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1. 

As stated in reference [1], ‘‘in the case of an isotropic circular plate of uniform
thickness, many basic dynamic problems are solved in a classical fashion
using Bessel functions’’. This is not the case when dealing with vibrating
circular plates of rectangular orthotropy, the problem being of considerable
technological importance in view of the continuously increasing use of composites
and also of the orthotropic constitutive characteristics originated by metallurgical
processes.

A recent study [1] dealt with clamped and simply supported circular plates
carrying a central, concentrated mass using polynomial approximations and the
straight Rayleigh–Ritz method.

The present publication deals with the solution of the title problem using the
optimized Rayleigh–Ritz method. Polynomial co-ordinate functions which contain
two independent optimization parameters are used following the approach
developed by Grossi et al. [2]. The co-ordinate functions are expressed in terms
of the radial variable neglecting the azimuthal dependence and the first two natural
frequency coefficients corresponding to quasi-axisymmetric modes are obtained.
In the case of isotropic plates the modes under investigation are axisymmetric and
the results obtained are in excellent agreement with those available in the open
literature [3].

An independent solution is also obtained using a very efficient and accurate
finite element code [4]. Good agreement with the analytical predictions is shown
to exist.
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2.   

Using Lekhnitskii’s well known notation [5] one expresses the maximum strain
energy in the form

Umax =
1
2 g g $D1012W
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2
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12W
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1y2 1
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% dx dy, (1)

while the maximum kinetic energy is given by

Tmax =
1
2 $rv2h g gW2 dx dy+Mv2W=2x= y=0%. (2)

The energy functional is then defined as

J[W]=Umax −Tmax . (3)

The displacement amplitude is approximated by means of

W3Wa =C1[aprp + aqrq +1]+C2[bqrp+1 + bqrq+1 +1], (4)

Figure 1. Vibrating system under study: (a) clamped edge, (b) simply supported edge.
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Figure 2. Finite element mesh.

where the a’s and b’s are determined substituting each co-ordinate function into

W(a)=
dW
dr

(a)=0 (5a)

in the case of a clamped edge, Figure 1, and into

W(a)=0d2W
dr2 +

n2

r
dW
dr 1br= a

=0 (5b)

when the plate is simply supported. Clearly, the natural boundary condition is not
satisfied in the case of rectangular orthotropy but when n2 = n one has the isotropic
situation and in this circumstance the polynomial co-ordinate functions expressed
in equation (4) yield excellent accuracy [6].

Substituting equation (4) in equations (1), (2) and (3) and applying the classical
Rayleigh–Ritz method

1J[W]
1Ci

=
1Umax

1Ci
−

1Tmax

1Ci
=0, (6)

one obtains a linear system of homogeneous equations in C1 and C2. The
non-triviality condition yields a bi-quadratic equation in V01 and V02 which are the
frequency coefficients, Voi =zrh/Davoia2, corresponding to quasi-axisymmetric
modes†.

† The modes are axisymmetric only in the case of isotropic constitutive relations.



   740

Since

Voi =Voi (p, q), (7)

by minimizing equation (7) with respect to ‘‘p’’ and ‘‘q’’ one is able to optimize
the frequency coefficients.

3.   

SAMCEF finite element code [4] has been used in the present investigation in
order to obtain an independent solution. Hybrid plate elements of triangular and
rectangular shape (Element Types 55 and 56 of the SAMCEF Library) have been
used. They are displacement based elements which superimpose a Marguerre
membrane and a hybrid plate, and allow one to model thin shells or plates. For

T 1

The two lower natural frequency coefficients (axisymmetric modes) of an isotropic
circular plate with a central, concentrated mass (n=0·30)

Values of V01 Values of V02

ZXXXXXXCXXXXXV ZXXXXXCXXXXXV
Present study Present study

Analytical FE values Exact [3] Analytical FE values Exact [3]

Clamped 0 10·215 10·265 10·215 40·067 39·95 39·771
0·05 9·010 – 9·012 33·080 – –
0·10 8·109 8·144 8·111 29·866 29·76 –
0·20 6·869 6·896 7·00 27·070 26·95 –
0·30 6·052 6·073 – 25·840 25·71 –
0·40 5·466 5·484 – 25·155 25·02 –
0·50 5·021 5·037 5·00 24·720 24·58 –
0·60 4·669 4·683 – 24·419 24·28 –
0·70 4·382 4·394 – 24·200 24·06 –
0·80 4·141 4·153 – 24·032 23·89 –
0·90 3·936 3·947 – 23·900 23·76 –
1 3·759 – 3·75 23·794 – –

Simply 0 4·935 4·965 4·935 29·807 29·95 29·72
supported 0·05 4·546 – – 24·957 – –

0·10 4·231 4·255 – 22·329 22·38 –
0·20 3·749 3·770 – 19·721 19·74 –
0·30 3·398 3·416 – 18·447 18·45 –
0·40 3·128 3·144 – 17·696 17·69 –
0·50 2·912 2·927 – 17·202 17·20 –
0·60 2·735 2·749 – 16·852 16·85 –
0·70 2·587 2·600 – 16·592 16·58 –
0·80 2·460 2·472 – 16·390 16·38 –
0·90 2·351 2·362 – 16·230 16·22 –
1 2·254 – – 16·099 – –

M: concentrated mass; Mp ; plate mass.



