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Approximate analytical methods for the study of non-linear vibrations of
spatially continuous systems with general quadratic and cubic non-linearities
are discussed. The cases of an external primary resonance of a non-internally
resonant mode and of a sub-harmonically excited two-to-one internal resonance
are investigated. It is shown, in a general fashion, that application of the
method of multiple scales to the original partial-di�erential equations and
boundary conditions produces the same approximate dynamics as those
obtained by applying the reduction method to the full-basis Galerkin-
discretized system (using the complete set of eigenfunctions of the associated
linear system) or to convenient low-order recti®ed Galerkin models. As a
corollary, it is shown that, due to the e�ects of the quadratic non-linearities, all
of the modes from the relevant eigenspectrum, in principle, contribute to the
non-linear motions. Hence, classical low-order Galerkin models may be
inadequate to describe quantitatively and qualitatively the dynamics of the
original continuous system. Although the direct asymptotic and recti®ed
Galerkin procedures seem to be more ``appealing'' from a computational
standpoint, the full-basis Galerkin discretization procedure furnishes a
remarkably interesting spectral representation of the non-linear motions.

# 1999 Academic Press

1. INTRODUCTION

Elastic systems such as arches, cables, plates, and shells are usually modelled by
non-linear partial-differential or integral-partial-differential equations with
pertinent boundary conditions. Non-linearities can appear in the governing
partial-differential equations, boundary conditions, or both. Non-linearities can
be strong or weak. Typically, use of analytical perturbation techniques allows
one to construct the approximate dynamics of systems with weak non-linearities
or the local dynamics of systems with strong non-linearities.
Within the framework of analytical techniques, non-linear vibrations of

continuous (distributed-parameter) systems can be studied either by attacking
directly the original partial-differential equations and boundary conditions with
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a reduction method (e.g., the method of multiple scales) or by discretizing the
system, ®rst, and, then, by constructing, via a reduction method, approximations
of the obtained reduced-order systems. With the ®rst approach (direct
treatment), the reduction procedure acts on the temporal dependence of the
system without any a priori assumption of the form of the solution. With space
discretization, the spatial condensation, also referred to as system order
reduction, achieved by means of one of the many versions of the method of
weighted residuals [1], is a crucial step. It is a common practice to project via the
standard or ``¯at'' Galerkin procedure the original in®nite-dimensional non-
linear system on to a basis forming a complete set of functions usually consisting
of the eigenfunctions of the associated linearized system when the boundary
conditions are homogeneous. Then, truncation to a ®nite number of basis
functions generates classical low-order models. Inherent limitations of this
conventional discretization procedure have been highlighted by a number of
works (see references [2±4, 6, 7]).
In the context of buckling problems, Troger and Steindl [2] showed that

discretization procedures such as the Rayleigh±Ritz and Galerkin methods can,
for some examples, lead to qualitatively incorrect bifurcation diagrams. Hence,
these procedures may lead to erroneous conclusions about the structural stability
of a system.
Recently, Lacarbonara et al. [3], while exploring theoretically and

experimentally the response of a ®xed±®xed ®rst-mode buckled beam to a
primary resonance of its ®rst mode when no internal resonances were activated,
showed that direct treatment of the integral-partial-differential equation and
associated boundary conditions yielded, for high buckling levels, results in
agreement with the experiments whereas some low-order Galerkin-reduced
models led to qualitatively erroneous results.
Also in the context of internal resonances, Rega et al. [4] showed that a four-

mode Galerkin model of multiple internal resonances involving four modes of a
suspended elastic cable yielded results in disagreement with the outcomes of a
direct treatment of the original system for some classes of motions and their
bifurcations.
Nayfeh [5] developed a scheme for constructing reduced-order models of non-

linear distributed-parameter systems that overcome the shortcomings of low-
order classical Galerkin discretizations. We refer to this method as recti®ed
Galerkin procedure for non-linear systems. Application of the method of multiple
scales to the constructed recti®ed models for an Euler±Bernoulli beam resting on
a non-linear elastic foundation and a buckled beam yielded results for the
modulation equations that agree with those obtained by directly attacking the
partial-differential equations and associated boundary conditions. Nayfeh and
Lacarbonara [6] summarized the results obtained by low-order classical Galerkin
or recti®ed Galerkin discretizations and direct treatment of six continuous
systems.
In studying the non-linear normal modes of a simply supported beam on an

elastic foundation with quadratic and cubic non-linearities when no internal
resonances were activated, Nayfeh et al. [7] showed that approximate results
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obtained with direct treatment of the governing equations agree with results
obtained with a full-basis Galerkin discretization procedure. Later, Pakdemirli
and Boyaci [8] attempted an extension of this result to general self-adjoint
systems with quadratic and cubic non-linearities when no internal resonances
were activated. However, in their analyses, one of the fundamental results was
postulated instead of proved.
In this paper, a class of one-dimensional distributed-parameter systems with

general quadratic and cubic geometric and quadratic inertia non-linearities and
with general homogeneous boundary conditions is considered. The direct
treatment, the full-basis Galerkin discretization, and the recti®ed Galerkin
procedures are used to obtain a second-order approximate response of the system
to a primary resonance of the nth mode when this mode is not involved in
internal resonances with any other mode. Also constructed, by using these three
procedures, is a ®rst-order approximation of a two-to-one internal resonance
involving two modes excited by an external sub-harmonic resonance of order one-
half of the high-frequency mode. It is shown, in a general fashion, that the three
procedures yield the same results for the approximate dynamics. It is worth noting
that these results may be extended to more general non-self-adjoint systems (e.g.,
moving media) and general bidimensional distributed-parameter systems.

