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The dynamic stability of a system composed of driving and driven shafts
connected by a universal joint is investigated. Due to the characteristics of the
joint, even if the driving shaft experiences constant torque and rotational speed,
the driven shaft experiences fluctuating rotational speed, bending moments and
torque. These are sources of potential parametric, forced and flutter type
instabilities. The focus of this work is on the lateral instabilities of the driven shaft.
Two distinct models are developed, namely, a rigid body model (linear and
non-linear) and a flexible model (linear). The driven shaft is taken to be pinned
at the joint end and to be resting on a compliant damped bearing at the other
end. Both models lead to sets of differential equations with time dependent
coefficients. For both rigid (linear and non-linear) and flexible models, flutter
instabilities were found but occurred outside the practical range of operation
(rotational speed and torque) for lightly damped systems. Parametric instability
charts were obtained by using the monodromy matrix technique for both rigid and
flexible linear models. The transmitted bending moments were found to cause
strong parametric instabilities in the system. By comparing the results from the
two linear models, it is shown that the inclusion of flexibility leads to new zones
of instability, not predicted by previous models. These zones, depending on the
physical parameters of the system, can occur for practical conditions of operation.
Using direct numerical integration for a few sets of specific parameter values,
forced resonances were found when the rotational speed reached a value equal to
a natural frequency of the system divided by two.
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1. INTRODUCTION

Universal joints, commonly referred to as U-Joints, are widely used in rotary
machines when transmission of torque or power is needed between two shafts that
are not collinear. Although a non-constant velocity joint, the U-Joint is extensively
used in preference to other types of joints. The principal advantages of it are its
relatively low manufacturing cost, simple and rugged construction, long life, and
ease of serviceability. Also, in addition to providing the necessary torque capacity
in a limited operating space, the U-Joint has the capability to withstand relatively
high externally imposed axial forces and relatively high operational speeds.

In systems driven by U-Joints, instabilities of several types can occur, for
example, flutter, parametric, and forced. To fully analyze these instabilities
mechanical models involving U-Joints and rotating shafts need to be developed
incorporating the physics which produce the instabilities.

The present work deals with the dynamic stability of rigid and flexible shafts
mounted in a compliant damped support and driven through a U-Joint. The focus
is on the lateral instabilities of the shaft, and the effects of bearing compliance and
damping and system geometric parameters.

A brief review of the salient literature will now be given.
The literature on rotating shafts is very extensive, because of the numerous

technical applications. Citations to early work can be found in H. P. Lee et al.
[1], in their paper on a rotating Timoshenko shaft. The recent work of C. W. Lee
and Yun [2] should also be noted. Guidelines to some of the modelling employed
here were obtained from the work of Eshleman and Eubanks [3] on the critical
speeds of rotating shafts.

The literature on stability, and the use of follower and non-follower forces and
moments, is equally extensive. The classic works of Ziegler [4] and Leipholz [5]
contain numerous instructive examples. The field continues to be fruitful, as the
works of Khader [6] on follower loads, Plaut and Wauer [7] on parametric,
external and combination resonances, and the text by C. W. Lee [8] attest.

Work on drive systems containing U-Joints is not so extensive. Lateral and
torsional vibrations of a rotating shaft driven by a universal joint were investigated
by Ota et al. [9, 10]. There the moment applied by the U-Joint to the driven shaft
was modelled as a non-follower one. The driven shaft was taken to be a massless
flexible shaft with an off-center symmetric rotor. The flexibility of the shaft was
included in the formulation as a lumped stiffness, rather than distributed.
Parametric resonances were found to be possible when the angular velocity of the
driving shaft was close to an even integer (or sub-multiple) of a torsional or lateral
natural frequency of the driven shaft. In a later work [11] Kato and Ota
investigated the lateral vibrations of a rotating shaft driven by a U-Joint with
friction, the moment due to the friction being modelled as a non-follower one.

The effects of joint angles and joint friction in a double universal joint system
were investigated by Sheu et al. [12]. Using Rayleigh beam theory they found that
the values of the critical speeds for the intermediate shaft are affected by the axial
torques, which depend on viscous friction coefficients and joint angles.

Saigo et al. [13] considered the dynamics of a multi shaft, multi U-Joint system.
They showed that Coulomb friction in one of the U-Joints could lead to unstable
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motions. However, the shafts were treated as rigid and the fluctuations of
rotational speeds due to the U-Joint were taken to be negligible. Also, their
modelling is such that time dependent coefficients do not appear in the equations
of motion so parametric instabilities can not be addressed.

Torsional instabilities, due to fluctuating angular velocity, in a driveline
imcorporating a U-Joint were investigated by Asokanthan and Hwang [14] and
Asokanthan and Wang [15]. The system was modelled as a two-degree-of-freedom
system with damping. Analytical conditions for the onset of parametric instability
were derived and the occurrence of combination resonance of the sum type was
identified while the combination resonance of the difference type was shown to be
absent. Damping was found to stabilize the system in the sub-harmonic case and
to destabilize the system in the combination case. For a given joint angle the
critical speed ranges to be avoided for stable operation were obtained. Based on
these works it is seen that both torsional and lateral instabilities can occur in
U-Joint systems. In the present work the focus is on shafts whose properties are
such that the bending natural frequencies are much less than the torsional natural
frequencies. Hence, torsional motions are neglected.

The influence of joint angle on the critical speed behavior of a shaft driven
through a U-Joint was investigated by Rosenberg [16]. In that work the shaft was
modelled as a massless uniform elastic shaft with a concentrated mass at its
midpoint. The transmitted torque was taken to be a follower one. There the only
bending moments considered were those due to bending components of the
follower torque, whereas a U-Joint also produces direct bending components. It
was found that when the joint angle was different from zero, parametric
instabilities could arise.

Transverse vibrations and stability of a rigid driven shaft in a U-Joint
system with springs and dampers and zero initial joint angles were analyzed
by Iwatsubo and Saigo [17]. It was found that parametric and flutter type
instabilities could arise. The relative role of system damping and stiffness was
investigated.

Several possibly important issues have not so far been addressed in the
literature, to the authors’ knowledge. Most importantly, the effects of distributed
shaft flexibility and inertia on parametric resonances have not been explored. Also,
effects of non-zero initial joint angles and system non-linearities need to be
assessed. These issues are explored in this paper, with the major emphasis being
on the role of distributed shaft flexibility and inertia.