    741

T 2

The two lower natural frequency coefficients (quasi-axisymmetric modes) of an
orthotropic circular plate with a central concentrated mass (D2/D1 =0·5;

Dk /D1 =0·5; n2 =0·30)

Values of V01 Values of V02

Present study Present study
ZXXXXXXXXCXXXXXXXXVZXXXXCXXXXV
M/Mp Analytical FE values Reference [1] Analytical FE values

Clamped 0 9·624 – 9·619 37·746 –
0·05 8·488 – 8·492 31·164 –
0·10 7·639 7·609 7·661 28·136 26·10
0·20 6·471 6·435 6·517 25·502 24·08
0·30 5·701 5·663 – 24·343 23·11
0·40 5·150 5·111 – 23·697 22·56
0·50 4·730 4·693 4·797 23·288 22·20
0·60 4·399 4·362 – 23·005 21·96
0·70 4·128 4·092 – 22·798 21·77
0·80 3·901 3·867 – 22·640 21·64
0·90 3·708 3·675 – 22·516 21·53
1 3·541 – – 22·416 –

Simply supported 0 4·481 4·475 4·482 27·940 28·99a 21·33b

0·05 4·132 4·125 4·138 23·389 20·35
0·10 3·848 3·840 3·859 20·918 19·13
0·20 3·414 3·405 3·433 18·459 17·35
0·30 3·097 3·087 – 17·254 16·35
0·40 2·852 2·842 – 16·542 15·72
0·50 2·657 2·647 2·686 16·073 15·31
0·60 2·497 2·487 – 15·741 15·02
0·70 2·362 2·352 – 15·494 14·80
0·80 2·247 2·237 – 15·303 14·62
0·90 2·147 2·137 – 15·150 14·49
1 2·059 2·050 – 15·026 14·37

a Corresponding to mode 6.
b Corresponding to mode 4.
Note: Apparently mode 6 possesses a higher degree of radial symmetry than mode 4.

the plate behavior they follow Kirchhoff’s theory, and possess displacement
connectors at the element vertices and equilibrium connectors at midsides.

The mesh for the circular plate is shown in Figure 2. It has 1513 elements and
7275 degrees of freedoms.

4.  

Frequency coefficients have been determined for: (1) isotropic plates (n=0·30),
Table 1; (2) orthotropic plates: D2/D1 =0·5, Dk /D1 =0·5, n2 =0·30 (Table 2);
D2/D1 =1, Dk /D1 =0·5, n2 =0·30 (Table 3); D2/D1 =0·5, Dk /D1 =1/3, n2 =1/3
(Table 4).
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When implementing the optimized Rayleigh–Ritz method it was found that the
optimized values of the frequency coefficients was attained, in general, for values
of ‘‘p’’ between 2 and 5 and values of ‘‘q’’ between 1·8 and 2·5, the minimization
procedure being carried out numerically.

Table 1 depicts values of V01 and V02 for an orthotropic circular plate with a
central, concentrated mass. Poisson’s ratio has been taken to be equal to 0·3 in
all calculations. Present results, obtained for clamped and simply supported edges,
are in good agreement with those available in the literature [3].

A similar situation takes place in the case of orthotropic plates (Tables 2, 3 and
4). Present analytical results are in good agreement with the finite element
predictions and are lower than those obtained. Apparently, values of V02 have not
been considered in previous investigations. From the analysis of the tables it is
concluded that the agreement between finite element results (presumably very
accurate) and the analytical predictions is, in general, always better in the case of

T 3

The two lower natural frequency coefficients (quasi-axisymmetric modes) of an
orthotropic circular plate with a central concentrated mass (D2/D1 =1·0;

Dk /D1 =0·5; n2 =0·30)

Values of V01 Values of V02

Present study Present study
ZXXXXXXXXCXXXXXXXXV ZXXXXCXXXV
M/Mp Analytical FE values Reference [1] Analytical FE values

Clamped 0 10·521 – 10·592 41·542 –
0·05 9·341 – 9·358 34·298 –
0·10 8·407 8·394 8·446 30·966 30·69
0·20 7·122 7·107 7·189 28·067 27·79
0·30 6·275 6·260 – 26·791 26·52
0·40 5·668 5·652 – 26·081 25·81
0·50 5·206 5·192 5·296 25·630 25·36
0·60 4·841 4·827 – 25·319 25·05
0·70 4·543 4·529 – 25·091 24·82
0·80 4·293 4·280 – 24·917 24·65
0·90 4·081 4·068 – 24·781 24·51
1 3·897 – – 24·670 –

