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A greased cable is positioned along a generic curve in the interior of a beam
and is anchored to the beam at its extreme points. The absence of friction
permits a relative slipping between the cable and beam at intermediate points
and this makes the cable strain dependent on the global deformation of the
beam. Such a system permits controlling the beam state of stress and strain by
assigning a predetermined traction force on the cable. This paper proposes a
formulation of the system dynamics by de®ning the balance conditions
describing the in®nitesimal motions in the neighbourhood of a known balanced
static con®guration in order to evaluate the e�ect due to the presence of the
stretched cable on the motion and free vibrations of the system. The
kinematical model adopted for the beam permits a su�ciently accurate
description of the behavior of thin walled beams and the cable strain is
obtained as a functional of global deformation. Some qualitative aspects
concerning the problem formulation and the dynamical behavior are stated. An
applicative example referring to a case of interest shows that the state of stress
obtained by stretching the cable notably in¯uences only a reduced set of
vibration modes, determined by the path geometry and cable force. Such
aspects of the problem can be of interest in structural identi®cation.

# 1999 Academic Press

1. INTRODUCTION

The paper examines a system consisting of a three-dimensional rod crossed by a
cable that can slip without friction in the interior of a protective tube positioned
inside the rod. The cable is anchored to the rod at its extreme points and
traction is usually induced in the cable thus determining an interaction between
the components. Such a coupled system may ®nd many applications in
engineering because opportune geometry and positioning of the cable path
permit controlling the state of the rod in order to induce stress ®elds opposite
the stress ®elds due to external loads or to induce special deformation ®elds. On
the other hand, the cable traction force is in¯uenced by the rod deformation and
the measure of its strain or stress can furnish information about rod
deformation, so that the cable can be used as an actuator or as a sensor. The
analysis of dynamics is of particular interest in structural engineering where it
may be necessary to have active control of rod vibrations [1, 2] and where it is
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often necessary to have information regarding the effective force existing in the
internal, inaccessible cable, from non-destructive tests [3, 4]. Existing literature
does not furnish satisfying models, and reliable descriptions of the system regard
static or quasi-static cases only [5±9].
The formulation proposed in this paper intends to provide a model for

analyzing in®nitesimal motions which can occur in the neighbourhood of a static
balanced con®guration in order to evaluate the effect of the state of stress
produced by the interaction between cable and rod, eventually produced by
external forces, on the dynamical response of the system. The case of
in®nitesimal motion around a natural (stress free) con®guration, which can be
obtained from the present formulation as a special case, is of interest when
second order effects due to stress can be neglected.
The analysis is performed on the basis of a previous study describing the non-

linear and linearized system kinematics [6, 7] for a generic three-dimensional
body. In particular, cable and tube are modelled as uni-dimensional manifolds
and the interaction between cable and rod is interpreted as a global constraint
[10] exerted by rod deformations on cable deformations. The analysis examines
the case of a cylindrical body (rod) by introducing a kinematical model which
permits expressing deformation by means of longitudinal variable functions. The
model assumes that the cross-sections are transversally undeformable while
warping is furnished by a set of shape functions. It is necessary to consider an
adequate model for warping because shear strains may play a fundamental role
in such systems where the cross-sections are often thin-walled. This rod model
was previously adopted by authors in a study on stability [8, 9] and it is only
synthetically described here. The balance conditions are obtained by starting
from the D'Alembert principle. The formulation of the problem in terms of
global conditions is more natural and convenient in the problem considered
because local equilibrium cannot be expressed in terms of local kinematical
quantities, as usual, in that cable slipping introduces an inseparable coupling
between strain and global deformation. For the rod kinematical model
considered, cross-section equilibrium conditions can be equally obtained by
integrating by parts, but this leads to integro-differential equations, as a
consequence of the previously mentioned coupling.
The authors developed a procedure, based on classical variational methods, for

modal analysis with the aim of analyzing realistic situations. A thin walled beam
prestressed by a parabolic cable is ®nally analyzed and some aspects with interest
in structural identi®cation have been evidenced. With regard to the identi®cation
of the cable force via non-destructive tests, it can be observed that in the past
scarce knowledge of the problem led to mistaken conclusions deriving from the
attempt to deduce cable force from modes unaffected by its presence [3].