The plan for the paper is as follows. Section 2 introduces a model, similar
to Iwatsubo and Saigo’s model, in which the driven shaft is regarded as
rigid. However, the initial joint angles are taken to be non-zero and some
non-linear effects are taken into account. In Section 3 a flexible model (linear) for
the driven shaft is developed. Galerkin’s method is applied to the equations of
motion for the flexible model in Section 4. In sections 5 and 6 flutter type
instabilities and parametric type instabilities are examined for both models.
Section 7 gives some preliminary results for the rigid non-linear model, obtained
using direct numerical integration, and in section 8 forced resonances are
investigated.
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2. EQUATIONS OF MOTION: RIGID BODY MODEL

Figure 1 shows a shaft AB of length l driven through a U-Joint by a driving
shaft BC which spins at constant angular velocity V. Springs and dampers are
connected to the driven shaft at A as shown.

Two inertial frames are used in the derivation of the equations of motion due
to the presence of the driving and driven shafts. XYZ is a fixed frame with origin
at the center of the cross with Z directed along the driving shaft. X and Y are
arbitrarily oriented in the crosspiece section. xyz is a fixed frame defining the
undeflected orientation of the driven shaft, with origin at the center of the
crosspiece and z directed along the axis (see Figure 2). xyz can be obtained from
XYZ by a sequence of rotations. A rotation a0 about Y leads to the intermediate
axes xiyizi . A second rotation d0 about xi leads to the configuration xyz (a0 and
d0 are called initial joint angles).

A moving frame is attached to the shaft on its central axis and is described
by Euler angles b and g. First a rotation b about y leads to the intermediate axes
x1y1z1 as shown in Figure 2. Then a rotation g about x1 leads to the final
configuration of the moving axes x2y2z2. The moving frame does not spin with the
shaft.

Let v2 be the angular velocity of the moving frame x2y2z2 with respect to the
inertial frame xyz. The angular velocity of the driven shaft with respect to the
moving frame x2y2z2 is called v. The modified version of Euler’s equations [18]

Figure 1. U-Joint mechanism.
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Figure 2. Reference frames: (a) rotations a0 and d0, (b) rotations b and g.

is used (here, the symmetry axis about which the moving frame x2y2z2 rotates is
the driving shaft axis), namely

s Mx2,o = Jx2,ov̇x2 − (Jy2,o − Jz2,o )vy2vz2 + Jz2,ovvy2, (1)

s My2,o = Jy2,ov̇y2 − (Jz2,o − Jx2,o )vz2vx2 − Jz2,ovvx2, (2)

s Mz2,o = Jz2,o (v̇z2 + v̇). (3)

Here, Ma,b is the moment about axis a with respect to reference point b, J’s are
mass moments of inertia with respect to point O, and overdots denote
differentiation with respect to time. The third equation would give the load torque
if desired and will not appear in the sequel.
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Here,

v2 = b� cos (g)j
 2 − b� sin (g)k
 2 + ġi
 2 (4)

and

v̇2 = g̈i
 2 + (b� cos (g)− b� ġ sin (g))j
 2 − (b� sin (g)+ b� ġ cos (g))k
 2, (5)

where i
 2, j
 2 and k
 2 denote unit vectors in the x2, y2, and z2 directions, respectively.
Assuming that the initial joint angles are small, such as usually occurs in

practice, the rotational speed of the driven shaft can be written as (see, for
example, reference [19]):

v0Vp2(t)=V$1−
a2

0

2
(1−cos (2Vt))−

d2
0

2
(1+cos (2Vt))− a0d0 sin (2Vt)%,

(6)

where V is the rotational speed of the driving shaft.
Substitution of equations (4), (5) and (6) into equations (1) and (2) leads to

s Mx2,o = Jx2,og̈+(Jy2,o − Jz2,o )b�
2 cos (g) sin (g)+ Jz2,ob� cos (g)Vp2(t), (7)

s My2,o = Jy2,o (b� cos (g)− b� ġ sin (g))+ (Jz2,o − Jx2,o )b� ġ sin (g)− Jz2,oġVp2(t).

(8)

The next step is to calculate the moments resolved on the moving system. Here
the driven shaft is taken to be pinned at the end coinciding with the U-Joint center
and to rest on a compliant bearing at the other end. The bearing is modelled by
pairs of springs and dampers (see Figure 1).

In the model used here the spring and damper forces are given by

Fs =−Kxl sin (b)i
 2 +Kyl sin (g) cos (b)j
 2, (9)

Fd =−Cxlb� cos (g)i
 2 +Cylġj
 2, (10)

where K stands for spring stiffness and C stands for the viscous damping
coefficient.

For two perpendicular springs (Kx , Ky ) and two perpendicular dampers (Cx , Cy )
directed along x and y, respectively, the moments that arise at the center of the
U-Joint can be expressed as

Ms
o =−(l2Ky sin (g) cos (b))i
 2 − (l2Kx sin (b))j
 2, (11)

Md
o =−(l2Cyġ)i
 2 − (l2Cxb� cos (g))j
 2. (12)
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The next step is to obtain the components of the moment transmitted by the
U-Joint. The transmitted moment acts along the normal unit vector to the
crosspiece (see, for example, reference [19]) which is given by

en = enx2i
 2 + eny2j
 2 + enz2k
 2, (13)

where

enx2 =−
1
o

[cos (t)b−cos (t)a0gd0 + cos (t)a0 − sin (t)g−sin (t)d0]

× [cos (t)− cos (t)ba0 + sin (t)ba0], (14)

eny2 =−
1
o

[cos (t)b−cos (t)a0gd0 + cos (t)a0 − sin (t)g− sin (t)d0]

× [cos (t)gb+cos (t)a0d0 + cos (t)a0g+sin (t)− sin (t)gd0], (15)

enz2 0 o=X[cos (t)gb+cos (t)a0d0 + cos (t)a0g+sin (t)− sin (t)gd0]2

+ [cos (t)− cos (t)ba0 + sin (t)bd0]2
(16)

and t=Vt.
The moment that the U-Joint applies to the driven shaft is

M=Men , (17)

where M can be shown to be related to the torque that acts on the driving shaft,
T0, by

M=
T0

ên · K

, (18)

in which K
 denotes the unit vector in the Z direction.
Substitution of equations (4), (5), (11), (12), (17) and (18) in equations (1) and

(2) leads to the following set of non-linear ordinary differential equations:

n2g� +(1− h)b� 2n2 cos (g) sin (g)+ hb� n2 cos (g)p2(t)