2. A CLASS OF ONE-DIMENSIONAL SYSTEMS

Consider a class of one-dimensional distributed-parameter systems with
quadratic and cubic geometric and quadratic inertia non-linearities. Systems with
initial curvature, by restricting the analysis to the local dynamics around their
initial static equilibrium con®gurations, belong to this general class. In non-
dimensional form, non-linear motions for these systems are governed by

�v� Lv � N 2�v, v� � I 2� _v, _v� � N 3�v, v, v� ÿ c _v� F�s, t�, �1�
subject, without loss of generality, to the linear homogeneous boundary
conditions

B1v � 0 at s � 0 and B2v � 0 at s � 1, �2�
where s is the co-ordinate along the centerline of the system (non-
dimensionalized with respect to the span); the overdot indicates differentiation
with respect to the non-dimensional time t; v(s, t) is the dynamic de¯ection with
respect to the initially straight or curved con®guration; the non-dimensional
inertia is assumed to be unitary; L is a linear and homogeneous, self-adjoint and
positive-de®nite differential or integral-differential operator of order 2p; N 2 and
N 3 are quadratic and cubic geometric operators, and I2 is a quadratic inertia
operator; Bi are linear and homogeneous differential boundary operators of
order less than or equal to 2pÿ 1; c is the linear viscous damping coef®cient; and
F(s, t) is the forcing function. In general, it is assumed that the non-linear
operators do not commute, i.e., N 2(v, w) 6�N 2(w, v). Because the linear unforced
undamped problem, by virtue of the self-adjoint nature of the linear stiffness
operator with given boundary conditions on the appropriate domain with
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compact support, is self-adjoint, the eigenfunctions fm(s) are mutually
orthogonal and have been normalized as follows�1

0

fm�s�fn�s� ds � hfmfni � dmn, hfm Lfni � o2
ndmn, �3�

where dmn is the Kronecker delta. The eigenvalue problem for the frequencies
and the mode shapes de®nes the linear operatorM as

M�f;o� � �L ÿ o2I�f, �4�
where I is the identity operator.
For a beam resting on a non-linear elastic foundation,

Lv � v0000, N 2�v, v� � ÿa2v2, N 3�v, v, v� � ÿa3v3, �5�
where the prime indicates differentiation with respect to the non-dimensional co-
ordinate s.
For a shallow arch with the given initial shape w(s), subject to the end-load p,

in the pre- or post-buckling condition,

Lv � v0000 � Pv00 ÿ c00hv0c0i; N 2�v, v� � v00hv0c0i � 1
2c
00hv02i;

N 3�v, v, v� � 1
2 v
00hv02i, �6�

where

P � p� 1
2 hw02 ÿ c02i: �7�

The static equilibrium con®gurations c due to the end-load p, in the pre- or
post-buckling range, are solutions of a non-linear ordinary-integral-differential
equation with the associated boundary conditions.
For a suspended homogeneous elastic cable with small sag-to-span ratios [9],

using vector notation,

Lv � ÿ
u001 � kb2c00hu01c0i 0

0 u002

24 35, �8�

N 2�v, v� � kb
u001hu01c0i � 1

2c
00hu021 � u022 i

u002hu01c0i

8<:
9=;, N 3�v, v, v� � 1

2
k

u001hu021 � u022 i

u002hu021 � u022 i

8<:
9=;,

�9�

C _v �
c1 _u1 0

0 c2 _u2

24 35, F�s, t� �
P1�s� cosOt

P2�s� cos�Ot� t�

8<:
9=;, �10�

where k�EA/H (EA is the axial rigidity of the cable and H is the initial
static tension), b is the sag-to-span ratio, vT� {u1, u2} denotes the vector of the
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in-plane (vertical) and out-of plane (horizontal) displacement components and
the superscript T indicates the transpose.