2. DEFORMATION ANALYSIS

The structural system is constituted by a beam, with constant cross-section
and straight axis, and a cable slipping at its interior along a frictionless path.
The cable is anchored at two points at the end sections of the beam.
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A convenient parameterization of the problem can be achieved by considering
an orthonormal reference frame {0; x1, x2, z} such that, in the undeformed
con®guration, the axis of the cross-section centroids is superimposed on the z
axis. The generic beam material point P is therefore identi®ed by the position
vector

P�x, z� � x� zA3 � xgAg � zA3, �x, z� 2 D6�0, L� � V �1�
(hereinafter repeated indexes denote summation, lower-case Greek indexes
assume the values 1, 2, lower-case Latin indexes assume the values 1, 2, 3) where
D�R2 represents the beam cross-section and {Ai; i=1, 2, 3} is an orthonormal
basis. The cable is anchored at its ends and free to slip along a tube rigidly
linked to the beam. It is assumed that the tube has a transversal dimension much
smaller than its total length and can be modelled as a curve coinciding with its
physical axis. In the reference con®guration the tube position is described by a
smooth curve parameterized in z, traced by

H�z� � xc�z� � zA3 � xcg�z�Ag � zA3, z 2 �0, L�; �2�
where xc is a known function of z which identi®es the crossing point of the cable
in the generic beam cross-section. By denoting with primes the total derivative
with respect to z, the tangent unit-vector to such a path is given by

G � H 0

jH 0j �
x 0cgAg � A3���������������������
x 0cgx

0
cg
� 1

q , �3�

and its length is expressed by the quantity

L �
�L
0

jH 0j dz �
�L
0

���������������������
x 0cgx

0
cg
� 1

q
dz: �4�

The deformation and strain of system components will now be analyzed.
Under the hypothesis that the beam cross-section is rigid in its own plane, the
admissible displacements of the beam can be represented by [8, 11]

u�x, z; t� � u0�z; t� � jjj�z; t�6xÿ I3jjj�z; t�6xs � �www�z; t� �ccc�x��A3

�x, z; t� 2 V6�t0,1�, �5�
where xs is the vector identifying the cross-section shear centre, I3=A3
A3 is
the projector along A3, u0= u0iAi and jjj � jiAi respectively describe rigid
translations and rotations of the cross-section, (www �ccc)A3 describes the warping
displacements. In particular, the last term is obtained as a scalar product
between the vectors www which group the intensities of a generic number of
warping functions contained in ccc. The warping functions ful®l orthogonality
conditions [8, 12] and four different warping functions (pure and non-uniform

torsion warping and shear warpings) have been considered in applications. More
simple kinematical models, as Kirchhoff, Timoshenko or Vlasov models [13±15],
can be obtained as special cases.
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In the following, for the sake of simplicity, the three unknown vectors u, jjj
and www will be grouped in the unique vector v � �u0, jjj, www� and C � fv : �0, L�4
R36R36R1+n} is the functional space of the admissible beam deformations.
According to equation (5), the acceleration of the generic beam point results

�u�x; z; t� � �u0�z; t� � �jjj�z; t�6xÿ I3 �jjj�z; t�6xs � ��www�z; t� �ccc�x��A3: �6�
Deformation is measured by the displacement ®eld gradient U

U�x, z; t� � �u 00 ÿ jjj6A3 � jjj 06xÿ I3jjj 06xs � �www 0�ccc�A3�

 A3 � A3 
rD�www �ccc� � �jjj6Ai� 
 Ai �7�

and by the linear strain tensor E=(U+UT)/2. The expression rD��� � ���;gAg

denotes the gradient of scalar functions de®ned on the cross-section D.
The motion of the tube rigidly linked to the beam, according to equation (5),

can be obtained as

h�z; t� � H� u0 � jjj6xc ÿ I3jjj6xs � �www �cccH�z��A3; �8�
hereinafter, apex H indicates the composition of the generic function with the
vector describing the con®guration of the cable (e.g., cccH�z� � ccc�x� �H�z�).
Consequently, the tangent vector H 0 transforms into

h 0�z; t� �H 0 � u 00 � jjj 06xc � jjj6x 0c ÿ I3jjj 06xs

� ��www 0 �cccH� � rD�www �cccH� �H 0�A3, �9�
and the length of the deformed tube results

l�t� �
�L
0

H 0 � u 00 � jjj 06xc � jjj6x 0c ÿ I3jjj 06xs

� ��www 0 �cccH� � rD�www �cccH� �H 0�A3 dz: �10�
So far, the kinematics of the beam and that of the tube have been described.

Obviously, since the latter is a material curve of the beam, its kinematics are
fully described by the same functions describing beam motion. With regard to
the cable which is a geometric entity distinct from the beam, it is instead
necessary to introduce a suitable deformation function to describe, at each time,
the position of its material points. The coupling with the beam induces a global
constraint on the cable motion which is determined once the beam kinematics
descriptors and a further scalar function have been ®xed. In this case, the
determination of the places occupied by the cable material points is however a
secondary problem which does not have a simple solution and which is of little
interest in applications, while its major interest is in evaluating the local cable
strain which can be measured by means of the ratio a between the ®nal and
initial length of an in®nitesimal portion of cable. From the assumption of
frictionless contact and of negligible mass for the cable it follows that the cable
stress is constant as a consequence of the equilibrium along the path tangent.
The further hypothesis of homogeneous cable, ensures that the strain a is
uniform along the cable and can easily be calculated as the ratio between the