= M	 x2 −K	 y sin (g) cos (b)−C	 ynġ, (19)

n2b� cos (g)+ (h−2)b� ġn2 sin (g)− hġn2p2(t)= M̃y2 −K	 x sin (b)−C	 ynb� cos (g),

(20)

where the following non-dimensional quantities have been introduced: n=V/V0;
V0 being a reference frequency (taken as the first bending frequency of a
non-rotating beam pinned at both ends, for facility of comparison with the flexible
model). The overdot now stands for d/dt, h= Jz2,o /J, J= Jx2,o = Jy2,o , p2(t) is
obtained from equation (6) and K	 x = l2Kx /(JV2

0 ), K	 y = l2Ky /(JV2
0 ), C	 x = l2Cx /(JV0),

C	 y = l2Cy /(JV0), M	 x2 =Mx2/(JV2
0 ), M	 y2 =My2/(JV2

0 ). M	 x2 and M	 y2 are very
complicated functions and details are not given. They are handled using MAPLE
[20] in the results given later using the non-linear model.
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Assuming that the deflections at the bearings are small, one can use small angle
approximations. The following linear model is then obtained:

n26g̈b� 7+ n$ C	 y2

−hnp2(t)
hnp2(t)

C	 x2 %6ġb� 7+$K	 y

0
0
K	 x%6gb7+G$ 0

−1
1
0%6gb7

+ G sin (2t)$−1
0

0
1%6gb7+G cos (2t)$01 1

0%6gb7
= G$ sin (2t)

1−cos (2t)
−(1+cos (2t))

−sin (2t) %6d0

a07, (21)

where G=T0/(2JV2
0 ).

An analysis of these equations reveals the presence of the direct bending
moments transmitted by the U-Joint. They appear on the fourth, fifth and sixth
terms of the set of equations. The fifth and sixth terms involve time dependent
coefficients and can lead to parametric resonances. The fourth term can lead to
flutter type instabilities. The right-hand sides of the equations are due to the
inclusion of the initial joint angles in the formulation and can lead to forced
motion resonances.

The homogeneous parts of equations (21) lead to a model similar to one
obtained by Iwatsubo and Saigo [17], if one neglects second order effects such as
a2

0 , d2
0 and a0d0. Iwatsubo and Saigo’s model does not contain these second order

effects because the fluctuation of the angular velocity of the driven shaft was not
taken into account (which is the same as using the approximation p2(t)=1).
Moreover, since in their work the initial joint angles are not included, the forcing
terms that are present in equations (21) do not appear.

In the sequel the numerical results presented are for the linear model, except
where otherwise noted.

3. EQUATIONS OF MOTION: FLEXIBLE MODEL

Here the equations of motion are developed with respect to an inertial frame,
namely the frame xyz of section 2. This is essentially the ‘‘shadow beam’’
approach, with the z-axis directed along the shaft (treated as rigid) axis. The main
modelling features are as follows.

The Rayleigh beam theory is used (in the sequel only slender shafts are treated,
so shear deformations are taken to be negligible). Elastic transverse deformations
u and v of the neutral axis are measured with respect to xyz. If the driven shaft
were rigid it would rotate at an angular velocity v about its axis. In Rayleigh beam
theory kinematics, a cross-sectional area disk (disk of thickness Dz and
cross-sectional area A) is treated as rigid. The angular velocity of that disk is taken
to be

vD =−
12v

1z 1t
i
 +

12u
1z 1t

j
 +vk
 .
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Axial and torsional displacements are neglected, since the associated frequencies
are much higher than the bending frequencies for the examples studied.

A major issue is the treatment of the moment M transmitted by the U-Joint to
the driven shaft. This moment is known to be along the normal vector to the
crosspiece, which in turn depends on the orientation of the driven shaft. If one
includes the instantaneous slopes due to deformation at the U-Joint end, one can
write ( f denotes a functional form; a0 and d0 are the initial joint angles)

M=Men = f 0a0 +
1u
1z bz=0

, d0 −
1v
1z bz=01. (22)

Resolving M along the xyz axes, leads to two bending moments Mx and My and
one twisting torque Mz . At this juncture several approaches are possible, namely

(1) The slopes 1u/1z=z=0, 1v/1z=z=0 could be neglected in equation (22). This can
be shown to lead to a forced motion problem only. The bending moments
would not cause any parametric instabilities.

(2) The torque could be treated as acting along the deformed configuration (as
done by Rosenberg [16]), with the bending moments handled as described in
(1). It was found that this approach led only to weak parametric instabilities.
Since the parametric instabilities in an actual laboratory model (specifications
given later) were quite strong, this approach was abandoned.

(3) The deformation slopes in equation (22) are retained. This, as the sequel will
show, leads to the physically observed feature of strong parametric
resonances. Thus, approach (3) is used. Also, following Rosenberg’s work,
the torque was taken to act along the deformed configuration. Note that the
bending moments are incorporated into the model by treating them as point
couples acting at the U-Joint, handled mathematically by Dirac delta
functions.

Less problematical modelling features are: the springs (bearings) are treated by
the appropriate choice of Galerkin functions; the dampers (bearings) are modelled
as linear viscous dampers, treated as point forces handled mathematically by Dirac
delta functions.

With the above assumptions the non-dimensional equations of motion can be
shown to be (see reference [19]):

EI
14u
1z4 + rA

12u
1t2 +Fdx +

1Mby

1z
+T

13v
1z3 =

1
4

rAR2 0 14u
1z2 1t2 +2v

13v
1z2 1t1, (23)

EI
14v
1z4 + rA

12v
1t2 +Fdy −

1Mbx

1z
−T

13u
1z3 =

1
4

rAR2 0 14v
1z2 1t2 −2v

13u
1z2 1t1, (24)

where Fdx , Fdy are external damping forces per unit length, Mbx and Mby are external
bending moments per unit length, v is the angular velocity of the driven shaft
(treated as rigid) and is given by equation (6). Also, E denotes Young’s modulus,
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I the area moment of inertia, r the mass density, A the cross-sectional area and
R the cross-sectional radius.