3. DIRECT TREATMENT

The method of multiple scales [10, 11] is used to determine a second-order
uniform expansion of the solution of equations (1) and (2) when the system is
subject to a primary resonance of the nth mode and no active internal
resonances engage this mode with any other mode. To this end, the forcing
function is assumed to be a pure tone: F(s, t)�F(s) cosOt. Moreover, the
damping and forcing are scaled as e2c and e3F, respectively. Note that because
resonant terms appear at the third order, the solution does not depend on the
non-linear time scale T1� et. Hence, a solution of equations (1) and (2) is sought
in the form

v�s, t; e� � ev1�s,T0,T2� � e2v2�s,T0,T2� � e3v3�s,T0,T2� � � � � , �11�
where e is a small non-dimensional bookkeeping parameter, T0� t is a fast scale,
and T2� e2t is a slow non-linear time scale. To express the nearness of the
primary resonance, the detuning parameter s is introduced such that
O�on� e2s.
Substituting equation (11) into equations (1) and (2), using the independence

of the time scales, and equating coef®cients of like powers of e yields:

Order e :

F�v1� � D2
0v1 �Lv1 � 0, �12�

Order e2:

F�v2� � N 2�v1; v1� � I 2�D0v1;D0v1�, �13�
Order e3:

F�v3� � ÿ2D0D2v1 ÿ cD0v1 �N 2�v1, v2� � N 2�v2, v1�
� I 2�D0v1,D0v2� � I 2�D0v2,D0v1�
� N 3�v1, v1, v1� � F�s� cosOT0, �14�

where Dn� @/@Tn . The boundary conditions at all orders are given by

B1vj � 0 at s � 0 and B2vj � 0 at s � 1, for j � 1, 2, and 3: �15�
Because the nth mode is directly excited and no internal resonances are

activable; moreover, because the system is damped and the interest is in the
steady-state dynamics for this mode, the generating solution at order e is
assumed to be

v1 � �An�T2� eionT0 � �An�T2� eÿionT0 �fn�s�, �16�
where the overbar indicates the complex conjugate. Substituting equation (16)
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into equations (13) and (15) yields the following inhomogeneous problem at
second order:

F�v2� � h1n�s�A2
n e

2ionT0 � h2n�s�An
�An � cc, �17�

where cc stands for the complex conjugate of the preceding terms, and

h1n�s� � N 2�fn,fn� ÿ o2
nI2�fn,fn�, �18�

h2n�s� � N 2�fn,fn� � o2
nI2�fn,fn�, �19�

with boundary conditions (15).
The solution of the second-order problem is easily found as

v2 � C1n�s�A2
n e

2ionT0 �C2n�s�An
�An � cc, �20�

where the functions Cjn are solutions of the following boundary-value
differential or integral-differential problems

M�C1n; 2on� � h1n�s�; M�C2n; 0� � h2n�s�, �21�

B1Cjn � 0 at s � 0 and B2Cjn � 0 at s � 1, for j � 1 and 2: �22�
Substituting the second-order solution, equation (20), into the third-order

problem, equations (14) and (15), terms that produce resonant effects arise
causing the expansion to break down. To render the expansion uniform, a
solvability condition is imposed by multiplying the right-hand side of the third-
order differential equation by the adjoint fn(s) exp(ÿ ionT0) and integrating the
resulting equation over the normalized space domain [0, 1] (see reference [10]).
The result is a complex-valued modulation equation for the amplitude An

governing the slow dynamics of the system; that is,

2ion�D2An � mAn� � 8onannA2
n

�An � 1
2 fn e

isT2 , �23�
where c� 2m, the nth-modal projection of the force is fn�hfnFi, and the
effective non-linearity coef®cient is given by

ann � 1

8on
�Snnn � 3Gnnnn�: �24�

In equation (24), the overall softening effects caused by the quadratic non-
linearities are expressed as

Snnn � hfnN 2�fn,C1n�i � hfnN 2�C1n,fn�i � 2hfnN 2�fn,C2n�i
� 2hfnN 2�C2n,fn�i � 2o2

nhfn I 2�fn,C1n�i � 2o2
nhfn I 2�C1n,fn�i: �25�

The coef®cient Gnnnn can be obtained by putting k� l�m� n in

Gklmn � Gnklm � hfnN 3�fk;fl;fm�i: �26�
Then, using the polar form An� (1/2)an exp[i(sT2ÿ gn)] gives the real-valued
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modulation equations for the amplitude and phase

D2an � ÿman � 1

2

fn
on

sin gn, �27�

an�D2gn� � ans� anna3n �
1

2

fn
on

cos gn: �28�

Therefore, the steady-state responses (i.e., the ®xed points of equations (27) and
(28) with D2an� 0 and an(D2gn)=0) are solutions of the following frequency-
response equation:

s � ÿanna2n2
f 2n

4o2
na

2
n

ÿ m2
� �1=2

: �29�

Combining equations (11), (16), and (20), using the polar form for An , and the
resonance detuning condition, one can express the displacement ®eld, to second
order, as

v�s, t� � ean cos�Otÿ gn�fn�s� � 1
2e

2a2n�cos 2�Otÿ gn�C1n�s� �C2n�s�� � � � � �30�
Note that the effects of the quadratic non-linearities are twofold: (i) they