VIBRATIONS OF PRESTRESSED BEAMS 5

total tube length in the actual con®guration l(t) and its initial total length L

a�t� � l
L
� 1

L

�L
0

jh 0j dz: �11�

Equation (11) evidences a functional dependence of a on the trace of beam
deformation along the tube curve and re¯ects the peculiarity of the global
coupling between the cable and the beam. It must be noted that a is non-zero
only for beam motions inducing a variation in the length of the cable path.
Coherently with the in®nitesimal formulation, equation (11) can be linearized
with respect to displacements, furnishing the expression

a � 1� 1

L

�L
0

G �UHH 0 dz, �12�

from which it follows that cable stretching is induced by the beam strain
components along the tangent to the path while the skew-symmetric part of U,
describing in®nitesimal rotations, provides no effects. For further details on the
kinematics of the system constituted by a beam and a cable the reader may refer
to references [6±8].

3. MOTION OF THE SYSTEM

Dynamics of the cable±beam system under examination can be studied as a
particular case of the dynamics of a system constituted by a generic three-
dimensional body and a cable with negligible mass. In the general case of ®nite
deformations, the balance condition can be obtained in weak form by starting
from the Lagrange-D'Alembert principle [16] written in the following form:�

V

S�rp� �rp̂ dVÿ
�
V

r0�bÿ �p� � p̂ dVÿ
�
@V

f � p̂ d@V� t�a�âL � 0

8p̂ 2 C; 8t 2 �t0, �1�, �13�
where S is the ®rst Piola±Kirchhoff stress tensor relative to the body, r0 is the
elementary mass of the body in its reference con®guration, b and f are. The mass
and contact forces applied to the body and t is the modulus of the cable force.
With hats the admissible variations of the deformation functions are denoted.
Such a global approach is the most natural and simple for the problem because,
as already mentioned, the cable local strain has a functional dependence on the
deformation functions describing the beam con®guration. The form given to the
principle does not contain coupling terms between cable and body and this
expresses the absence of friction, and the presence of interaction forces which
must be orthogonal to the path along which cable material points can move. As
usual, the motion can be identi®ed once the initial state of the system, furnished
by the ®elds p and _p, are known at the initial instant t0.
The aim of this paper is to study the in®nitesimal motion of the system in the

neighbourhood of a static equilibrated con®guration; in this case the condition
describing the motion can be deduced by linearizing equation (13) with respect
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to the displacements measured from the known con®guration. By choosing this
con®guration coincident with the reference body con®guration, where the stress
®eld on the beam, measured by the Cauchy stress tensor T0, is balanced by the
interaction forces due to cable force t0 and by the external force ®elds b0 and f0,
equation (13) reduces to�
V

C�E� � Ê dV� c

L

�L
0

G �UHH 0 dz
� � �L

0

G � ÛH
H 0 dz

� �
�
�
V

T0 �UTÛ dV

� t0

�L
0

IÿG
G

jH 0j � �UHH 0 
 Û
H
H 0� dz �

�
V

r0�~bÿ �u� � û dV�
�
@V

~f � û d@V,

8û 2 C, �14�
where C denotes the elastic tensor of the material constituting the body at the
stress T0 and c denotes the cable stiffness at the traction force t0. In equation
(14) the two elastic terms and the two geometrical terms relative to body and
cable are balanced from the inertial term related to time derivatives of
displacements and the contribution of variation of external forces denoted by ~b
and ~f. With regard to the elastic terms it is remarkable that, while the term
relative to the body is classically obtained by integrating a quadratic form, the
term relative to the cable is furnished by the product between two linear
integrals as a result of the particular coupling between cable and body. It can be
observed that equation (14) becomes homogeneous when the external forces do
not vary from the reference ®elds b0 and f0 (free vibrations). The last reference
external force ®elds however indirectly in¯uence the system vibrations
throughout the geometrical term containing T0 and t0.
The balance condition for the cable±beam system can be obtained by

introducing the deformation ®elds of the previous section into the Lagrange±
D'Alembert principle. It is important to note that the relations of the previous
section provide a reduced set of deformations only, as a consequence of the
internal local constraint deriving from the transversal rigidity of the cross-
section, from which Eab=0, and as a consequence of the global constraint
deriving from considering a ®nite number of shape functions ci to describe
warping. This provides a splitting of the stress tensor measuring the stress
increment due to the motion in two parts: an active part which makes virtual
work for the admissible strain variations and which is related to the actual
deformation of the body by the constitutive relations, and a reactive part which
does not make virtual work and which is necessary to impose the global
constraints [10]. It is evident that such a splitting concerns only the stress
produced by strain contained in the beam constitutive terms, while the entire
residual stress ®eld T0 must be considered in the geometrical term.
Since the displacement ®eld is expressed as a summation of products between