These equations are subjected to the boundary conditions

u= v= u0= v0=0, z=0; u0= v0=0, z= l;

EIu1=Kxu, z= l; EIv1=Kyv, z= l. (25)

The bending moments transmitted by the U-Joint are given by

Mx =
T0

2 $0d0 −
1v
1z bz=01 sin (2Vt)−0a0 +

1u
1z bz=01(1+cos (2Vt))%, (26)

My =
T0

2 $0d0 −
1v
1z bz=01(1−cos (2Vt)−0a0 +

1u
1z bz=01 sin (2Vt))%. (27)

Consequently,

Mbx =MxD(z), Mby =MyD(z),

where D stands for the Dirac delta function.
The transmitted torque is given by (the magnitude is taken to be constant along

the shaft)

T=T0p1(t)=T0$1+
a2

0

2
(1−cos (2Vt))+

d2
0

2
(1+cos (2Vt))+ a0d0 sin (2Vt)%.

(28)

Also

Fdx =Cx
1u
1t bz= l

D(z− l), Fdy =Cy
1v
1t bz= l

D(z− l).

Introducing the dimensionless variables and parameters: U= u/l, V= v/l,
Z= z/l, L(Z)= lD(z), n=V/V0, V0 = (p2/l2)zEI/(rA) (the lowest bending
frequency of a non-rotating pinned–pinned Euler–Bernoulli beam), G1 =T0/
(rAV2

0 l3), X2 =EI/(rAV2
0 l4), X3 =R2/(4l2), X4 =2X3, d1 =Cx /(rAV0l), d2 =Cy /

(rAV0l), then, using equations (26), (27) and (28), equations (23) and (24) become

X2
14U
1Z4 + n2 12U

1t2 + d1n
1U
1t bZ=1

L(Z−1)+G1
13V
1Z3 p1(t)−X3n

2 14U
1Z2 1t2

−X4n
2p2(t)

13V
1Z2 1t

−
G1

2
1V
1Z bZ=0

(1−cos (2t))
d(L(Z))

dZ
−

G1

2
1U
1Z bZ=0

× sin (2t)
d(L(Z))

dZ
=

G1

2
d(L(Z))

dZ
[a0 sin (2t)− d0(1−cos (2t))], (29)
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X2
14V
1Z4 + n2 12V

1t2 + d2n
1V
1t bZ=1

L(Z−1)−G1
13U
1Z3 p1(t)−X3n

2 14V
1Z2 1t2

+X4n
2p2(t)

13U
1Z2 1t

+
G1

2
1U
1Z bZ=0

(1+cos (2t))
d(L(Z))

dZ
+

G1

2
1V
1Z bZ=0

× sin (2t)
d(L(Z))

dZ
=

G1

2
d(L(Z))

dZ
[d0 sin (2t)− a0(1+cos (2t))]. (30)

4. GALERKIN’S METHOD

The solutions are assumed to have the following form

U= s
a

i=1

Fi (Z)Fi (t), V= s
a

i=1

Ci (Z)Gi (t).

Application of Galerkin’s method leads to

n2$[g1mi ]−X3[l1mi ]
[0]

[0]
[g2mi ]−X3[l2mi ]%6{F� i}{G� i}7

+ n$ d1[j1mi ]
np2(t)X4[l4mi ]

−np2(t)X4[l3mi ]
d2[j2mi ] %6{F� i}{G� i}7

+$X2[a1mi ]
[0]

[0]
X2[a2mi ]%6{Fi}

{Gi}7
+G1$ [0]

−[d2mi ]− p1(t)[b2mi ]
[d3mi ]+ p1(t)[b1mi ]

[0] %6{Fi}
{Gi}7

+G1 sin (2t)$[d1mi ]
[0]

[0]
−[d4mi ]%6{Fi}

{Gi}7
+G1 cos (2t)$ [0]

−[d2mi ]
−[d3mi ]

[0] %6{Fi}
{Gi}7

=

G1

2
(d0(1−cos (2t))− a0 sin (2t)){F'm (0)}

G1

2
(a0(1+cos (2t))− d0 sin (2t)){C'm (0)}

,g
G

G

F

f
h
G

G

J

j

i=1, 2, 3, . . . , a, m=1, 2, 3, . . . , a. (31)

The coefficients in the above equations are listed in Appendix A.
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The first matrix on the left-hand side of equation (31) is the ‘‘mass’’ matrix and
has constant coefficients. The second matrix is due to the damping in the system
(main diagonal terms) and to gyroscopic effects (cross diagonal terms). As
evidenced by the presence of p2(t), each gyroscopic term has a constant part plus
a part that is a function of time. The third matrix is the ‘‘stiffness’’ matrix and
has constant coefficients. The fourth matrix has constant and time dependent
elements. The time dependent coefficients are contained in the term p1(t) (see
equation (28)) and are second order effects. The constant parts of these elements
are due to the constant parts of the bending moments from the U-Joint and the
follower torque. This matrix can lead to flutter type instabilities and to parametric
instabilities (due to p1(t)). The fifth and sixth matrices of equation (31) are
functions of time. These terms can lead to strong parametric resonances (as will
emerge). The forcing term on the right-hand side of equation (31) is due to the
inclusion of the initial joint angles (a0 and d0) in the formulation and can lead to
forced motion type resonances.

The choice of Galerkin functions will now be discussed. Recall that the damping
forces and the moments applied by the U-Joint do not arise in the boundary
conditions. They are incorporated in the equations of motion via Dirac delta
functions. However, as seen in equation (25), the spring forces do arise in the
boundary conditions. Consequently, the Galerkin functions chosen are the mode
shapes of a non-rotating Euler–Bernoulli beam pinned at one end and spring
supported at the other end. Thus, the functions for the xz and yz planes are,
respectively,

Fi (Z)= sinh (H(x)iZ)+
sinh (H(x)i )
sin (H(x)i )

sin (H(x)iZ), (32)

Ci (Z)= sinh (H(y)iZ)+
sinh (H(y)i )
sin (H(y)i )

sin (H(y)iZ), (33)

where H(x)i and H(y)i are the positive solutions of the following transcendental
equation:

H3[tan (H)− tanh (H)]−2
KL3

EI
tanh (H) tan (H)=0, (34)

for K=Kx and K=Ky , respectively. Note that these Galerkin functions satisfy
all the conditions (25).

