residuals have also been applied to ®nite length silencers, for example by Astley
and Eversman [6] (in which a ®nite element formulation of the problem in the
absence of mean gas ¯ow is discussed), Eversman and Astley [7] (concerning a
weighted residual method for the problem with mean ¯ow) and Astley and
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Eversman [8] (involving a ®nite element scheme for the problem with mean
¯ow). More recently, Kirby [9] has applied a three-dimensional ®nite element
method to automotive silencers. Either mode-matching or fully numerical
schemes can require considerable computational effort, and there may be some
dif®culty in identifying and tracking modes in the former case. At high

frequencies, where there are many incident modes, the problem may become
intractable and one is led to wonder whether a simpler approach, such as ray
acoustics, can produce results of acceptable accuracy.
Ray models for duct acoustics have been investigated by several workers, such

as Tester [10, 11], Kempton [12, 13] and Boyd et al. [14]. Tester [10] compared
ray acoustics and modal predictions of the sound ®eld from a two-dimensional
line source in a duct with zero ¯ow and locally reacting walls, and concluded

that the ray acoustics models were ``surprisingly'' accurate. Kempton [13]
compared mode theory and ray theory predictions of the insertion loss of a fan
jet engine inlet silencer to measured data and noted good agreement under
certain conditions, though he concluded that further research on interference and
diffraction effects in the ray theory was needed. Boyd et al. [14] later presented
ray theory predictions in which these effects were taken into account for a two-

dimensional duct with zero ¯ow, and noted generally good agreement with other
results.
The attractive features of ray models are their simplicity and versatility, in

application to dif®cult duct geometries. Computational ``robustness'' and
rapidity are also features which can characterise such models. In the case of
rectangular section duct silencers where uniform inlet and outlet ducts ensure

well-de®ned modal sound ®elds, there are additional advantages in ray
formulations, because a speci®ed sum of propagating incident modes can readily
be expressed as a sum of travelling wave components (or rays), and a
transmitted ray ®eld canÐin suitable casesÐequally easily be expressed as
modes. Furthermore, it is often straightforward to ®nd the incident modal ®eld
from a known source distribution. This case isÐas it wereÐtailor-made for a

ray treatment, in contrast to the general case where rather more elaborate ray-
tracing methods may need to be applied (Dougherty [15], for example, described
recent work on a ray-tracing technique designed for use in jet engine inlet ducts).
It is, incidentally, worth noting that Mechel [2] resolved the incident and
transmitted mode ®elds of a baf¯e type silencer into plane travelling wave
components as a crucial part of his analysis, though these sound ®elds were
matched to a modal sound ®eld within the silencer itself.

In this paper, a very simple mode/ray formulation for sound attenuation in a
®nite length dissipative silencer with locally reacting walls, no area change and
containing zero ¯ow is described, and the results are compared to those from a
mode-matching treatment and to measured data. Some attention is also paid to
wave diffraction effects at the silencer terminations and to their role in
determining the validity of the ray model. The results of these comparisons

indicate the likely usefulness of ray models in more complex situations, such as
silencers with area changes and mean ¯uid ¯ow.
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2. A HYBRID MODE/RAY MODEL FOR A DISSIPATIVE SILENCER

In the simple ray model described here, scattering effects at the silencer
terminations are ignored, although their limiting effects on the validity of the
model are discussed separately. Inclusion of these effects would negate the
inherent simplicity of the ray model and incur great additional complexity. An
essential and important difference between the present model and those
described in references [10±15] is that, while in these other ray formulations rays
are ``traced'' from a source to an observation point via re¯ections from the duct
walls, the present treatment involves the generation of an incident modal sound
®eld by a prescribed source distribution. These modes are then individually
decomposed into rays until they have passed through the silencer, and the
emerging rays are then recombined to construct a transmitted modal sound ®eld.

2.1. THE MODEL

In Figure 1 is shown a section of two-dimensional duct with a length L of
soft, locally reacting, walls (the ``silencer'', region 2) and rigid inlet and outlet
sections (regions 1 and 3, respectively). The duct isÐfor convenienceÐassumed
to be anechoically terminated at both ends. A simple-harmonic multimode sound
®eld of radian frequency o is incident from the left, and is assumed to consist of
a sum of propagating modes comprising the plane wave (or fundamental) mode
and a series of higher-order modes. The higher-order incident modes will be
discussed ®rst. Each of these modes may be represented as a combination of two
plane travelling waves (treated here as rays) inclined to the duct axis, and one ray
pathÐfor a single modeÐis shown. The other ray path for this mode consists of
a vertical mirror image of that depicted, and this may readily be shown as
follows. Suppose the incident sound ®eld is given as a sum of modes by

p�x, y; t� � eiot
X1
m�0

Pme
ÿikmx cos�mpy=a�, �1�

where m(=0, 1, 2, . . . ) is the mode order and km the axial wavenumber,��������������������
�k2ÿ�mp=a�2�
p

, k being the acoustic wavenumber, o/c, and c the sound speed. Each
mode may be represented as the sum of two travelling waves (or rays):

���

���
���
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Ray path for
 a single mode

Figure 1. Finite length duct silencer with ray path.
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Pm cos�mpy=a� exp�ÿikmx� � �Pm=2��eÿikx sin yÿiky cos y � eÿikx sin y�iky cos y� �2�

The component rays of each mode propagate at angle y=cosÿ1 (mp/ka) to the
y-axis. This representation is equally valid in the transmitted sound ®eld, but not
in the silencer section, where the mode functions involve complex transverse
wavenumbers. Suppose one neglects any diffraction effects at the silencer inlet
and outlet (see sections 2.2 and 5.3 for a discussion of these effects), and assumes
that purely specular re¯ection (at angle y) of the rays occurs within both the
rigid and soft duct sections. A ray leaving the rigid-walled inlet section strikes
the soft walls in region 2 also at angle y, and thereafter remains inclined at the
same angle. This assumption will (as will be shown) become progressively better
as the frequency increases. It is worth noting at this point that, while a single
mode in regions 1 and 3 may be represented exactly by two component rays
undergoing multiple re¯ections from the walls, the same does not hold for
region 2. Morse and IngaÊ rd [16] (see Chapter 9) have shown that, for an
appropriately large wall impedance, the two-ray modal synthesis is only
approximately valid for lined ducts and comment, ``An approximate answer is
all we can expect from this mixture of wave and geometrical acoustics''. One
would therefore expect a single incident mode (or its two component rays) at
angle y from region 1 to excite a series of modes in region 2 (and not just a single
mode) whichÐat suf®ciently high frequenciesÐshould combine to give an
approximation to a multiply re¯ecting pair of rays at angle y, with an equivalent
net axial decay rate and phase speed, over the length of the lined duct section.
The quality of this approximation would depend on the extent to which the
assumptions of ray acoustics as applied here (e.g., negligible scattering effects)
were satis®ed.
If the dimensionless normal impedance of the soft walls (referred to the

characteristic impedance of air and equal for both walls) is zw= rw+ixw , one
may easily show that the sound power re¯ection coef®cient of a ray from the
duct walls is

ty � ��rw cos yÿ 1�2 � �xw cos y�2�=��rw cos y� 1�2 � �xw cos y�2�: �3�

For a particular mode, the average number of re¯ections of its plane-wave
components from the duct walls within the length L is n=L/a tan y. Then the
space-averaged mean-squared sound pressure of the mode at the silencer outlet is
given in terms of that at the inlet by

hp2miout � tnyhp2miin, m > 0; �4�

since hp2mi in a mode is the sum of hp2mi in both component rays. The
fundamental mode (with m=0) must be treated separately becauseÐaccording
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to the above reasoningÐits ray equivalent suffers no re¯ections from the duct
walls and is therefore not attenuated as it passes through the silencer. This
would lead to an under-prediction of the silencer attenuation, particularly in the
case of long silencers, since all higher modes would experience attenuation in
proportion to the length of the silencer, but the fundamental mode would not.
Of course, the usual full ``wave'' treatment (involving a solution of the acoustic
wave equation subject to the boundary conditions at the wall, see section 3) for
the fundamental mode is incompatible with a ray model, but a simple quasi-
plane wave treatment would seem appropriate in the present context, and will
therefore be employed. Morse and IngaÊ rd [16] (Chapter 9) have described
approximations to modal axial wavenumbers in ducts with small admittance
walls and, for the fundamental mode, their results may be expressed as a
fundamental mode propagation coef®cient

G0 � Gr
0 � iGi

0 � ik
������������������������
1ÿ i2=kazw

p
, �5�

where the x-dependence in the fundamental mode is exp(ÿG0x). The real part of
G0 determines the axial attenuation rate of this mode, and one has

�p20�out � exp�ÿ2Gr
0L��p20�in �6�

as the equivalent of equation (4). Equation (5) will only yield a reasonably
accurate prediction of the fundamental mode attenuation at fairly low
frequencies, but it would normally be suf®cient to suppress the dominating effect
of this mode in cases where the higher modes present are fairly strongly
attenuated.
It is of interest to be able to predict both the multimode sound pressure level

difference LPD between the y-space-averaged mean-squared pressures at the
silencer inlet and outlet (equalÐin this model where there are no re¯ected
wavesÐto IL, the insertion loss) and the sound power transmission loss TL,
de®ned in the usual way. Both quantities will, of course, depend on the relative
amplitudes of the modes in the incident sound ®eld. Various assumptions may be
made about this modal distribution, and some of them shall be considered in the
following sub-sections.

2.1.1. Equal mean-squared sound pressure and energy density in the incident modes

Perhaps the simplest assumption is that hp2miin is independent of m. (It is
readily shown that this also implies that the modal energy densityÐde®ned as
modal sound power per unit cross-sectional area of duct, divided by modal
group velocityÐis constant over all modes.) The y-space-averaged mean-squared
pressure in the multimode inlet sound ®eld is given simply as the sum of the
space-averaged modal mean-squared pressures, over the number of propagating
modes N=Int(ka/p)+1 (Int(x) signifying truncation to the value of the largest
integer less than or equal to x), since cross-terms between modes integrate to
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zero in the spatial averaging. From this assumption about the incident sound
®eld, one has the result

LPD � 10 log
XN
m�0
hp2miin

�XN
m�0
hp2miout

 !

� 10 log
XN
m�0
hp2miin

�
hp20iinexp�ÿ2Gr

0L� �
XN
m�1

tnyhp2miin
" # !

�ÿ 10 log
1

N� 1
exp�ÿ2Gr

0L� �
XN
m�1

��rw ÿ ka=mp�2 � x2w�
��rw � ka=mp�2 � x2w�

 ! L

a

��������������
�ka=mp�2ÿ1
p24 358<:

9=;:
�7�

The TL may be found by summing the incident and transmitted modal sound
power Wm per unit width of duct,

TL � 10 log
XN
m�0

W in
m

�XN
m�0

Wout
m

 !