unknown functions de®ned on the beam axis abscissa z and known functions of
the cross section co-ordinates xa (e.g., warping functions), the volume integrals
on the body can be partially developed by integrating known functions on cross-
sections and obtaining dynamic quantities depending on z which are dual to the
kinematical descriptors related to v, as usual in beam theories. The duality
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relations due to the cable involve only scalar quantities which however have a
functional dependence on the kinematical descriptors of the beam deformation.
In such a way, the new balance condition is constituted by a summation of line
integrals only. In the following, each term forming the balance condition (14)
will separately be analysed.
Under the assumption that the elasticity tensor C furnishes the following,

transversally isotropic, constitutive law

C�E� � 2GE� �Eÿ 2G��E � I3�I3, �15�
and taking into account equation (7), the beam elastic term transforms into the
following, usually positive de®nite, bilinear form:�

V

C�E� � Ê dV �
�L
0

KDv � Dv̂ dz, �16�

where v4Dv is the formal linear differential operator as Dv �
�u 00 ÿ jjj6A3, jjj 0, www, www 0� and K represents the cross-section stiffness matrix which
furnishes the dynamical entity KDv, dual of Dv̂, grouping the classical internal
resultants of active stress: axial and shear forces, bending and twisting moments,
bi-shears and bi-moments relative to warping displacements [8, 12].
As already mentioned, the cable elastic term, is given by the product of two

functionals of body deformation as a result of the particular coupling between
the two structural components. Quantity

UHH 0 � h 0 � u 00 � �jgAg6xc� 0 � �j3A36�xc ÿ xs�� 0 � �www �cccH� 0A3, �17�
which appears in the term, represents the difference between the elements which
are tangent to the path in the deformed con®guration and in the undeformed
con®guration but, since G and H 0 are parallel, only the symmetric part of the
displacement gradient UH (pure deformation) is signi®cant; in other words only
the component of UTH 0, which is point by point parallel to the cable path, may
induce elastic effects on the cable. It must be observed that such a term is only
positive semi-de®ned as a consequence of its analytical structure. It is, in fact,
non-zero only when the beam motion induces a global stretch of the cable path.
For the speci®c case it assumes the form

c

L

�L
0

G �UHH 0 dz
� � �L

0

G � ÛH
H 0 dz

� �
� c

L

�L
0

YYY � DHv dz
� � �L

0

YYY � DHv̂ dz
� �

,

�18�
where the vector YYY � �YYYN, YYYM, YYYu, YYYm� collects the following kinematical
entities related to the cable path:

YYYN�z� � H 0 
H 0

jH 0j A3, YYYM�z� � xc6YYYN ÿ I3�xs6YYYN�,
YuI�z� � YYYN � rDc

H
I , YYYm�z� � cccH�YYYN �A3�:

�19�
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The third term of equation (14) is the classical geometrical term which
represents the virtual work performed by the known stress state T0 on the
quadratic strain induced by the admissible variation of the con®guration. It
cannot be de®ned in sign and thus can penalize the previous terms depending on
the elastic stiffness of the system. In such a case the global stiffness of the system
may reduce and unstable motions can occur as a limit case. By making the
deformation ®eld of the cylindrical body explicit, the following relation is
obtained �

V

T0 �UTÛ dV �
�L
0

WGv�Gv̂ dzzz, �20�

where the coef®cient matrix W is related to the stress tensor components and to
the geometry of the cross-section. while the linear differential formal operator
v4 Gv is Gv � �u0, u 00, jjj, jjj 0, www, www 0�.
The fourth term is relative to the cable and, as for the previous terms, depends

on the quantity UHH 0 , but this time only the component which is orthogonal to
the cable path becomes signi®cative. Since the cable is stretched and designed to
maintain positive stress even under the action of the external loads, and the
integrated functions are non-negative for v̂ � v, it derives that this term is
positive semi-de®ned. By substituting the body deformation quantities according
to the deformation model adopted, the following equation is obtained

t0

�L
0

IÿG
G

jH 0j ��UHH 0 
 Û
H
H 0� dz � t0

�L
0

WcGHv � GHv̂ dz, �21�

where Wc is a coef®cient matrix depending on the geometrical path of the cable
and GH is the trace of the previously de®ned operator along the path.
The term on the right in equation (14) is related to the external forces and the

mass distribution in the solid. By substituting the acceleration ®eld according to
equation (6) and the deformation ®eld, it derives that�

V

r0�~bÿ �u� � û dV�
�
@V

~f � û d@V �
�L
0

�qÿ L�v� � v̂ dz, �22�

where

L�z� �
Lu0u0 Lu0j 0
LT
u0j Ljj 0
0 0 Lww

24 35, �v�z� �
�u0
�jjj
�www

24 35: �23�

The symmetric matrix L collects the mass resultants which are signi®cant for the
model. In particular the diagonal terms represent the masses that produce
generalised inertia forces due to the linear, angular and warping accelerations;
the others are coupling terms. Under the orthogonality assumption for the
warping functions, the only possible coupling is the roto-translation coupling as
a result of the non-coincidence between shear centre and centroid of the cross-
section. Obviously, such terms are zero for double symmetric cross-sections. The
vector valued function q(z) is obtained by integrating terms related to mass force
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r0~b on the cross-section and by integrating terms related to contact forces ~f on
the cross-section boundary. For the sake of simplicity, it is assumed that no
contact forces are applied at the basis of the cylinder.
In conclusion, the introduced operators G, D, YYY, K, W, L make it possible to

formulate the problem for the kinematical model considered and the
in®nitesimal motion is de®ned once v and _v are assigned at the initial instant.
When second order effects due to stress can be neglected, the formulation of

the problem can be obtained by considering only the elastic terms and starting
from the natural con®guration.
An alternative formulation expressing equilibrium of cross-sections can be

deduced by integrating by parts, following a way similar to that traced in
reference [8]. Differently from the classical beam problems, this does not furnish
a really local formulation but leads to integro-differential equations that are of
less interest.

4. MODAL ANALYSIS

Modal analysis describing free vibrations of the system can be performed by
considering the previous variational formulation and by determining solutions in
the case of absence of external forces. The system is conservative and it is
possible to seek solutions in the following form

v�z; t� � eiytfff�z�, �24�
where i � �������ÿ1p

and y is proportional to the frequency of the vibration mode
fff(z). By substituting this last expression into the balance condition and cutting
off time, the following condition, involving spatial functions only, is obtained

c�fff, v̂� :�
�L
0

KDfff � Dv̂ dz� c

L

�L
0

YYY � DHfff dz
� � �L

0

YYY � DHv̂ dz
� �

� t0

�L
0

WcGHfff � GHv̂ dz�
�L
0

WGfff � Gv̂ dzÿy2
�L
0

Lfff � v̂ dz� 0 8v̂ 2 C:

�25�
This is an eigenvalue problem and real non-zero eigenvalues exist if the
condition c�fff, fff� < 0 is ful®lled for every fff 6� 0 [17].
An approximate solution of the problem of cable±beam system free vibrations,

can be obtained from the weak formulation previously described thanks to the
classical Ritz approximation method. By considering suitable truncations of a
complete sequence in the solution space, the approximated solution can be found
in a ®nite-dimensional subspace of C.
Each jth component of vector v which contains the unknown functions

describing system kinematics, is approximated by means of the ®rst mj terms of a
complete sequence, in the following way

vj � y� j�k�z�w� j�k �k � 1; . . . ; mj, no summation on j�: �26�
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By properly grouping functions y� j�k and the unknown coef®cients w� j�k in the
matrix of shape functions Y(z) and in the vector w, respectively, equation (26)
can be rewritten in the form v=Yw. In the case of homogeneous boundary
conditions, the problem is linear and the admissible variations of the
displacements can be written in the form v̂ � Yŵ. By substituting, the eigenvalue
problem reduces to

�Aÿ W2M�w � ŵ � 0, 8ŵ 6� 0, �27�
where matrixes A and M have the expressions

A �
�L
0

�D�Y�TK�D�Y� dz� c

L

�L
0

�D�Y�TYYY dz
� � �L

0

�D�Y�TYYY dz
� �T

�
�L
0

�G�Y�T�t0Wc �W��G�Y� dz, �28a�

M �
�L
0

YTLY dz: �28b�

Operators D� and G� furnish matrixes by mapping every column y�k=
�Y1k, . . . ,Y10k� of Y into Dy�k and Gy�k. Equation (27) implies that the

�Aÿ W2M�w � 0: �29�
must be ful®lled. The solution of the eigenvalue problem makes it possible to
obtain the approximated values of the most meaningful eigenperiods and
vibration modes.