The Galerkin coefficients involve integrals containing products of hyperbolic
functions and are calculated by a MAPLE routine for a given value of N (the series
truncation value). Direct use of equations (32) and (33) led to numerical problems
in MAPLE because of excessively large values of the integrands. This problem was
resolved by using a set of normalized functions:

F*i (Z)=
Fi (Z)

Fi (Z)=Z=1
, C*i (Z)=

Ci (Z)
Ci (Z)=Z=1

.
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5. FLUTTER INSTABILITIES

Neglecting the time dependent coefficients and using the approximation p2 3 1
(since a0 and d0 are small), the homogeneous part of equation (21), for the rigid
body model, reduces to

n26g̈b� 7+ n$ C	 y2

−hn

hn

C	 x2%6ġb� 7+$ K	 y

−G

G

K	 x%6gb7=6007. (35)

Similarly, for the flexible model, the homogeneous part of equation (31) reduces
to

.. .
n2[M	 ]{Q	 }+ n[D	 ]{Q	 }+[S	 ]{Q	 }= {0}, (36)

where

[M	 ]=$[g1mi ]−X3[l1mi ]
[0]

[0]
[g2mi ]−X3[l2mi ]%, [D	 ]=$ d1[j1mi ]

nX4[l4mi ]
−nX4[l3mi ]

d2[j2mi ] %,
[S	 ]=$ X2[a1mi ]

−G1[d2mi ]−G1[b2mi ]
G1[d3mi ]+G1[b1mi ]

X2[a2mi ] %, {Q	 }=6{Fi}
{Gi}7. (37)

Both equations (35) and (36) are approximate equations which permit fairly
simple, non-computationally intensive methods to be employed for exploring
flutter instabilities. It will be shown later that the results so obtained are highly
accurate, as seen by comparisons with the results obtained by the monodromy
matrix method, which is exact.

Flutter instabilities occur whenever the associated eigenvalues of equations (35)
or (36) have a positive real part.

During some numerical simulations it was discovered that both systems are
unstable for all values of rotational speed and torque if the damping is zero. This
is a rather alarming result at first glance but, as will be shown shortly, it is of no
practical consequence. Note that this also occurs in the model developed by
Iwatsubo and Saigo [17].

The instability for C=0 can be readily seen in the case C	 x =C	 y =C	 and
K	 x =K	 y =K	 . For the rigid body case, taking solutions of the form

g= g0 elt, b= b0 elt,

equation (35) leads to a root for l:

l=
1
2n

[−C	 + hnI+z(C	 2 − n2h2 −4K	 )+ (4G−2C	 nh)I]

where I=z−1. When C	 =0, the real part of this complex number is always
positive and so the system is unstable in the entire parameter space of n and G.

Consider now the case where C	 $ 0. A numerical illustration will be given,
hereafter referred to as the ‘‘laboratory model’’ (the terminology is based on an
actual model that was built). The parameter values are a0 = d0 =10°,
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Figure 3. Flutter instability: rigid body laboratory model.

l=4·6×10−1 m, E=2·07×1011 N/m2, r=7·83×103 kg/m3, R=2·40 ×
10−3 m, h=3·96×10−5, I=2·53×10−11 m4 (Ixx = Iyy = I= pR4/4), Kx =
25·17 N/m and Ky =7·74 N/m. For this model a value of Cx =Cy =1×10−3 N/
(m/s) was assumed. By direct numerical integration of equation (35), subjected to
some initial conditions, a logarithmic decrement procedure led to z1 1 z2 =0·001
(z1, z2 are the non-dimensional damping ratios associated with g and b,
respectively).

Shown in Figures 3 and 4 are plots of the flutter instability zones for the rigid
and flexible models (three terms were used in the Galerkin approximation,

Figure 4. Flutter instability: flexible laboratory model.
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sufficient for convergence) in torque-rotational speed space. Limits of practical
operation are also shown as boxes in the lower left-hand corners of Figures 3 and
4. The maximum attainable rotational speed of the laboratory model is judged to
be 5000 rpm, which gives n=2·0. The value (non-dimensional) of the statically
applied torque which would cause the shaft to yield (static yielding) is G=0·0042.
The static torque which would cause a 10° angle of twist is G=0·0021 and this
is chosen as the limit of the practical torque range.

The main conclusion to be drawn is that the very light damping used moves the
flutter instability zones outside the range of practical operation for both models.
Similar results were found for other sets of parameter values.

6. PARAMETRIC INSTABILITIES

When the forcing terms are neglected, equations (21) and (31) are sets of
Mathieu–Hill equations. Several approaches for the determination of the regions
of parametric instability of such equations exist in the literature.

Throughout this work the regions of instability are obtained by a numerical
technique based on the so-called monodromy matrix (see reference [21]). The
monodromy matrix technique is very computationally intensive, but offers some
advantages over perturbation techniques and Hill’s infinite determinant. For
instance, the method does not involve any approximations and is able to capture
all instabilities within a parameter range (to within numerical accuracy).

Very briefly put, the technique is as follows. The equations of motion are cast
into a first order form:

{q̇(t)}=[A(t)]{q(t)}, (38)

where the matrix [A(t)] is T*-periodic. The fundamental matrix is denoted by

[U(T*)]= [{q1(T*)}, {q2(T*)}, . . . , {qn (T*)}],

where {q1(t)}, {q2(t)}, . . . , {qn (t)} are any n linearly independent solutions of the
system. Integrating equation (38) n times from 0 to T* with the n initial conditions

1 0 · · · 0

0 1 · · · 0
G
G

G

K

k

G
G

G

L

l

[U(0)]= ···
···

· · ·
···

= [I]

0 0 · · · 1

generates a matrix [S], the monodromy matrix, given by [S]= [U(T*)]. Then the
eigenvalues of [S], sj , are determined. The system is stable when >sj>E 1,
j=1, 2, . . . , n. The process is repeated for every pair of n and G to cover the entire
parameter space of interest.

In the zero damping case, parametric resonances are expected to emanate at zero
torque (G=0), from (so-called principal zones)

n=
nni

j
, i=1, 2, 3 . . . , j=1, 2, 3 . . . , (39)
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Figure 5. Parametric instability: rigid body laboratory model.

where the nni’s are the non-dimensional natural frequencies of the rotating shaft
(nn =Vn /V0, the Vn being the natural frequencies of the rotating shaft).