� 10 log
XN
m�0

W in
m

�
W in

o exp�ÿ2Gr
0L� � tny

XN
m�1

W in
m

" # !

� ÿ10 log
exp�ÿ2Gr

0L� �
XN
m�1

1ÿ mp
ka

� �2� �1=2 �rw ÿ ka=mp�2 � x2w

�rw � ka=mp�2 � x2w

" # L

a

��������������
�ka=mp�2ÿ1
p

XN
m�0

1ÿ mp
ka

� �2� �1=2
8>>>>><>>>>>:

9>>>>>=>>>>>;
,

�8�
since

W in
m � hp2miin

a

rc
km
k

and Wout
m � tnyW

in
m: �9�

2.1.2. Equal sound power in the incident modes

The assumption here is that W in
m is independent of m. Proceeding as above

and utilising equation (9), one has

LPD � ÿ10 log

exp�ÿ2Gr
0L� �

XN
m�1

�rw ÿ ka=mp�2 � x2w

�rw � ka=mp�2 � x2w

" # L

a

��������������
�ka=mp�2ÿ1
p

1ÿ mp
ka

� �2� �ÿ1=2
XN
m�0

1ÿ mp
ka

� �2� �ÿ1=2
8>>>>><>>>>>:

9>>>>>=>>>>>;
�10�
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and

TL � ÿ10 log 1

N� 1
exp�ÿ2Gr

0L� �
XN
m�1

�rw ÿ ka=mp�2 � x2w

�rw � ka=mp�2 � x2w

" # L

a

��������������
�ka=mp�2ÿ1
p24 358<:

9=;:
�11�

2.1.3. A point source

For the comparison between experiment and prediction that will later be
presented, one requires the incident sound ®eld generated by a point volume
source on one of the duct walls, since this is readily predictable and fairly easily
measurable. In this case,

hp2miin � p20�k=km�2=Lm, where Lm � 1; m � 0;� 1=2; m 6� 0 �12�
and p20 is the mean-squared sound pressure in the fundamental mode. Again
following the above arguments, one has

LPD � ÿ10 log

exp�ÿ2Gr
0L� �

XN
m�1

1

Lm�1ÿ �mp=ka�2�
�rw ÿ ka=mp�2 � x2w

�rw � ka=mp�2 � x2w

" # L

a

��������������
�ka=mp�2ÿ1
p

XN
m�0

1

Lm�1ÿ �mp=ka�2�

8>>>>><>>>>>:

9>>>>>=>>>>>;
�13�

and

TL � ÿ10 log

exp�ÿ2Gr
oL� �

XN
m�1

1

Lm�1ÿ �mp=ka�2�1=2
�rw ÿ ka=mp�2 � x2w

�rw � ka=mp�2 � x2w

" # L

a

��������������
�ka=mp�2ÿ1
p

XN
m�0

1

Lm�1ÿ �mp=ka�2�1=2

8>>>>><>>>>>:

9>>>>>=>>>>>;
:

�14�

2.2. DIFFRACTION EFFECTS AT THE SILENCER TERMINATIONS

Although the effects of ray diffraction at the silencer terminations are
neglected in the present formulation, a consideration of these effects will enable
one to gain at least a qualitative understanding of the lower frequency limit of
validity of ray models. It will perhaps be suf®cient for this purpose to consider a
simpler problem: the re¯ection of a plane wave from an in®nite plane that is
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half-rigid and half-soft, with a locally reacting surface. Various treatments of this
geometry have appeared in the literature but the analysis of Morse and IngaÊ rd
[16] (Chapter 8) is particularly appropriate and yields a simple result, which is

adequate to illustrate the diffraction phenomenon. The geometry is shown in
Figure 2. A plane wave is incident on the discontinuity between the hard and

soft parts of the plane, at angle yi to the normal. The quantity of interest is the
sound pressure amplitude of the re¯ected wave (also travelling at angle yi) at

distance r from the discontinuity, along a wavefront, with d being the co-
ordinate of a point P along the wavefront as shown. The result of solving the
integral equation for this problem by the use of the Wiener±Hopf technique (for

large kr) yields an expression for the sound pressure amplitude Pr re¯ected when
a wave of unit amplitude is incident,

Pr ÿ4
kr41

1ÿ b
2�cos yi � b� f�1ÿ C�u� ÿ S�u�� � i�C�u� ÿ S�u��g; d < 0

cos yi ÿ b
cos yi � b�

b
2�cos yi � b� f�1ÿ C�u� ÿ S�u�� � i�C�u� ÿ S�u��g, d > 0

8><>:
9>=>;,

�15�
where u � �kd= �������

2kr
p �2, b is the dimensionless admittance (referred to rc) of the

soft part of the plane and C(u), S(u) are Fresnel integrals (see for example the

book by Abramowitz and Stegun [17]). This expression is clearly not valid for
d=0, where a discontinuity in re¯ected pressure amplitude is forecast, but it will