5. VIBRATIONS OF THIN WALLED BEAMS WITH PARABOLIC CABLE

5.1. ANALYZED PROBLEM

The model previously introduced is employed to study the free vibrations of a
class of concrete beams prestressed by means of slipping internal cables in order
to test the in¯uence of the elastic characteristics of the materials, as well as the
in¯uence of the path and the prestressing cable stress, on the beam free
vibrations. Numerical applications have been developed in order to show some
characteristic aspects of the modal properties of these systems and to analyze
only one of the typologies usually adopted in structural engineering. The same
qualitative aspects described in the following pages have been however observed
in other usual situations not reported here, such as beams with T-section or I-
section with wide ¯ange.
The numerical applications refer to a simply supported beam with the end

twisting rotations prevented by suitable restraints which permit cross-section
warping. The depth H=1300 mm of the cross-section and the elastic modulus
E0=30 000 N/mm2 of the beam have been assumed as ®xed quantities while the
other geometrical and constitutive parameters may vary. In particular the



VIBRATIONS OF PRESTRESSED BEAMS 11

dimensions of the considered ``I'' cross-section have been parameterized as
described in Figure 1. The cable stiffness is c=0�1E0A where A is the area of the
beam cross-section.
Prestressing is carried out by means of a parabolic cable, lying on the vertical

symmetry plane of the cross-section, whose path is described by

H�z� � �2Hÿ 4s� z
L

� �
ÿ z

L

� �2
" #

� s

( )
A2 � zA3, �30�

where s is the cable eccentricity at the ends of the beam where anchorages are

located. Such a geometry produces interaction transversal forces opposite to
external loads and is usually adopted for reducing the extreme values of bending
and shear stresses in the beam.
The need to have meaningful results clearly explainable justi®es the simplicity

of the example geometry (symmetry of the cross-section and of the cable path).

The problem has been analyzed by considering the kinematical model
proposed in reference [13] (LS model), which makes it possible to accurately
describe the kinematics of thin-walled beams. The kinematical descriptors consist
of ten functions of the beam axis abscissa: six describing the rigid motion of the
cross-section and the others describing intensities of the warping displacements

due to primary and non-uniform torsion, as well as to shear forces (shear lag
effect). In Figure 2 the qualitative description of the shape of the warping
functions used for the considered ``I'' section are reported: c0 and c3 concern
torsion while c1 and c2 concern shear in the x1 and x2 directions.

The importance of shear strain on the vibration of non-prestressed thin walled
beams is already known; numerical results and comparisons with a simpli®ed
model are reported in reference [13]. It is reasonable to assume that the shear
strain maintains a notable in¯uence even in the studied case of prestressed beam,
so that such a re®ned model has been adopted in the analysis. However, a

comparison with the results derived from the simpli®ed Kirchhoff±Vlasov model
(KV model) will be carried out in the following in order to exploit the necessity
of the previous, more complex, model. As is well known, the KV model neglects
the angular strain due to shear and the warping related to the non-uniform
torsion stress.
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tw

H L

B

s

s

G = 0.4E G = 0.1EA

B = H
5

tw = H1
20

tf = 1.5tw = H1.5
20

Figure 1. Geometry of the problem and pro®le of the cable path.
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The variational format of the problem and the regularity of stiffness and
inertial properties, together with the regularity of the cable path make the Ritz
approximation method ef®cient in seeking a numerical solution. Truncations of
the sine normalised sequence are assumed as shape functions for the beam axis
displacements (u1, u2) and the twisting rotations �j3� while for the shape
functions describing the bending rotations �j1, j2� as well as the intensities of
the warping �w0, w1, w2, w3�, truncations of the Tschebichef polynomial sequence
are assumed. With regard to the axial translation of the cross-section (u3), a
linear function is joined to a sinusoidal expansion in order to ful®l the boundary
conditions. Table 1 reports the expressions of the adopted shape functions.

x2

x1

0

x2

x1

1

x1

x2

2

x1

x2

3

Figure 2. Warping shape functions for the cross-section adopted.

TABLE 1

Ritz function sequences adopted

u1u2j3 fi�z� �
����
2

L

r
sin

ipx
L

� �
i=1, 2, . . .

u3 f1�z� � z
L

����
3

L

r

fi�z� �
����
2

L

r
sin
�iÿ 1�pz

L

� �
i � 2, . . .

j1j2 f1=1
w0 w1 w2 w3 f2= z

fi=2fiÿ1zÿ fiÿ2 i � 3, 4, . . .
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5.2. INFLUENCE OF THE BEAM'S YOUNG MODULUS

Figure 3 describes the effect of a variation of the Young modulus on some
meaningful vibration periods. The three reported diagrams refer to the slowest
vibration periods whose vibration modes mainly consist of a bending
deformation in the x1±z plane (case 1), a bending deformation in x2±z (case 2)
and a torsion deformation (case 3). It should be observed that in the considered
system, a perfect uncoupling among axial, bending and twisting vibration modes
does not exist. So that the previously de®ned three cases must be intended in the
sense that the elastic energy respectively related to bending in x1±z, bending in
x2±z and twisting represents almost the total elastic energy of the system.
The Young modulus varies in the range of 220% with respect to the