Combination parametric resonances may also occur. These emanate, at G=0,
from the points (for zero damping)

n= bnni 2 nnj

2k b, i=1, 2, 3 . . . , j=1, 2, 3 . . . , k=1, 2, 3 . . . . (40)

Note that damping will shift the points of emanation to values of Gq 0.
In general, the rigid body model has two natural frequencies; these correspond

to the shaft bouncing on the springs in two planes. These frequencies are functions
of the shaft’s rotational speed. Specifically, one frequency increases with the
rotational speed and is called the forward precessional frequency, and the second
decreases with the rotational speed and is called the backward precessional
frequency. Note that for the examples treated here the difference between the
rotating and non-rotating frequencies is negligible. In the flexible model the
frequencies will also be influenced by rotation but, again, the differences were
found to be negligible. The first two modes of the flexible system are nearly
identical to the rigid body modes since the spring stiffness is very small compared
to the shaft stiffness. These two modes will be referred to as ‘‘predominantly rigid
modes’’. The additional frequencies stem from the flexibility of the shaft.

For the flexible model, convergence was checked by comparing corresponding
zones of instability obtained by using increasing numbers of Galerkin functions.
In all results convergence was achieved by using less than four Galerkin functions.

As a first example consider the laboratory model treated previously in section
5. The natural frequencies corresponding to predominantly rigid modes for this
system are nn1 =0·067 and nn2 =0·121. The first two natural frequencies associated
with shaft flexibility for this system are nn3 =1·564 and nn4 =1·569. Figures 5 and
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6 give plots of the instability zones (hashed zones indicate instability) as functions
of non-dimensional torque G and non-dimensional rotational speed n for the rigid
body model and for the flexible model, respectively (in Figure 6 the zones of
instability corresponding to the shaft flexibility are off scale). In the figures, zones
I and II are principal zones emanating from nn1 =0·067 and nn2 =0·121,
respectively, and zones III and IV are combination zones emanating from
(nn1 + nn2)/2=0·094 (III) and (nn2 − nn1)/2=0·027 (IV). Note that the values of n

and G are within practical range. On the plots the rotational speeds range from,
approximately, n=0·02 to 0·14 (54 to 376 rpm). The largest value of torque shown
is G=0·0012 (0·84 Nm, which is approximately 29% of the value required for
yielding).

It is seen that there is an excellent agreement between the zones predicted by
the two different models and so shaft flexibility does not influence the rigid
instability zones in this case. This is not surprising since the ‘‘rigid’’ frequencies
and ‘‘flexible’’ frequencies differ significantly. It is anticipated that flexibility will
only influence the ‘‘rigid’’ zones when the rigid and flexible natural frequencies are
close.

Note that the width of the zones is significant. For example, for a torque
G=0·0008 (19% of the yield torque) the shaft will cross four zones of instability.
These are zone IV (about 47 rpm or 65% of the operating speed), zone I (about
18 rpm or 10% of the operating speed), zone III (about 54 rpm or 21% of the
operating speed) and zone II (about 11 rpm or 3·4% of the operating speed). Note
further that increasing the torque increases the width of the zones, thus
destabilizing the sytem.

Figures 7 and 8 give plots of instability zones for the flexible model for larger
values of rotational speed. It is seen that new zones arise, namely, zones V, VI,
VII, VIII (combination zones between predominantly rigid and flexible modes)

Figure 6. Parametric instability: flexible laboratory model.
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Figure 7. Parametric instability: flexible laboratory model.

and IX, X (principal zones due to flexibility; some overlapping is seen). All the
new zones occur within a practical range of rotational speed and torque. Thus,
flexibility of the shaft can lead to zones of possible practical interest.

Note that the monodromy matrix technique also captures flutter instabilities but
they are off scale in the figures shown.

Some effects of damping will now be addressed. Figure 9 gives the instability
zones when the damping is increased to z=0·01 (z0 z1 1 z2). Comparing this
figure with Figure 6 shows that an increase in damping has a stabilizing effect in
the system. Combination zone IV (difference type) disappears and combination
zone III (sum type) is severely reduced. The principal zones I and II, due to

Figure 8. Parametric instability: flexible laboratory model.
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Figure 9. Parametric instability: flexible laboratory model (damping ratio=0·01).

predominantly rigid modes, are not severely affected. The same conclusions were
found for the corresponding zones in the rigid body model.

Figures 10 and 11 show the effect of higher damping on the new zones given
by shaft flexibility. On comparing Figure 10 to Figure 7 it is seen that some
combination zones are pushed out of the range of operation (V and VI—difference
type) and some remain inside the range (VII and VIII—sum type). The flexible
zones, which remained inside the range of operation, had their width reduced but
are sufficiently wide to be of possible practical concern. On comparing Figure 11
to Figure 8 it is seen that the principal zones IX and X are affected by the increase

Figure 10. Parametric instability: flexible laboratory model (damping ratio=0·01).
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Figure 11. Parametric instability: flexible laboratory model (damping ratio=0·01).

in damping, but are still sufficiently robust to be also of possible practical concern.
Some results for a second example (a hollow shaft of automotive proportions)

will now be given. The following parameters are used: l=8·96×10−1 m,
r=7·83×103 kg/m3, E=2·07×1011 N/m2, Ro =3·4950×10−2 m (outer radius),
Ri =3·3300×10−2 m (inner radius) and h=4·5542×10−3. The spring rates are
Kx =2·50×103 N/m and Ky =1·06×104 N/m. Small and moderate values of the
damping coefficients will be assumed and significant differences/trends, if any,
noted and analyzed. The damping coefficients will initially be taken as

Figure 12. Parametric instability: flexible automotive model.
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Figure 13. Dynamic instability: flexible automotive model.

Cx =Cy =5·0×10−1 N/(m/s). The corresponding damping ratios are approxi-
mately z1 =0·007 and z2 =0·003.

For this shaft static yielding will occur when the torque reaches approximately
1·7×103 Nm (G=0·0005). The first four non-dimensional natural frequencies for
this system are: nn1 =0·036, nn2 =0·074 (predominantly rigid body modes),
nn3 =1·563 and nn4 =1·565 (flexible modes).

Figure 12 shows the zones of parametric instabilities, given by the flexible model,
for this system. Note the principal zones I (nn1) and II (nn2) and the combination
zones III ((nn1 + nn2)/2) and IV ((nn2 − nn1)/2). As in the laboratory model example,
it is seen that the width of the zones can be of practical concern. For example,
for rotational speeds ranging from 0 to 1500 rpm and for a level of torque around
40% of the torque necessary to cause static yielding of the shaft (G=0·0002), the
system will cross three zones of instability. These are: zone I (width of 101 rpm,
roughly 18% of operating speed), zone III (width of 76 rpm, 9% of operating
speed) and zone II (width of 25 rpm, 2% of operating speed).