produce in the displacement ®eld (30) a drift termÐAa2nC2n(s)Ðand an
overtone termÐAa2n cos 2(Otÿ gn)C1n(s)Ðwhile retaining, as will be shown in
the later analyses, the full spectrum of the eigenmodes of the system in the
functions C1n and C2n; (ii) they are responsible for contributions from all of the
modes of the system, through C1n and C2n , to the softening effects, expressed by
equation (25), in the effective non-linearity coef®cient (24).
Next, a ®rst-order approximate solution of the system is constructed when a

two-to-one internal resonance is excited by a sub-harmonic resonance of order
one-half of the high-frequency mode. To quantify the nearness of the resonances,
the detuning parameters s1 and s2 are introduced such that

on � 2om � es1 and O � 2on � es2: �31�
For these resonances, proper scaling of the forcing and damping requires that
the former appear at ®rst order and the latter at second order.
The ®rst-order solution is expressed as

v1�s, t� � Am�T1�fm�s� eiomT0 � An�T1�fn�s�eionT0 �Cp�s�eiOT0 � cc, �32�
where Cp(s) is the solution of the boundary-value problem

M�Cp;O� � 1
2F�s�, �33�

with boundary conditions (22).
Substituting equation (32) into equation (13) (where the damping term was

added) and accounting for the resonance detunings (31), elimination of the terms
that produce secular effects at second order leads to the following two coupled
solvability conditions:
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2iom�D1Am � mAm� � S1An
�Ame

is1T1 , �34�

2ion�D1An � mAn� � S2A
2
me
ÿis1T1 � S3

�Ane
is2T1 , �35�

where the non-linear interaction coef®cients are given by

S1 � L�mmn � L�mnm; S2 � Lÿnmm , �36�

S3 � hfnN 2�fn,Cp�i � hfnN 2�Cp,fn�i � OonhfnI 2�fn,Cp�i
� Oonhfn I 2�Cp,fn�i, �37�

with

L2
klm � Lklm2olomDklm, �38�

Lklm � hfkN 2�fl ,fm�i, and Dklm � hfk I 2�fl ,fm�i: �39�
Using the polar transformations

Am � 1
2 ame

1=4i�2s1T1�s2T1ÿ2g1ÿg2� and An � 1
2 ane

1=2i�s2T1ÿg2�, �40�
one can express the displacement ®eld, to ®rst order, as

v�s, t� � eam cos 14 �Otÿ g2 ÿ 2g1�fm�s� � ean cos 12 �Otÿ g2�fn�s�
� 2eCp�s� cosOt� � � � �41�

where am , an , g1, and g2 are solutions of the modulation equations (34) and (35).
In the next sections, it is shown that the function Cp embodies modal

contributions, in principle, from the full eigenspectrum. Therefore, the one-half
external sub-harmonic resonance acts to capture, to ®rst order, contributions
from all of the modes to (i) the displacement ®eld (41) and (ii) to the effective
sub-harmonic resonance excitation amplitude S3 , given by equation (37).

4. FULL-BASIS GALERKIN DISCRETIZATION

Taking the set of the eigenfunctions of the associated linear problem as a
complete set for discretizing the system via the Galerkin method, it is postulated
that the solution can be represented as

v�s; t� �
X1
k�1

xk�t�fk�s�: �42�

Hence, using the Galerkin method and employing the ortho-normality of the
eigenfunctions, one obtains an in®nite set of non-linearly coupled ordinary-
differential equations for the generalized co-ordinates xk(t)
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�xk � o2
kxk �

X1
l�1

X1
m�1
�Lklmxlxm � Dklm

_xl _xm�

�
X1
l�1

X1
m�1

X1
n�1

Gklmnxlxmxn ÿ c _xk � fk cosOt, k � 1, 2, . . . ,1, �43�

where Lklm and Dklm are given by equations (39), Gklmn is given by equation (26),

and fk�hfkFi.
Using the method of multiple scales to construct a second-order

approximation of the response of system (43) to a primary resonance of the nth

mode, one obtains

v̂�s, t� � eân cos�Otÿ ĝn�fn�s� � 1
2 e

2â2n�cos 2�Otÿ ĝn�Ĉ1n�s� � Ĉ2n�s�� � � � � �44�
where

Ĉ1n�s� �
X1
k�1

Lÿknn
o2

k ÿ 4o2
n

fk�s� and Ĉ2n�s� �
X1
k�1

L�knn
o2

k

fk�s�: �45�

The modulation equations for the amplitude and phase of the motion, expressed

by equations (44) and (45), are the same as equations (27) and (28) obtained

with the direct treatment once the softening term Snnn is replaced in the effective

non-linearity coef®cient (24) with

Ŝnnn �
X1
j�1
�Lnnj � Lnjn�

2L�jnn
o2

j

� Lÿjnn
o2

j ÿ 4o2
n

 !
� 2o2

n�Dnnj � Dnjn�
Lÿjnn

o2
j ÿ 4o2

n

" #
; �46�

and L2
klm is given by equation (38).

It is worth noting that a ®nite-dimensional discretization procedure would

yield ®nite-order models which can be easily extracted from the in®nite-

dimensional solution, equations (44)±(46), by retaining a ®nite number of

modes.