nonetheless predict the general behaviour of the diffracted sound ®eld. The large
kr requirement in the derivation of equation (15) is not as restrictive as it might
appear in the context of duct silencers, since these formulae are required here
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Figure 2. A plane wave incident on a half-rigid, half-soft plane.
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only to give a qualitative measure of diffraction effects, ultimately indicating that
these become weaker as the frequency increases. It is worth observing that, for
kd large and negative, Pr tends to unity (corresponding to re¯ection from a rigid
plane), whereas if kd is large and positive, Pr tends toward (cos yiÿ b)/
(cos yi+b), the re¯ected amplitude from an in®nite plane of admittance b.
Quantitative predictions from equation (15) will be discussed in section 5.3.
One might note, ®nally, that ray diffraction effects at the silencer terminations

in situ can alternatively be expressedÐwith greater precisionÐin terms of higher
order acoustic modes in both the lined and unlined duct sections. That is to say,
the highly complex patterns that would arise near the terminations, particularly
after successive re¯ections of the diffracted sound ®elds from the duct walls, are
equivalent to sums of higher order acoustic modes (see section 3).

3. A MODE-MATCHING FORMULATION

Here, expressions for the sound ®elds in regions 1, 2 and 3 respectively are
written as

p1 � eiot
X1
m�0

Cm�y��Pm
1i e
ÿiamx � Pm

1r e
iamx�, �16a�

p2 � eiot
X1
m�0

Fm�y��Pm
2i e
ÿibmx � Pm

2r e
ibmx�, p3 � eiot

X1
m�0

Cm�y�Pm
3i e
ÿiamx 0 , �16b, c�

where Cm(y)=cos(mpy/a) and Fm(y)=cos(gmy)+Am sin(gmy), gm being the
transverse wavenumber in the silencer section and Am a constant. Subscripts i
and r denote incident and re¯ected waves, respectively. The duct is (as before)
assumed to be anechoically terminated at both ends, so that not only are there
no re¯ected modes in the silencer outlet section, but the re¯ected modes in the
inlet section do not return to the silencer. One ®nds gm from solutions of the
eigenequations

tan�gma=2� ÿ izwgm=k � 0 �antisymmetrical modes�, �17a�
cot�gma=2� � izwgm=k � 0 �symmetrical modes�: �17b�

These equations were solved by the use of Muller's method. This process,
together with the following mode-matching procedure, was carried out at a series
of closely spaced frequencies over the range of interest. At the three lowest
frequencies, the solutions of equations (17a, b) were begun for a 1-mm thickness
of absorbent and the thickness increased, by 120 increments, up to the actual
lining thickness. The iterated set of wavenumbers at each thickness increment
was used as the set of initial values for the subsequent increment. For the
smallest thickness, the rigid-wall wavenumbers were used. For frequencies higher
than the lowest three values, extrapolation of the wavenumber of each mode
from the previous three frequencies was achieved by the use of a quadratic
polynomial, and the extrapolated value was used as a starting value in Muller's
method. This was done for all modes included in the solution.
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Mode-matching was achieved by carrying out a least-squares match of sound

pressure and axial particle velocity at x=0 and x=L. In the case of sound

pressure, the square of the sound pressure jump for a ®nite sum of M+1 modes

at (for example) x=0 was integrated across the duct width and then minimized

with respect to Pn
2i. The jump in axial particle velocity at x=0 was treated in the

same way. The same process was carried out at x=L, but now the minimization

was with respect to Pn
2r. Thus, for example at x=0, one has for sound pressure

e1 �
XM
m�0
�Pm

2i � Pm
2r�Fm�y� ÿ

XM
m�0
�Pm

1i � Pm
1r�Cm�y�,

D1 �
�a
0

e21 dy; @D1=@P
n
2i � 0; i:e:, 2

�a
0

e1
@e1
@Pn

2i

dy � 0, �18�

with n=0, 1, . . . , M. This should yield a ``best'' set of transmitted modes at

x=0, and gives rise to M+1 equations in the 2M+2 unknown modal

pressure coef®cients Pm
2i and Pm

1r:

Pn
2i�aLn�ÿ

XM
m�0

Pm
1r

�a
0

FnCm dy

�
XM
m�0

Pm
1i

�a
0

FnCm dyÿ Pn
2r�aLn�, n � 0, 1, . . . , M, �19�

where

Ln � 1

a

�a
o

F2
n dy: �20�

For axial particle velocity, one has, as above,

e2 � 1

or

XM
m�0

bm�Pm
2i ÿ Pm

2r�Fm�y� ÿ
XM
m�0

am�Pm
1i ÿ Pm

1r�Cm�y�
" #

,

D2 �
�a
0

e22 dy, @D2=@P
n
2i � 0, i:e:, 2

�a
0

e2
@e2
@Pn

2i

dy � 0, �21�

and so

Pn
2i�abnLn��

XM
m�0

Pm
1ram

�a
0

FnCm dy

�
XM
m�0

Pm
1iam

�a
0

FnCm dy� Pn
2r�abnLn�, n � 0, 1, . . . , M: �22�

Equations (19) and (22) constitute a set of 2M+2 linear equations in the

2M+2 unknown re¯ected and transmitted modal coef®cients at x=0, upon

assuming all incident modal coef®cients in region 1 and re¯ected modal

coef®cients in region 2 are speci®ed. The incident coef®cients were readily found
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here for a point source located on one of the duct walls a distance xs from the
inlet to the silencer:

Pn
1i=�roQ0=2Sk� � k eÿianxs=anLn, �23a�

S being the cross-sectional area of the duct and Q0 the volume velocity
amplitude of the source. In the case of the mode-matching model with equal
incident modal energy density, the Pn