Note also that, as in the previous example, an increase in torque leads to an
increase in the width of the zones (destabilizing effect on the system).

A comparison between Figure 12 and corresponding results using the rigid body
model revealed, as in the laboratory case, no significant differences.

Figure 13 shows the dynamic instabilities for a wider range of rotational speed
(0:14 500 rpm). Note that there is a zone of flutter instability (denoted by XI)
now appearing, but outside the practical range of operation. It is interesting to
see that the monodromy matrix technique captures the flutter instabilities. At this
stage it seems appropriate to note that the flutter zones determined by the
approximation of omitting the time dependent coefficients (see section 5) turned
out to be highly accurate. Therefore, the approximation gives a reliable and simple
way for calculating the flutter zones.
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In addition to the predominantly rigid modes zones, Figure 13 shows two
combination zones between flexible and rigid modes, namely, zone V ((nn3 + nn1)/2)
and zone VI ((nn4 + nn2)/2). In contrast to the laboratory model, here these
combination zones are not of practical importance. The reason for that is the value
of the rotational speed for which they occur. These speeds are close to 11 650 rpm
(n3 0·8) which is not practical for this system. Consequently, the parametric
instabilities of practical concern here are due to the predominantly rigid modes
only, in contrast to the laboratory model. Figure 13 does not include the instability
zones due to flexibility since these occur at unreasonable values of rotational speed.
Pure flexible zones are not important for the automotive shaft model, again in
contrast to the laboratory model.

In summary the automotive shaft, either using the rigid body model or the
flexible model, exhibits parametric instabilities under normal conditions of
operation.

Possible design changes that would eliminate the possibility of instabilities in the
shaft will be addressed. A modification that will change the instabilities of the
system is an increase in bearing damping. Higher damping will cause the zones
of parametric instability to begin at higher values of torque and will also lead to
thinner zones. Thus, it is possible to calculate a value of damping that will move
the zones outside the range of practical torque. Figure 14 shows the parametric
instability zones when the damping is increased by a factor of ten
(Cx =Cy =5·0 N/(m/s), or z1 =0·07 and z2 =0·03; light to moderate damping).
It can be seen that instability zones only occur for values of torque that are larger
than the shaft static yielding torque (G=0·0005). Therefore, if such damping
could be realized, the shaft would not undergo any instability in the practical range
of operation. Note that increasing bearing stiffness could drive the zones of

Figure 14. Parametric instability: flexible automotive model (Cx =Cy =5·0 N/(m/s)).
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parametric instability outside the range of practical rotational speeds. However,
the necessary increase in stiffness was found to be impractical.

7. NON-LINEAR MODEL

To conclude the work on instabilities of the homogeneous system, some results
using the non-linear rigid body model will now be presented. These results were
obtained using direct numerical integration of the equations of motion, subjected
to non-zero initial conditions. The laboratory model was employed in all cases.

One question that could be raised is whether the fact that flutter instabilities
exist in the entire parameter space of n and G, for C=0, is due to the linearization
of the model. The answer was found to be no. The non-linear model, for the
parameter values studied, also led to flutter instabilities everywhere for zero
damping.

Another issue is whether for C$ 0, the non-linear model would move the flutter
instability zones into regions of practical significance. The answer was found to
be no. Consider the example illustrated in Figure 3. Taking a point just inside and
just outside the boundary given there leads to the same conclusions as before.

Consider now the parameter values G=0·0002 and n=0·067. These values
yield a parametric instability and the linear model yields unbounded growth. The
response using the non-linear model is shown in Figure 15. The motion is not
unbounded. A finite amplitude is seen. However, this amplitude is approximately
43° and so, from a practical point of view, one could regard the system as being
unstable.

Cartmell [22] showed in a model problem that non-linear models could have
unbounded as well as bounded solutions. So far, numerical integrations have failed
to show unbounded motions for the current model.

Figure 15. Response to initial conditions: non-linear model.
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For stable points the linear and non-linear models were found to be in excellent
agreement.

8. FORCED MOTIONS

In this section forced instabilities of the systems described by equations (21)
(rigid) and (31) (flexible) will be investigated.

Forced motions of ordinary differential equations with time dependent
coefficients have been studied extensively. See, for example, the recent work of
Kang et al. [23]. Here a few observations will be made that are in no way meant
to be exhaustive.

Of primary concern is whether new types of instability can occur. For example,
Beale [24], using an extension of Hsu’s method [25], showed resonances
characterized by linear growth were possible when the forcing frequency V is
related to the natural frequencies Vn by

V=
Vni

j
, i=1, 2, 3 . . . , j=1, 2, 3 . . . .

For the current models, this condition translates, in dimensionless terms, to

n=
nni

2j
, i=1, 2, 3 . . . , j=1, 2, 3 . . . . (41)

No asymptotic solutions exist for the present models. Also the presence of
damping makes the applicability of equation (41) to the present system
questionable. Nonetheless, resonance points predicted by equation (41) were
explored numerically for a few cases. The results were obtained using direct

Figure 16. Response of forced system: rigid body linear model (G=0·0002, n=0·0605—candi-
date point for forced resonance).



0.6

0.2

0.4

–0.4

–0.2

0.0

–0.6
4000 50002000 300010000

Non-dimensional time,

B
et

a
 (

ra
d

),

2e–5

1e–5

–1e–5

0e+0

–2e–5
400 500200 3001000

Non-dimensional time,

B
et

a
 (

ra
d

),

  43

Figure 17. Response of forced system: rigid body non-linear model.

numerical integration of the equations of motion subjected to zero initial
conditions.

Only results for the laboratory model are given. From equation (41) a rotational
speed that can lead to potential forced instability is n=0·0605. Shown in
Figures 16 and 17 are the responses for this rotational speed for a torque level
of G=0·0002 (which corresponds to a point outside the parametric instability

Figure 18. Response of forced system: rigid body linear model (G=0·0002, n=0·0400— not a
candidate point for forced resonance).
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zones). Figures 16 and 17 give the response for the linear and non-linear models,
respectively. Several points can be made. There is indeed an initial region of linear
growth (zooms confirmed this), but the final motion is bounded. However, the
peak amplitudes are quite large (so large in fact, that the linear model breaks
down). The steady state amplitude given by the non-linear model is 28°, so for
practical purposes the system can be regarded as unstable.