The effective non-linearity coef®cient (24) consists of two terms: one term,

3Gnnnn/8on , generated by the cubic non-linearity, and one term, Snnn/8on if

calculated with the direct procedure or Ŝnnn/8on if calculated with the full-basis

discretization, caused by the quadratic non-linearities. The ®rst term, which is

the same, to second order, if calculated with the full-basis Galerkin discretization

or the direct procedure (or with a low-order Galerkin discretization), can be

shown to be negative; therefore, it produces a hardening behaviour. On the other

hand, the softening term depends evidently on the order (i.e., number of modes)

of the discretization procedure. Because the effective non-linearity coef®cient

depends on the relative magnitudes of the hardening (cubic) and softening

(quadratic) terms, there is a possibility of a sign difference in this coef®cient

depending on the order of the discretization procedure employed. Consequently,

full-basis and low-order Galerkin discretization procedures, depending on the order
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of the latter, may yield qualitatively different dynamics for primary resonances of a
non-internally resonant mode.
Next, constructing a ®rst-order uniform expansion of equations (43), when a

two-to-one internal resonance is excited by a one-half sub-harmonic resonance
of the high-frequency mode, gives

v̂�s, t� � eâm cos 14 �Otÿ ĝ2 ÿ 2ĝ1�fm�s� � eân cos 12 �Otÿ ĝ2�fn�s�
� 2eĈp�s� cosOt� � � � , �47�

where

Ĉp�s� �
X1
k�1

Gkfk�s� �48�

and

Gk � 1

2

fk

o2
k ÿ O2

: �49�

The complex-valued modulation equations for the amplitudes Âm and Ân of
the interacting modes are the same as equations (34) and (35) once S3 is replaced
with

Ŝ3 �
X1
k�1
�Lnnk � Lnkn � Oon�Dnnk � Dnkn��Gk: �50�

It is clear that due to the external one-half sub-harmonic resonance: (i) the
effects of all modes are embodied in the displacement ®eld (47) through the
function Ĉp , given by equation (48), and (ii) the effective sub-harmonic
resonance excitation amplitude (50) also captures contributions from all of the
eigenmodes. In a low-order Galerkin discretization, the function Ĉp and the
effective sub-harmonic resonance excitation amplitude SÃ3 would be expressed by
®nite summations with the number of terms being equal to the number of
retained modes or discretizing functions. On the other hand, the non-linear
interaction coef®cients SÃ1 and SÃ2 , by inspection of equation (36), do not depend
on the order of the discretization procedure. Quantitative discrepancies in the
computation of SÃ3 may affect the eigenvalue structure of the modulation
equations (34) and (35) for the non-linear modal coupling. Therefore, full-basis
and low-order Galerkin discretizations may produce, even to ®rst order,
qualitatively different dynamics for the sub-harmonically excited two-to-one
internal resonance.

5. LOW-ORDER RECTIFIED GALERKIN PROCEDURE

Using the recti®ed Galerkin method proposed by Nayfeh [5], one obtains the
following single-mode model for the primary resonance of the nth mode:

�Zn � o2
nZn � LnnnZ2n � Dnnn _Z2n � ~GnnnnZ3n �PnnnnZn _Z2n ÿ c _Zn � fn cosOt, �51�
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where higher-order terms for a second-order approximation of the primary

resonance were neglected and ~Gnnnn and Pnnnn are given by

~Gnnnn � Gnnnn � hfnN 2�fn,cnn�i � hfnN 2�cnn,fn�i �52�
and

Pnnnn � hfnN 2�fnn, wnn�i � hfnN 2�wnn,fn�i
� 2hfn I 2�fn,cnn ÿ o2

nwnn�i � 2hfn I2�cnn ÿ o2
nwnn,fn�i: �53�

The displacement ®eld, to second order, is expressed as

~v�s, t� � Zn�t�fn�s� � �Zn�t�2cnn�s� � _Zn�t�2wnn�s�� � � � � , �54�
where the functions cnn and wnn are solutions of the following coupled two-point

boundary-value problems [5]:

Lcnn ÿ 2o2
ncnn � 2o4

nwnn � N 2�fn,fn� ÿ Lnnnfn, �55�

Lwnn � 2cnn ÿ 2o2
nwnn � I 2�fn,fn� ÿ Dnnnfn, �56�

with boundary conditions for cnn and wnn given by equations (22). The

differential equations (55) and (56) can be decoupled by introducing the linear

transformations [5]

cnn �
1

4
�hnn � 2gnn� and wnn �

hnn ÿ 2gnn
4o2

n

: �57�

The resulting decoupled system is

M�gnn; 2on� � N 2�fn,fn� ÿ o2
nI 2�fn,fn� ÿ Lÿnnnfn, �58�

M�hnn; 0� � 2N 2�fn,fn� � 2o2
nI2�fn,fn� ÿ 2L�nnnfn, �59�

with boundary conditions for gnn and hnn given by equations (22). Note that in

equation (51) the recti®cation of the Galerkin method has produced an

additional cubic geometric termÐA(~GnnnnÿGnnnn)Ðand a new cubic inertia

termÐAPnnnn .