1i values were found from

Pn
1i � �Pn

ref=
������
Ln

p
� eÿianxs , �23b�

Pn
ref being a reference sound pressure amplitude in the nth incident mode, put

equal to unity. Only propagating incident modes were included. The phase of
each incident mode is dictated by the value of anxs . The equations in the
unknown modal coef®cients in the outlet plane, at x=L, are

ÿPn
2r�a eibnLLn� �

XM
m�0

Pm
3i

�a
0

FnCm dy � Pn
2i�a eÿibnLLn�; n � 0, 1, . . . , M,

�24a�

Pn
2r�abn eibnLLn� �

XM
m�0

Pm
i3am

�a
0

FnCm dy � Pn
2i�abneÿibnLLn�, n � 0, 1, . . . , M,

�24b�
from continuity of sound pressure and axial particle velocity, respectively.
Initially, all Pm

2r values were equated to zero, and equations (19) and (22) were
solved. The Pm

2i values were used for the set of incident modes at x=L, and
equations (24a, b) for the re¯ected and transmitted modal coef®cients at x=L
(again 2M+2) were solved. The Pm

2r values were then used in the equations at
the inlet to ®nd new. Pm

2i values, and the process was repeated until the modal
coef®cients ceased to change signi®cantly. This iterative process reduced the
number of equations to be solved simultaneously by a factor of two and, since
only a small number of iterations was required, considerably reduced the
computation time. A suf®ciently large value of M was taken, so that the solution
had converged adequately. A further reduction in computing time was achieved
here by separately matching the odd and even modal components in the sound
®eld so that, instead of solving a set of 2M+2 equations, two sets of M+1
equations were solved at each iteration. The value of M was put equal to the
number of propagating modes at the particular frequency, plus a further number
of modes. This additional number was put equal to 9 in the computed data
presented here, and proved suf®cient to ensure reasonable convergence of the
solution.
Once the modal coef®cients had been determined, it was a straightforward

matter to compute both the LPD and TL of the silencer. These quantities were
found from the coef®cients of the propagating modes incident on, and
transmitted by, the silencer. In the mode-matching model, modes are re¯ected
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from the silencer inlet and outlet, in contrast to the ray model, though as far as
the LPD and TL are concerned, their role is only in determining the transmitted
modal coef®cients.

4. EXPERIMENTS

To verify the predictions of the ray model by comparison to experimental
data, a two-dimensional duct test apparatus was fabricated. A plan view of this
is shown in Figure 3. The height of the duct was 25 mm, enabling two-
dimensional mode propagation to occur up to about 6�9 kHz. The source
loudspeakerÐa medium-sized pressure driverÐwas connected to the duct by a
10-mm diameter hole located halfway along the 25-mm duct wall (this
arrangement being intended to simulate the aforementioned point source), and
so only even modes in this dimension should, in theory, have been excited.
Consequently the frequency range for two-dimensional modes was from 0 to
13�8 kHz. Non-idealities in construction of the duct would, in reality, impose a
rather lower limit and experimental data were taken only up to 7�5 kHz. The
soft walls in the silencer section consisted of a 35-mm thickness of partially
reticulated polyurethane foam with a steady ¯ow resistivity of 4390 mks rayl/m.
The bulk acoustic properties of the foamÐrequired to determine the normal
surface impedance of the linerÐwere found by means of an impedance tube,
from tests on two differing thicknesses of absorbent. The foam was cut into
sections 25 mm wide, and these were separated by thin aluminium baf¯es placed
transverse to the duct axis, to prevent wave propagation along the liner and
render it essentially point reacting. These baf¯es would cease to be completely
effective for this purpose much above about 7 kHz, although no really sudden

500 mm

710 mm 710 mm

300 mm
140 mm 140 mm

SilencerWedge Wedge

Loudspeaker
Probe microphone

35 mm

From noise
generator and

power amplifier

To microphone amplifier 
and two-channel

FFT analyzer

Figure 3. Experimental duct apparatus.
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departure from point reacting behaviour would be anticipated at rather higher
frequencies. The normal impedance (in rc units) of the acoustic lining with its
rigid backing, predicted from the bulk acoustic properties of the foam, is plotted
in Figure 4 from 200 Hz to 5 kHz. We note that, from about 1 to 3 kHz,
jzwj< 1, i.e., the walls are fairly ``soft'' over this frequency range.
Random noise was fed from an ampli®er to the speaker and the sound ®eld

was sampled by means of a probe microphone at 20-mm intervals. Single
frequency sound pressure level data (in the form of a transfer function, referred
to the voltage input to the speaker) were obtained from an FFT analyzer and
spatially averaged mean-squared pressure ®gures were found at each frequency.
The silencer section could be removed, thereby permitting measurement of the
sound pressure level with no silencer present. The IL of the silencer could thus
be found directly by means of this duct apparatus.

5. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, the mode-matching formulation is ®rst veri®ed by comparison
to experimental data of the LPD with a point source, and comparison is made to
LPD predictions from the ray model. Then a series of comparisons is made
between mode and ray predictions of TL and LPD for an incident sound ®eld
with equal acoustic energy density distribution in the modes. Finally, some
diffraction patterns are presented for a range of frequencies and these are viewed
in the light of the previous comparisons between ray and mode predictions, with
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Figure 4. Predicted normal impedance zw of the experimental duct lining against a rigid backing,
in rc units: ÐÐÐÐ, resistance rw ; - - - - - reactance xw .
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the object of establishing their relevance to a lower frequency limit on the range
of validity of ray models.