Simply supported 0 4·974 4·974 4·977 30·787 30·76
0·05 4·586 4·585 4·593 25·773 25·71
0·10 4·270 4·268 4·296 23·052 22·97
0·20 3·788 3·785 3·833 20·345 20·25
0·30 3·435 3·431 – 19·020 18·92
0·40 3·163 3·160 – 18·238 18·14
0·50 2·946 2·943 3·017 17·723 17·62
0·60 2·768 2·765 – 17·358 17·26
0·70 2·619 2·615 – 17·086 16·99
0·80 2·491 2·488 – 16·876 16·78
0·90 2·380 2·377 – 16·709 16·61
1 2·283 2·280 – 16·572 16·47
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T 4

The two lower natural frequency coefficients (quasi-axisymmetric modes) of an
orthotropic circular plate with a central concentrated mass (D2/D1 =0·5;

Dk /D1 =1/3; n2 =1/3)

Values of V01 Values of V02

Present study Present study
ZXXXXXXCXXXXXXV ZXXXXCXXXXV
M/Mp Analytical FE values Analytical FE values

Clamped 0 9·208 – 36·117 –
0·05 8·121 – 29·818 –
0·10 7·309 7·275 26·923 24·92
0·20 6·192 6·152 24·401 22·98
0·30 5·455 5·414 23·295 22·06
0·40 4·927 4·886 22·679 21·53
0·50 4·526 4·486 22·284 21·19
0·60 4·209 4·170 22·013 20·95
0·70 3·949 3·912 21·815 20·78
0·80 3·733 3·696 21·664 20·65
0·90 3·548 3·513 21·545 20·54
1 3·388 – 21·449 –

Simply supported 0 4·492 – 26·904 –
0·05 4·138 – 22·527 –
0·10 3·849 3·841 20·159 18·49
0·20 3·410 3·400 17·808 16·74
0·30 3·090 3·078 16·661 15·78
0·40 2·844 2·832 15·986 15·19
0·50 2·647 2·635 15·540 14·79
0·60 2·487 2·475 15·225 14·51
0·70 2·352 2·339 14·991 14·30
0·80 2·236 2·225 14·810 14·14
0·90 2·136 2·125 14·666 14·01
1 2·049 2·037 14·549 13·90

M: concentrated mass; Mp : plate mass.
V01 =zrh/D1v01a2; V02 =zrh/D1v02a2.

a simply supported edge in spite of the fact that the polynomial co-ordinate
functions do not satisfy the natural boundary condition. On the other hand, the
agreement is considerably better in the case of the fundamental frequency
coefficient. When determining the second eigenvalue the analytical approach
yields, in some instances, rough estimates.

Figures 3 through 12 depict modes 1 through 10 obtained by means of
SAMCEF for a clamped plate of orthotropic characteristics: D2/D1 =0·5;
Dk /D1 =1/3 and n2 =1/3. The parameter M/Mp is equal to 0·10. Mode 4, shown
in Figure 6, corresponds to the second quasi-axisymmetric frequency coefficient,
V02 =24·92.

Figure 3 indicates the rather high degree of radial symmetry, for the mechanical
parameters that come into play for this particular configuration.
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Figure 3. Mode No. 1 (SAMCEF [4]); V1 =7·275. Note: the shaded regions correspond to
non-dimensional deformation steps of 0·1, from 0 for the darkest region to 1 for the lightest region.

Figure 4. Mode No. 2 (SAMCEF [4]); V2 =17·56. Note: the shaded regions correspond to
non-dimensional deformation steps of 0·2, from −1 for the darkest region to +1 for the lightest
region.
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Figure 5. Mode No. 3 (SAMCEF [4]); V3 =20·50. Note: as for Figure 4.

Figure 6. Mode No. 4 (SAMCEF [4]); V4 =24·92. Note: the shaded regions correspond to
non-dimensional deformation steps of 0·171 from −0·71 for the darkest region to +1 for the lightest
region.
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Figure 7. Mode No. 5 (SAMCEF [4]); V5 =31·70. Note: the shaded regions correspond to
non-dimensional deformation steps of 0·154 from −0·545 for the darkest region to +1 for the
lightest region.

Figure 8. Mode No. 6 (SAMCEF [4]); V6 =31·80. Note: the shaded regions correspond to
non-dimensional deformation steps of 0·20 from −0·999 for the darkest region to +1 for the lightest
region.



Y

Z X

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

–1.0

Y

Z X

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

–1.0

    747

Figure 9. Mode No. 7 (SAMCEF [4]); V7 =42·34. Note: as for Figure 4.

Figure 10. Mode No. 8 (SAMCEF [4]); V8 =44·98. Note: as for Figure 4.
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Figure 11. Mode No. 9 (SAMCEF [4]); V9 =52·95. Note: as for Figure 4.

Figure 12. Mode No. 10 (SAMCEF [4]); V10 =55·89. Note: the shaded regions correspond to
non-dimensional deformation steps of 0·189 from −0·887 for the darkest region to +1 for the
lightest region.
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The results shown inTable 1 indicate the high accuracywhen the structural system
is isotropic.

The results are upper bounds with respect to the exact eigenvalues and, in many
instances, they are lower than the frequency coefficients obtained by means of the
finite element method.
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