Applying the method of multiple scales to equation (51) to produce a second-

order approximate solution gives

Zn � eZn1 � e2Zn2 � � � � � e~an cos�Otÿ ~gn�
� e2

1

6o2
n

~a2n�3L�nnn ÿ Lÿnnn cos 2�Otÿ ~gn�� � � � � �60�

where the amplitude aÄn and the phase ~gn are ®xed points of the same modulation

equations as equations (27) and (28) obtained with the direct treatment once one

replaces the softening term Snnn in the effective non-linearity coef®cient (24) with
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~Snnn � 2

3o2
n

Lnnn�6L�nnn ÿ Lÿnnn� ÿ
4

3
LÿnnnDnnn � 3~Gnnnn ÿ 3Gnnnn � o2

nPnnnn: �61�

Hence, making use of some trigonometric identities and of equation (57), one
obtains for the displacement ®eld

~v�s, t� � e~an cos�Otÿ ~gn�fn�s� � 1
2 e

2~a2n�cos 2�Otÿ ~gn� ~C1n�s� � ~C2n�s�� � � � � , �62�
where

~C1n � gnn ÿ Lÿnnn
3o2

n

fn and ~C2n � 1

2
hnn � L�nnn

o2
n

fn: �63�

Next, a two-mode recti®ed Galerkin model is used to construct a ®rst-order
uniform expansion of the two-to-one internal resonance excited by a sub-
harmonic resonance of order one-half of the high-frequency mode.
The displacement ®eld, to ®rst order, is given by

~v�s, t� � Zm�t�fm�s� � Zn�t�fn�s� � z�s� cosOt� � � � , �64�
where z(s) is the solution of the boundary-value problem

M�z;O� � F�s� ÿ fmfm�s� ÿ fnfn�s�, �65�
with boundary conditions for z given by equations (22). The generalized co-
ordinates Zr in equation (64) are solutions of the following two-mode recti®ed
Galerkin model:

�Zr � o2
rZr �

X
i, j

�LrijZiZj � Drij _Zi _Zj� ÿ c _Zr� fr �
X
j

prjZj

" #
cosOtÿ

X
j

qrj _Zj sinOt,

for r � m and n, �66�
where higher-order terms for a ®rst-order approximation of the sub-
harmonically excited two-to-one internal resonance were neglected and the
summations are extended to the mth and nth modes involved in the internal
resonance. Furthermore,

prj � hfrN 2�fj, z�i � hfrN 2�z,fj�i and qrj � Ohfr I 2�fj; z�i � Ohfr I 2�z,fj�i:
�67�

It follows from equations (66) that the Galerkin recti®cation has generated in
each modal equation two additional multiplicative-type excitation components;
namely, (prmZm� prnZn) cosOt and ÿ(qrm _Zm� qrn _Zn) sinOt.
Applying the method of multiple scales to equations (66) to construct a ®rst-

order approximation of the two-to-one internal resonance gives

Zr � e ~Are
iorT0fr�s� � eGre

iOT0 � � � � , for r � m and n, �68�
where Gr is given by equation (49). The complex-valued modulation equations
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for the amplitudes AÄm and AÄn of the interacting modes are the same as equations
(34) and (35) once one replaces S3 with

~S3 � 2Gn�Lnnn � onODnnn� � Gm�Lnnm � Lnmn� � onOGm�Dnnm � Dnmn�
� 1

2 pnn � 1
2onqnn: �69�

Using the polar transformations (40) and equation (64), one can express the
displacement ®eld as

~v�s, t� � e~am cos 14 �Otÿ ~g2 ÿ 2~g1�fm�s� � e~an cos 12 �Otÿ ~g2�fn�s�
� 2e ~Cp�s� cosOt� � � � , �70�

where

~Cp�s� � 1
2 z�s� � Gmfm�s� � Gnfn�s�: �71�

6. EQUIVALENCE BETWEEN DIRECT TREATMENT, FULL-BASIS, AND
LOW-ORDER RECTIFIED GALERKIN DISCRETIZATIONS

In the next two sections, it is shown that the approximate solutions obtained
with the direct treatment, the full-basis Galerkin discretization, and the recti®ed
Galerkin procedure are equivalent either in the case of no internal resonances or
in the case of a sub-harmonically excited two-to-one internal resonance. To show
that the approximate displacement ®elds obtained with the three methods are
equivalent, it is shown that the complex-valued amplitude of the only excited
mode or the amplitudes of the interacting modes are the same regardless of the
method employed and the higher-order spatial corrections due to the non-
linearities are the same. It has already been shown that, for both resonances, the
modulation equations governing the slow dynamics of the complex-valued
amplitudes are formally equivalent for each of the method employed. Hence, one
needs to show that the softening term in the effective non-linearity coef®cient, in
the case of no internal resonances, or the effective sub-harmonic resonance
excitation amplitude, in the case of a two-to-one internal resonance, are the same
regardless of the procedure used. In addition, one needs to show that the higher-
order spatial corrections obtained with the different procedures are the same.