5.1. COMPARISON BETWEEN LPD PREDICTIONS AND MEASUREMENTS

The normal surface impedance of the experimental silencer was predicted via
the bulk acoustic properties of the foam, from zw � za coth G`, za and G being
the dimensionless characteristic impedance and the dimensional propagation
coef®cient respectively, and ` the liner thickness. Predictions were made of the
LPD of the silencer from 200 Hz to 10 kHz by the ray theory, and from 200 Hz
to 4�9 kHz by the mode-matching theory. This upper frequency limit was
imposed by the maximum allowable size of argument of exponential functions
used in the computer routines for circular functions with complex argument,
employed in the eigenequations (17a, b). A large imaginary part in the transverse
wavenumber of a mode in the lined duct section could cause over¯ow in
execution of the program. This could, perhaps, have been overcome by a re-
formulation of the problem, but the effort involved in this was not considered
worthwhile, since multimode predictions up to about 5 kHz were deemed to be
adequate for the purpose in the present investigation.
Comparison is made between the two LPD predictions and measured data in

Figure 5. It can be seen that the LPD predicted by both methods exhibits a
series of (theoretically in®nite) peaks at the cut-on frequencies of higher modes
in the inlet and outlet ducts. The minimum LPD values, between these peaks,
are all less than about 10 dB. The mode-matching predictions are in excellent
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Figure 5. Predicted and experimental LPD for the test duct with a point source: ÐÐÐÐ, ray
model; - - - - -, mode-matching model, ~ measured data.
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agreement with the measured data up to 4�5 kHz (at which frequency 9 modes
propagate). Below about 1�8 kHz, the ray theory does not predict the minimum
LPD values accurately, but this would not be expected in view of the various
approximations upon which it relies. Above this frequency, it is in good
agreement with the mode-matching theory. Above 5 kHz, the ray theory is in
excellent agreement with the measured data. We note undulations in the
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Figure 6. Predicted LPD and TL for the test duct with a point source. (a) mode-matching model,
(b) ray model; ÐÐÐÐ, LPD; - - - - -, TL.
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envelope of the minimum values of the LPD, more obviously in the ray theory
predictions. These can be qualitatively explained by plotting the curve of the
energy absorption coef®cient of a wall in region 2 for y=45� (chosen as a
representative angle of incidence) versus frequency. This curve (not shown here
for the sake of clarity) tends to follow the same pattern. One can see from
equation (13) that a high wall absorption coef®cient implies a high LPD ®gure,
at least on the basis of the ray model. The numerical predictions from the mode-
matching model appear to follow this trend too, in the range 2±5 kHz.

5.2. SOME NUMERICAL PREDICTIONS FOR THE TEST DUCT

In this section, predicted LPD and TL data are presented for the test
silencerÐboth as it was in the experiments and with various changes, e.g.,
different values of xs and LÐand for a more practical type of silencer. Two
different assumptions are made about the incident sound ®eld: modes from a
point source and equal energy density in all incident modes.

5.2.1. The point source

Comparisons are made between the predicted LPD and TL for the test duct in
Figure 6(a, b), from both the mode-matching model and the ray model. The
values of xs and L are as they were in the experiments. The results from the
mode-matching model are shown in Figure 6(a), the frequency range being 0±
5 kHz. The general shapes of the plots are very similar, although the TL ®gures
are lower than the LPD values. The ray model results are plotted over the range
0±10 kHz in Figure 6(b). Again, the TL curve is lower than the LPD curve, and
the two plots are of similar shape. Both TL and LPD curves in Figures 6(a, b)
exhibit sharp (theoretically in®nite) peaks at modal cut-on frequencies.

5.2.2. Equal energy density in the incident modes

Neise et al. [18], in a theoretical and experimental study of fan noise
propagation in rectangular ducts, have shown that equality of energy density
amongst propagating modes best represents a multimode sound ®eld. As
mentioned in section 2.1.1, this also implies equality of space-averaged mean-
squared sound pressure over the propagating modes, and equations (7) and (8)
may be employed to give ray model predictions for the LPD and TL
respectively. Since fan noise is usually the dominant noise source in air-moving
ducts (perhaps the main application of the present work), it is appropriate to
assume equality of modal energy density as a typical representation of a realistic
sound ®eld.
Ray model predictions of LPD and TL for the test duct with equal energy

density in all incident modes are shown in Figure 7. Again, the TL curve lies
below the LPD curve, but this time neither the TL nor the LPD curves show the
peaks at modal cut-on that are characteristic of the point source plots of Figures
5 and 6(a, b). Instead, the LPD shows a small step increase with rising frequency
and the TL merely a slight kink.
In the case of the mode-matching model, the predicted LPD and TL depend

on the relative phases of the incident modes (whereas the ray model does not
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distinguish between them). This is easily seen if the incident and transmitted
sound ®elds are related via a (square) transmission matrix �T� � �Tij� of size
M+1,

fPi
3ig �

P0
3i�
�
�

PM
3i

8>>>><>>>>:

9>>>>=>>>>; � �Tij�

P0
1i�
�
�

PM
1i

8>>>><>>>>:

9>>>>=>>>>; � �Tij�fPi
1ig, �25�

where {Pi
3i} and {Pi

1i} are column vectors containing the transmitted and
incident modal coef®cients respectively. The elements of [T] are not of course
dependent on the incident or transmitted sound ®elds, but only on the silencer
parameters. Clearly, each transmitted modal coef®cient will be dependent not
only upon the moduli of all the incident (complex) modal coef®cients, but also
on their phases. This modal coupling occurs at the silencer terminations. In the
ray model, the relative phases of the incident modes are immaterial, since
acoustic re¯ection at the silencer terminations is ignored.
Mode-matching predictionsÐwith equal energy density in all incident

modesÐof the TL for the test silencer with L=0�5 m are plotted in Figure 8(a),
for ®ve different values of xs: 0, 0�14, 0�3, 0�6, and 1�0 m. These valuesÐapart
from the ®rst and secondÐwere arbitrarily selected. For xs=0, all incident
modes are in phase (see equation (23b)), though for the other values of xs , the
relative modal phase is governed by an for each mode. The most obvious feature
of the curves in Figure 8(a) is that the TL for xs=0 is signi®cantly higher,
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Figure 7. Predicted LPD and TL for the test duct with equal energy density in all incident
modes: ÐÐÐÐ, LPD; - - - - -, TL.
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Figure 8. Mode-matching and ray predictions of TL for the test duct (equal energy density in all
incident modes), with varying duct lengths and source positions: (a) mode-matching predictions
for L=0�5 m: Ð~Ð, xs=0, Ð*Ð, xs=0�14 m,- - - - -, xs=0�3 m,Ð&Ð, xs=0�6 m,
ÐÐÐÐ, xs=1�0 m; (b) L=0�5 m, (c) L=1�0 m, (d) L=2�0 m:- - - - -, mode-matching predic-
tions for various values of xs from 0�14 to 1�0 m; ÐÐÐÐ, ray predictions.
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above 1�5 kHz, than the other curves, which lie fairly close together. The reason
for this is not clear, but it is obviously very unlikely in practice for the phases of
the incident modes all to be the same. Therefore, the plot for xs=0 is regarded
as being unrealistic, and the TL range spanned by the other curves is taken to be
more representative of a typical incident sound ®eld. In Figure 8(b), the curves
for xs 6� 0 (not shown here by different symbols) are compared to the ray theory
and reasonable agreementÐto within 2±3 dBÐis noted above about 1�8 kHz.
Comparisons of mode-matching TL predictions for xs=0�14 m, . . . , 1�0 m (as

in Figure 8(b)) and ray predictions are shown in Figure 8(c) for L=1�0 m and
in Figure 8(d) for L=2�0 m. Good agreement between ray and mode-matching
predictions is noted. A comparison between mode-matching and ray predictions
(as before, with equal energy density in all incident modes) is shown in Figure 9,
for a duct with a liner that is more representative of practical types of absorbent.
Here, a=0�3 m, L=0�5 m, xs=0�14 m (in the case of the mode-matching
predictions), the liner is ®brous and its thickness and steady ¯ow resistivity are
0�1 m and 104 mks rayl/m respectively. The bulk properties of this lining
material were found by the use of the empirical formulae of Delany and Bazley
[19]. Agreement between the two methods is very close in this case, certainly
within 1±2 dB over most of the frequency range. Even at low frequencies, the
ray predictions are in good agreement with the mode-matching theory. A
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Figure 9. Mode-matching and ray predictions (with equal energy density in all incident modes) of
TL for a duct with a=0�3 m, L=0�5 m, xs=0�14 m and a 0�1-m thick lining of ®brous material
against a rigid backing; ¯ow resistivity of lining material=104 mks rayl/m: ÐÐÐÐ, mode-
matching model; - - - - -, ray model.
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possible reason for this better agreementÐas compared to that for the
experimental ductÐis given in section 5.3.

5.3. DIFFRACTION EFFECTS

In section 2.2, some consideration was given to diffraction effects at the
junction between the rigid and soft parts of the duct. While this can only give an
indication of wave scattering effects at the silencer inlet and outlet, it is worth
discussing some representative diffraction patterns with the main objective of
establishing that diffraction effects are small at suf®ciently high frequencies.
Expressions (15) are particularly relevant to the inlet, but cannot be used to
represent the sound pressure pattern in a ray after the second re¯ection from the
duct walls, since specular re¯ection will only occur for a plane incident waveÐan
incident diffracted wave ®eld would become distorted upon re¯ection from a soft
wall. Even so, an indication of the diffraction effects in the incident wave before
the second re¯ection for a range of frequencies is of interest. Plots of jPrj (for
unit incident pressure amplitude) versus y are shown in Figures 10(a±d), for
r=1 m, yi=45� (a representative angle), a soft wall with the same impedance
as that in the experimental duct and at a range of frequencies. This value of r is
chosen simply so that kr> 20 (a suitably large value) for all frequencies of
interest. It should be noted that, as r increases, the diffraction peaks and troughs
all move toward y,=0�, i.e., the diffraction pattern ``shrinks'' laterally. This can
be appreciated from the de®nition of u. The discontinuity in jPrj at y=0� can be
clearly seen. The dashed lines in Figures 10(a±d) show the limiting value of jPrj
as kd!21, and correspond to plane-wave re¯ection from a rigid or soft
surface, as discussed in section 2.2; they represent to the ``ideal'' high-frequency
case in ray acoustics, where diffraction effects are absent. For f=1�25 kHz,
diffraction effects can be seen to dominate the pressure pattern within the range
y1225�, with large deviations from the ideal asymptotic step change in jPrj,
and it is not surprising that the ray acoustics approximation begins to break
down at the lower frequencies. At 2�5 kHz, however, the diffraction-dominated
region is only within the region y1218�. A better approach to ray behaviour
might be expected, consistent with the better agreement between ray and mode
models for the TL at this higher frequency. At 5 kHz, the pressure pattern can
be seen to be considerably closer to the ideal, and at 10 kHz, even more so. The
pattern of jPrj is not very sensitive to yi; plots for yi=0� were very similar to
those in Figures 10(a±d), and so are not shown. Further diffraction patterns are
shown in Figures 11(a±d). This case is that of Figures 10(a±d), but with a wall
impedance corresponding to the plots in Figure 9, with a 0�1-m thick ®brous
absorbent placed against a rigid backing. This absorbent is closer to a practical
case than the plastic foam used in the experimental duct. One can note that, at
1�25 kHz, diffraction effects are signi®cantly less pronounced than with the
plastic foam absorbent, and the same is trueÐbut to a lesser extentÐat 2�5 kHz.
The patterns at 5 and 10 kHz are similar for the two liners.
The data shown here are broadly in keeping with the quality of agreement