reference value E0 and the ratio G/E=0�4 is a constant. Variations of the period
T are expressed in percentages with respect to the value T(E0). For each
vibration mode three curves, relative to three different stresses of the cables, are
reported. The cable stress t is expressed by means of the non-dimensional
quantity �t � �t=E0A�61000. Here and in what follows it is assumed that �t varies
in the range [0�0, 1�0], because this ensures a linear elastic behavior for the
material and the ful®lment of the small displacement hypothesis. Figure 3 also
contains the numerical values of the periods measured for the reference elastic
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Figure 3. Effects of elastic modulus variations on system free vibrations. �t=0�0,
T(E0)=0�2418 s (b), 0�0218 s (c), 0�0306 s (d); �t=0�5, T(E0)=0�2420 s (b), 0�0218 s (c), 0�0319 s
(d); �t=1�0, T(E0)=0�2420 s (b), 0�0218 s (c), 0�0335 s (d).
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modulus. All the applications in Figure 3 are performed with the cable path
geometry reported in Figure 2(a) characterised by s=0 (anchorages at the
section centroid).
As foreseeable, the Young's modulus of the beam in¯uences all the vibration

modes. Such an in¯uence is almost the same for the three modes and reaches a
variation of about 10% for a variation of 20% of the Young's modulus. This is
related to the constant ratio between G/E but it is also due to the small in¯uence
of the elastic, not varying, term depending on the stiffness of the cable. It is
however interesting to observe that the curves obtained with different cable
stress are practically superimposed in the modes mainly characterised by bending
(Figures 3(b) and (c)). Only the twisting mode (Figure 3(d)) shows a sensitivity
to the cable stress. This means that the geometrical term related to the beam
compressive stress, which provides a reduction in the system stiffness, is balanced
by the geometrical term related to the traction on the cable only for the ®rst
bending vibration modes.

5.3. INFLUENCE OF STRESS AND PATH OF THE CABLE

The results obtained by varying both the stress and path of the cable, are
reported in Figure 4. As in Figure 3 the ®rst bending and twisting vibration
modes are studied. Seven curves are reported for different cable paths obtained
by varying s between ÿ0�5 (parabolic path with anchorage at the top ¯ange of
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the end cross-sections) and 0�5 (straight cable running along the bottom ¯ange of
the beam). The cable stressÐexpressed by the non-dimensional quantity
�t � �t=E0A�61000Ðis assumed to vary in the range 0�0 to 1�0. All the
applications are performed adopting the reference value E0 of the Young's
modulus of the beam. Variations of the period are expressed in percentages with
respect to the reference value T(0) obtained with a zero cable stress (non-
prestressed beam). The numerical value of T(0) is reported in the ®gure; it is not
affected by the cable pro®le in case 1 (bending vibrations on the plane x1±z) and
case 3 (twisting vibrations) because their deformation modes involve
displacements which are orthogonal to the plane where the cable lies and then
they do not produce a cable elongation. On the contrary, T(0) depends on the
cable pro®le in case 2 (bending vibrations on the plane x2±z) because
deformation provides elongations of the cable. This effect is however small, as
can be deduced from the extreme values reported in the ®gure.
In general, it is possible to observe a signi®cant difference between results

concerning the bending vibration modes and those relative to the twisting
vibration mode. The periods relative to the ®rst two are in fact only slightly
modi®ed by variations of cable stress and cable pro®le and maximum variations
of about 0�4% have been observed under the cable stress �t � 1 (Figures 4(b) and
(c)). Differently, the period relative to the twisting mode reaches variations
about 30 times higher (Figure 4(d)). Since the vibration period is related to the
stiffness of the vibrating system, under a different point of view it can be
concluded that even if the bending stiffness is not appreciably modi®ed by the
cable stress and path, the twisting stiffness is strongly in¯uenced.
By considering the effect of the path of the cable, it can be observed that not

all the paths produce the same effect and a particular path exists for which the
period does not vary even by varying the prestressing force. Such a path, which
can be denoted as indifferent path, is not the same in the three cases considered
and it corresponds to the value s/H=0�5 (straight cable) in the case of bending
vibrations and approximately to the value s/H=0�275 in the case of twisting
vibrations.
In the case of bending, the vibration period, always increases by varying the

anchorages position (decreasing s) or, in other words, the system stiffness
decreases. Such a relation is a monotonic one and reduction of s always
produces an increase of the period.
A different and more complex behavior is observed for twisting vibrations.

The prestressing produces a reduction of the vibration period when anchorages
are disposed with s in the range [0�275, 0�5] while an increase of the period can
be observed when s is less than 0�275. Furthermore, the relation between the
period and the parameter s is no more monotonic in this case and a reduction of
the parameter s produces an increment of period in the range [ÿ0�375, 0�5] while
an opposite trend can be observed in the remaining set of anchorage positions
[ÿ0�5, ÿ0�375]. This latter aspect is more clearly described by Figure 5, where a
three-dimensional representation reports the variations of the twisting period as
a continuous function of two variables: the cable prestressing force �t and the
anchorage position s/H. Figure 5(a) refers to the ®rst twisting eigenperiod while
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Figure 5(b) refers to the second twisting eigenperiod; the dashed line denotes the
position of the indifferent path. A similar trend has been observed in both cases
even if the two vibration modes have different numerical values and the
indifferent path changes.
The described characteristic aspects of the problem, as the possible existence

of indifferent paths and the possibility of reducing or increasing the system
stiffness by varying the cable path, have been observed even in faster vibration
modes.