6.1. THE CASE OF NO INTERNAL RESONANCES

Part I. It is shown that

Ĉ1n�s� � C1n�s� � ~C1n�s� �72�
and

Ĉ2n�s� � C2n�s� � ~C2n�s�: �73�
To prove equations (72) and (73), it is shown that Ĉ1n and Ĉ2n , ~C1n and ~C2n

are solutions of the differential boundary-value problems given by equations (21)
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with boundary conditions (22). That is,

M�Ĉ1n�s�; 2on� � h1n�s�, M�Ĉ2n�s�; 0� � h2n�s�, �74�

M� ~C1n�s�; 2on� � h1n�s�, M� ~C2n�s�; 0� � h2n�s�, �75�
with boundary conditions for Ĉjn and ~CÄ jn , for j� 1, 2, given by equations (22).

Note that Ĉ1n and Ĉ2n satisfy identically the boundary conditions. Applying

the operatorM[C; 2on] to Ĉ1n gives

M�Ĉ1n; 2on� �
X1
k�1

Lÿknn
o2

k ÿ 4o2
n

M�fk; 2on� �
X1
k�1

Lÿknn
o2

k ÿ 4o2
n

�o2
k ÿ 4o2

n�fk

�
X1
k�1

Lÿknnfk�s�, �76�

where use of the fact that M[fk; 2on]� (o2
kÿ 4o2

n)fk was made. Expressing

h1n(s), given by equation (18), in the basis of the eigenfunctions fk gives

h1n�s� �
X1
k�1
�hfkN 2�fn,fn�i ÿ o2

nhfk I 2�fn,fn�i�fk �
X1
k�1

Lÿknnfk�s�: �77�

Therefore, according to equations (76) and (77), it is concluded that the ®rst

equality of equation (72) is true.

Similarly, noting that, according to equation (19), h2n(s)�
P1

k�1L
�
knnfk , by

applying the operatorM[C; 0] to Ĉ2n given by equation (45), one obtains

M�Ĉ2n; 0� �
X1
k�1

L�knn
o2

k

M�fk; 0� �
X1
k�1

L�knnfk � h2n�s�: �78�

Consequently, the functions Ĉ1n(s) and Ĉ2n(s) are spectral realizations, in the

basis of the eigenfunctions fk , of C1n(s) and C2n(s).

Nayfeh et al. [7] used a Fourier-series expansion of C1n and C2n to show the

identities Cjn� Ĉjn in the case of unforced undamped vibrations of a beam

resting on a non-linear elastic foundation with quadratic and cubic non-

linearities.

Next, substituting equations (63) into equations (75), after some mani-

pulations, the resulting equations become

M�gnn; 2on� � N 2�fn,fn� ÿ o2
n I2�fn,fn� ÿ Lÿnnnfn, �79�

M�hnn; 0� � 2N 2�fn,fn� � 2o2
n I 2�fn,fn� ÿ 2L�nnnfn, �80�

with boundary conditions for gnn and hnn given by equations (22). Equations (79)

and (80) with boundary conditions (22) are identically satis®ed in force of

equations (58), (59) and (22).
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Part II. It is shown that

Ŝnnn � Snnn � ~Snnn: �81�
Substituting the identities (72) and (73) and equations (45) into Snnn given by

equation (25) yields

Snnn �
X1
k�1

Lÿknn
o2

k ÿ 4o2
n

�hfnN 2�fn,fk�i � hfnN 2�fk,fn�i
�

� 2o2
n�hfn I 2�fn,fk�i � hfn I 2�fk,fn�i��

�2L
�
knn

o2
k

�hfnN 2�fn,fk�i � hfnN 2�fk,fn�i�
�
: �82�

Using the de®nitions (39) for Lklm and Dklm , it is veri®ed, with some further

algebra, that, according to equations (46) and (82), the ®rst equality of equation

(81) is true.

Next, it is shown that SÄnnn�Snnn . Considering the de®nitions (52) and (53),

equation (61) for the softening term of the single-mode recti®ed model becomes

~Snnn � 2

3o2
n

Lnnn�6L�nnn ÿ Lÿnnn� ÿ 4
3L
ÿ
nnnDnnn

� 3hfnN 2�fn,cnn�i � 3hfnN 2�cnn,fn�i
� o2

nhfnN 2�fn, wnn�i � o2
nhfnN 2�wnn,fn�i

� 2o2
nhfn I2�fn,cnn ÿ o2

nwnn�i � 2o2
nhfn I 2�cnn ÿ o2

nwnn,fn�i: �83�

Using equations (57) and (63), one obtains the following intermediate results

cnn �
1

2
�C1n �C2n� � 1

2o2
n

Lÿnnn
3
ÿ L�nnn

� �
fn, �84�

wnn �
1

2o2
n

�C2n ÿC1n� ÿ 1

2o4
n

Lÿnnn
3
� L�nnn

� �
fn, �85�

and

cnn ÿ o2
nwnn � C1n � 1

3o2
n

Lÿnnnfn: �86�

Substituting equations (84)±(86) into equation (83) yields

~Snnn � hfnN 2�fn,C1n�i � hfnN 2�C1n,fn�i
� 2hfnN 2�fn,C2n�i � 2hfnN 2�C2n,fn�i
� 2o2

nhfn I2�fn,C1n�i � 2o2
nhfnI 2�C1n,fn�i � Snnn; �87�

where use of equation (25) was made.
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6.2. THE CASE OF INTERNAL RESONANCES