between the ray and mode TL predictions at different frequencies. For example,
the weaker diffraction effects at 1�25 kHz in the case of the ®brous lining are
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Figure 10. Diffraction pattern for a plane wave of unit sound pressure amplitude, incident upon
a half-rigid, half-soft plane (see Figure 2 for geometry), r=1 m, yi=45�; impedance of soft half
is that of the experimental duct lining: ÐÐÐÐ, predicted jPrj (expressions (15)); - - - - -, jPrj for
re¯ection from in®nite rigid and in®nite soft surfaces. (a) f=1�25 kHz; (b) f=2�5 kHz; (c)
f=5 kHz; (d) f=10 kHz.
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Figure 11. Diffraction pattern for a plane wave of unit sound pressure amplitude, incident upon
a half-rigid, half-soft plane (see Figure 2 for geometry), r=1 m, yi=45�; impedance of soft half
is that of the duct lining in Figure 9: ÐÐÐÐ, predicted jPrj (expressions (15)); - - - - -, jPrj for
re¯ection from in®nite rigid and in®nite soft surfaces. (a) f=1�25 kHz; (b) f=2�5 kHz; (c)
f=5 kHz; (d) f=10 kHz.
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consistent with the very signi®cantly better agreement between ray and mode
predictionsÐevident in Figure 9Ðthan that in Figures 8(b±d). It is dif®cult to
give any very general guidelines about the lower frequency limit of applicability
of ray models, because this will depend on the wall impedance and how it
changes with frequency. However, the plots shown here qualitatively support the
physical arguments that diffraction effects should become unimportant at high
frequencies, where ray acoustics is a valid approximation.

6. DISCUSSION AND CONCLUSIONS

The very simple multimode ray model that has been described has given
gratifyingly accurate predictions of the LPD as compared to the more complete
mode-matching model and to measured data, in a particularly dif®cult
comparison involving a point sound source. It was not considered necessary to
make comparisons between the two models and experimental data with
equipartition of energy density between the incident modesÐa more realistic
assumption in practical situationsÐand in any case, it would have been dif®cult
to generate this kind of sound ®eld in the experimental system employed in this
investigation.
The loss of predictive accuracy in the ray model (as compared to a more

accurate formulation) would seem to be more than offset by the great ease with
which it may be employed. The model involves a much more ``physical''Ð
though less preciseÐdescription of the sound ®eld in a silencer than that
embodied in the modal formulation (or, for that matter, in a fully numerical
treatment such as a ®nite element analysis). The ray formulationÐas given
hereÐis intended to be applicable at frequencies where there are multiple
propagating modes incident on the silencer. At lower frequencies, where the
fundamental mode dominates the sound ®eld in the lined duct section, the ray
model would not necessarily be very accurate because of the approximate nature
of the model adopted here for the fundamental mode attenuation (see equation
(5)). It is not intended as a substitute for more exact treatments where accurate
results are required, but neither does it fall within the category of ``simplistic
formulae'' (all too numerous in the ®eld of sound-absorbing ducts), which
usually do not embody all the important physical features of the problem and
frequently give results that are several hundred percent in error in the decibel
attenuation ®gure. The object of the present investigation was to determine
whether a ray treatment is likely to be of value as a design tool for rectangular
section dissipative duct silencers (such as those in ventilation systems) at
frequencies above the point where the fundamental mode is predominant. The
combination of a fundamental-mode formulationÐto cover the low frequency
rangeÐand a high-frequency ray model is potentially extremely useful in silencer
design.
The two-dimensional ray treatment has been extended to three dimensions

(though the details are not given here), and the resulting formulae are still very
straightforward. The three-dimensional model has not yet been experimentally
veri®ed. Mean gas ¯ow effects can, in principle, readily be included in the ray
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model, and in order to apply ray models to practical devices such as splitter
silencers, geometrical effects such as area blockage also need to be included.
More complicated devices such as offset banks of splitters might also be
amenable to ray treatments. Particularly if the sound ®elds in the inlet duct can
be represented as a modal sum, the considerable ¯exibility of ray models may
well permit the formulation of hybrid treatments such as that described here.
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