A type of forced resonance has indeed occurred. This point can be further
amplified by inspection of Figure 18 which shows the response at the same level
of torque but at a rotational speed n=0·04, not a candidate for forced resonance.
Very small amplitudes are seen (well within the linear range).

Similar results were found for the flexible model. It should be noted that there
are more possibilities for forced motion resonance in the flexible model, because
of the larger number of natural frequencies involved.

Instabilities were also found at frequencies corresponding to predominantly
rigid modes. However, the values for the amplitudes (at steady state) obtained by
using the flexible model were found to be larger than the ones obtained via the
rigid model. The reason for the difference was attributed to the inclusion of
flexibility. For instance, the steady state value at a rotational speed n=0·0605 and
torque G=0·0002, given by the flexible model, is roughly 0·70 mm at the shaft’s
midpoint. By using the rigid model the value obtained is about 0·23 mm. The static
deflection at that point was calculated, using a one-term Galerkin approximation,
and led to a value of 0·53 mm, which shows that the static deflection due to
flexibility accounts for the difference.

A potential forced instability was checked for a rotational speed n=0·7815 and
a value of torque G=0·0002. Note that this speed corresponds to a possible forced
resonance frequency for the flexible mode occurring at nn =1·5630 (see equation
(41)). Again a linear growth of the response was observed.

9. SUMMARY AND CONCLUSIONS

Numerical results were presented for two different sets of physical parameters,
a so-called laboratory model and a model utilizing automotive proportions.

For both the linear, rigid and flexible systems, flutter instabilities were found
to exist for all values of rotational speed and torque when the damping was zero,
for both laboratory and automotive models. However, small values of damping
were shown to move the zones outside practical operational ranges. A few point
checks using the non-linear rigid body system led to the same conclusions.

In terms of parametric instabilities, it was found that the bending moments can
cause strong parametric instabilities in the system (note that the bending moments
had to be properly modelled, by the inclusion of the slope of the bent shape at
the U-Joint, in the flexible system to capture this effect). The follower torque also
led to instabilities which, when compared to the ones caused by the bending
moments, were found to be weak. The fluctuating driven shaft rotational speed
led to parametric instabilities as well. These were also weak compared to the ones
caused by the bending moments.
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Several types of parametric instability zones were found to exist in the models.
These are zones of principal parametric instability, sum-type combination zones
and difference-type combination zones, involving rigid modes (the shaft bouncing
on the bearing springs), flexible modes and combination of the predominantly rigid
and flexible modes.

The parametric zones involving predominantly rigid modes were found to be
of significant size and to occur at practical operating conditions in the laboratory
and automotive models. Parametric zones involving flexible modes (and
combination with predominantly rigid modes) were also found to occur in a
practical range of operational conditions for the laboratory model. For the
automotive example, the zones due to flexibility and combination flexible–predom-
inantly rigid modes occurred outside the range of operation. It should be noted
that the inclusion of flexibility in the modelling did not affect the parametric zones
due to the predominantly rigid modes.

An increase in bearing damping will stabilize the system since the zones of
parametric instability occur for higher values of torque as the damping increases.
For the laboratory model, an increase in damping more severely affected the
difference combination type zones of parametric instability. Sum-type zones and
principal zones were also affected but to a lesser degree. A procedure was suggested
in order to reduce or eliminate the parametric instabilities. In the automotive case
the current models suggest that values of Cx =Cy =5·0 N/(m/s) for the damping
coefficients would eliminate parametric instabilities from the practical range of
operation. Whether such damping levels can be physically attained remains to be
explored.

In terms of forced instabilities, forced resonances were found to be possible, in
both models, when the rotational speed reached a value corresponding to a
natural frequency of the system divided by two. Also, it was found that
flexibility was important in terms of the final steady state value for the forced
response of the driven shaft. In using the flexible model, the steady state
values of the displacements are larger than the ones obtained by using the rigid
model.
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APPENDIX A: GALERKIN COEFFICIENTS

g
1

0

d4Fm

dZ4 (Z)Fi (Z) dZ= a1mi , g
1

0

d4Cm

dZ4 (Z)Ci (Z) dZ= a2mi ,

g
1

0

Fm (Z)Fi (Z) dZ= g1mi , g
1

0

Cm (Z)Ci (Z) dZ= g2mi ,
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g
1

0

Fm (Z)=Z=1Fi (Z)L(Z−1) dZ=Fm (Z)=Z=1Fi (Z)=Z=1 = j1mi ,

g
1

0

Cm (Z)=Z=1Ci (Z)L(Z−1) dZ=Cm (Z)=Z=1Ci (Z)=Z=1 = j2mi ,

g
1

0

dCm (Z)
dZ bz=0

Fi (Z)
dL(Z)

dZ
dZ=−

dCm (Z)
dZ bz=0

dFi (Z)
dZ bz=0

=−2d3mi ,

g
1

0

dFm (Z)
dZ bz=0

Ci (Z)
dL(Z)

dZ
dZ=−

dFm (Z)
dZ bz=0

dCi (Z)
dZ bz=0

=−2d2mi ,

g
1

0

dFm (Z)
dZ bz=0

Fi (Z)
dL(Z)

dZ
dZ=−

dFm (Z)
dZ bz=0

dFi (Z)
dZ bz=0

=−2d1mi ,

g
1

0

dCm (Z)
dZ bz=0

Ci (Z)
dL(Z)

dZ
dZ=−

dCm (Z)
dZ bz=0

dCi (Z)
dZ bz=0

=−2d4mi ,

g
1

0

d3Cm

dZ3 (Z)Fi (Z) dZ= b1mi , g
1

0

d3Fm

dZ3 (Z)Ci (Z) dZ= b2mi ,

g
1

0

d2Fm

dZ2 (Z)Fi (Z) dZ= l1mi , g
1

0

d2Cm

dZ2 (Z)Ci (Z) dZ= l2mi ,

g
1

0

d2Cm

dZ2 (Z)Fi (Z) dZ= l3mi , g
1

0

d2Fm

dZ2 (Z)Ci (Z) dZ= l4mi ,

g
1

0

Fm(Z)
dL(Z)

dZ
dZ=−F'm (0), g

1

0

Cm (Z)
dL(Z)

dZ
dZ=−C'm (0).

The following properties of the Dirac delta function were used [26] in deriving
some of the above results:

g
b

a

D(Z− w)g(Z) dZ= g(w), g
b

a

dD(Z− w)
dZ

g(Z) dZ=−
dg(Z)
dZ bZ= w

,

aQ wQ b.
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