Part I. It is shown that

Ĉp � Cp � ~Cp: �88�
Applying the operator M[C; O] to Ĉp , expressed by equation (48), one

obtains

M�Ĉp;O� � 1

2

X1
k�1

fk

o2
k ÿ O2

M�fk;O�: �89�

BecauseM[fk; O]� (o2
kÿO2)fk , then, equation (89) can be rewritten as

M�Ĉp;O� � 1

2

X1
k�1

fk

o2
k ÿ O2

�o2
k ÿ O2�fk�s� �

X1
k�1

1

2
fkfk�s� �

1

2
F�s�: �90�

Similarly, applying the operatorM[C; O] to ~Cp expressed by equation (71), one
obtains, after some manipulations,

M�z;O� � F�s� ÿ fmfm�s� ÿ fnfn�s�: �91�
This equation, in force of equation (65), is identically satis®ed.

Part II. It is shown that

Ŝ3 � S3 � ~S3: �92�
Using the identity Cp� Ĉp , expressed by equation (88), and substituting the

spectral counterpart of Cp , equation (48), into equation (37), the effective sub-
harmonic resonance excitation amplitude becomes

S3 � 1

2

X1
k�1

fk

o2
k ÿ O2

�hfnN 2�fn,fk�i � hfnN 2�fk,fn�i

� Oonhfn I2�fn,fk�i � Oonhfn I2�fk,fn�i�: �93�

Using the de®nitions (39) for Lklm and Dklm , one can rewrite equation (93) as

S3 �
X1
k�1
�Lnkn � Lnnk � Oon�Dnkn � Dnnk��Gk � Ŝ3, �94�

where equation (50) was used.
Next, it is shown that SÄ3�S3 . To this end, from equation (71),

z � 2 ~Cp ÿ 2Gmfm ÿ 2Gnfn: �95�
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Then, using the de®nitions (67) and the identity ~Cp�Cp , expressed by equation
(88), appropriate manipulations of equation (69) lead to

~S3 � hfnN 2�fn,Cp�i � hfnN 2�Cp,fn�i � Oonhfn I2�fn,Cp�i
� Oonhfn I 2�Cp,fn�i � S3, �96�

where use of equation (37) was made.

7. CONCLUSIONS

A class of one-dimensional distributed-parameter systems with general
quadratic and cubic geometric and quadratic inertia non-linearities has been the
object of the analyses presented in this paper. Approximate results obtained for
these systems, either for a primary resonance of a non-internally resonant mode
or for a sub-harmonically excited two-to-one internal resonance, have been
summarized. The results have been obtained with direct application of the
method of multiple scales to the original governing equations, to the in®nite-
dimensional Galerkin-discretized system, and to low-order recti®ed Galerkin
models. It is established, in a general fashion, the equivalence between the three
procedures either in the case of no internal resonances or in the case of the two-
to-one internal resonance. Here, the fact is emphasized that this equivalence can
be shown to hold for more general resonance conditions, including multiple
resonances. Interestingly, the recti®ed Galerkin discretization procedure, though
producing low-dimensional models (the dimension being dependent on the
internal resonance conditions), is capable of capturing and condensing correctly
all of the modal contributions to the non-linear motions. Also, it is noted that
this procedure is suitable for the analytical construction of non-linear normal
modes of continuous systems with or without internal resonances.
From a computational standpoint, the direct and recti®ed Galerkin procedures

seem to be more effective compared to the full-basis Galerkin discretization
procedure. In fact, the latter requires an in®nite-dimensional projection with
subsequent solution of an in®nite set of ordinary-differential equations at second
order which is traded with solving, with less computational effort, some
boundary-value problems in the direct and recti®ed Galerkin procedures.
However, the full-basis Galerkin procedure furnishes a remarkably interesting
spectral realization of the non-linear motions which can shed light on to the
system behaviour.
Incidentally, it was shown that the peculiar effect of the quadratic non-

linearities is to produce second-order contributions from all of the eigenmodes of
the system to the non-linear motions. It was concluded that classical low-order
Galerkin models may be inadequate to describe qualitatively the correct
dynamics of the original system.
These results may be extended to more general non-linear non-self adjoint

systems and general bidimensional distributed-parameter systems. In addition, it
is suggested that these results be used as a baseline for convergence studies of
low-dimensional discretized models of non-linear continuous systems.
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