5.4. SIMPLIFED KINEMATICAL MODEL

In Table 2, the ®rst three periods of bending vibrations on the x2±z plane
provided by the KV model and by the more re®ned LS model are reported. Three
beams characterised by different ratios L/H are considered and both cases of
prestressing with straight and curved cables with non-dimensional tension
�t � �t=E0A�61000 � 1 are investigated. The kinematical KV model is based on
the following reduced displacement ®eld [14, 15]:

u�x, z; t� � u0�z; t� ÿ �A3 
 x�u 00�z; t� � jjj�z; t�A36�xÿ xs� � j 0�z; t�c�x�A3

�x, z; t� 2 V6�t0,1�: �31�
As expected, due to the greater model stiffness, vibration periods obtained

with the KV model are lower than those given by the LS model. The difference,
almost negligible for the slowest mode of slender beams (less than 1% for
L/H=15) becomes very important for beams with a lower ratio L/H (around
6% for L/H=5 and s/H=0�5). Furthermore, major differences exist between
period values relative to higher vibration modes and differences up to 22% can
be observed. In many cases the differences have the same order of the variation
of period deriving from variation of the cable force, so that the adoption of the
proposed model is crucial in obtaining reliable results in model analysis.
Similar results, not reported here for the sake of brevity, are obtained for

twisting and bending vibrations in the x1±z plane because of the geometry of the
cross-section adopted. In particular, for I-beams characterised by wither ¯anges
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and T-beams, the adoption of a re®ned model, as the LS model, becomes very
important in having good analysis results.

6. CONCLUSIONS

The motion of a thin-walled beam with an internal slipping cable was
analyzed in the range of small displacement theory. The balance conditions for
motion in the neighbourhood of a con®guration in which a stress state due to
prestressing and external force is present, were stated in variational form.
The modal analysis was performed for a case with technical interest: a beam

prestressed by a parabolic cable.
Developed application provided useful indications on the mechanical

characteristics of the system and permitted concluding with the following
remarks.
The presence of a stretched cable can make the vibration modes slower or

faster and this depends on the cable path geometry.
The cable force and the cable pro®le selectively affect a reduced set of modes

while some of them may be unaffected for every value of the prestressing force.
More precisely, for the single vibration mode an indifferent path may exist in the
family of technically admissible paths. In this case the period of the considered
vibration mode is not affected by the cable stress at all, i.e., its sensitivity to the
cable stress is null.
In the analyzed case the sensitivity of vibration modes with respect to the

cable force usually increases for smaller eigenperiods.
Thin walled beams require the adoption of kinematical models accurately

describing warping due to shear and simpli®ed models, such as the Kirchhoff±
Vlasov model, providing errors of the same order as the variation of periods
induced by variation in the cable force.
The presence of vibration modes almost unaffected by the cable force, or more

generally the large differences in the sensitivity of the single vibration modes on

TABLE 2

Comparison between results obtained by the KV model and the LS model

Straight cable (s/H=0�5) Curved cable (s/H=ÿ0�5)z��������������������������}|��������������������������{ z��������������������������}|��������������������������{
L/H Mode KV model LS model % KV model LS model %

15 I� 0�02121 0�02140 ÿ0�89 0�02202 0�02217 ÿ0�68
II� 0�00567 0�00585 ÿ3�08 0�00568 0�00585 ÿ2�91
III� 0�00254 0�00270 ÿ5�93 0�00255 0�00271 ÿ5�90

10 I� 0�00946 0�00966 ÿ2�07 0�00983 0�00997 ÿ1�40
II� 0�00256 0�00272 ÿ5�88 0�00256 0�00273 ÿ6�23
III� 0�00117 0�00132 ÿ11�4 0�00117 0�00132 ÿ11�4

5 I� 0�00242 0�00259 ÿ6�53 0�00251 0�00265 ÿ5�28
II� 0�00069 0�00082 ÿ15�9 0�00069 0�00082 ÿ15�9
III� 0�00034 0�00044 ÿ22�7 0�00034 0�00044 ÿ22�7
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the cable traction force, may be of interest in structural identi®cation because
this permits separately identifying the constitutive properties of the beam from
those modes unaffected by the cable force and identifying in a second step the
cable force from the remaining modes.
An alternative application of the presented results may consist in obtaining an

active control of the dynamical response of the structure by introducing an
adequate cable force.
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