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In this paper, the exact partial differential equations governing the system
modes of a general two-link flexible manipulator are derived by matching the
boundary equations at the elbow. The resulting partial differential equation
formulation is solved numerically to yield the exact eigenfrequencies
corresponding to arbitrary elbow angles. The eigenfrequencies are shown to be a
strong function of manipulator configuration, varying by up to 30% as the
manipulator sweeps across its range of motion; this is subsequently shown to
accurately predict the eigenfrequencies of an experimental two-link manipulator.
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1. INTRODUCTION

In this paper, the eigenfrequencies of a two-link flexible robot manipulator with
a locked elbow are derived analytically by formulation and solution of the exact
partial differential equations (PDEs). Accurate modelling is required for the
synthesis of high bandwidth vibration controllers, and is made challenging by the
parametric sensitivity of the structural dynamics, particularly to load and
configuration which typically vary during operation. While accurate models can
be easily developed using finite element methods, parametric methods such as
assumed modes (see, e.g., reference [1]) are useful in providing a better physical
understanding of the problem.

The modal characteristics of many simple distributed beam structures with
concentrated mass and spring elements have been well documented (see, e.g.,
reference [2]). A number of researchers have examined single and two-link
manipulators for robotic applications. Schmitz [3] developed the unconstrained
modal analysis of a pinned–free beam taking into account the hub inertia and
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payload mass, but neglected to include the rotary inertia of the tip mass. This
model has become the de facto model for a number of researchers (see, e.g.,
reference [4]). However, for high hub inertias which result in a near fixed or
cantilevered boundary condition, the model becomes invalid as the modal slope
vanishes at the joint, and is therefore only applicable to manipulators with high
beam-to-hub coupling or ‘‘near-pinned’’ joints.

Barbieri and Ozguner [5] investigated the use of both constrained and
unconstrained mode shapes for open-loop modelling of a single-link to span the
full range of hub inertias. Up to this point, researchers had neglected the open-loop
servo dynamics and the effect of closed-loop collocated feedback control on mode
shapes. Garcia and Inman [6] addressed the effect of servo dynamics and control
on the dynamics of the complete structure, and highlighted the fact that the mode
shapes were dependent on the feedback control.

Oakley and Cannon [7] developed the dynamic equations for a general two-link
manipulator including geometric offsets and all concentrated inertias. Global or
system modes were used to describe the total mode shapes of the structure instead
of the more common component modes for each link, however, the boundary
equations at the elbow were approximated and servo dynamics were neglected. In
addition, the actual eigenfunctions used were admissible component mode (i.e., for
each link) functions based on the boundary conditions for a cantilever with a tip
inertia which do not fully satisfy the boundary conditions of the elbow joint.
Increased accuracy was obtained by incorporating the approximate eigenfunctions
into an exact dynamic formulation from which the system modes could be
recalculated as a weighted combination of admissible mode shapes.

In this paper, exact PDEs and boundary equations of a two-link flexible
manipulator system are obtained by matching the shear force and bending
moment at the elbow joint, allowing the eigenvalues to be computed without
recourse to dynamic formulations. The paper begins with a definition of the
two-link manipulator system to be modelled followed by the modal analysis and
concludes with the presentation and comparison of analytical and experimental
results. Servo actuator effects on the boundary equations of the PDEs are
addressed in the appendix.

2. TWO-LINK MANIPULATOR PHYSICAL MODEL

A model of a planar two-link flexible manipulator is illustrated in Figure 1. The
system is composed of two links, each with a revolute joint powered by a DC
servo-motor, and a flexible beam. The first link is referred to as the upper arm
and the second as the lower arm (or forearm). Similarly the first joint is referred
to as the shoulder and the second joint as the elbow. The tip of the forearm link
is the end-point of the manipulator which normally carries a gripper. The
manipulator is a representation of the major structural characteristics of space
telerobotic manipulators.

The following definitions apply to the parameters shown in Figure 1 and define
all of the material and geometric parameters required for modal analysis. Each
link is referenced by the subscript l=1, 2, numbered sequentially from the
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Figure 1. Two-link manipulator model.

shoulder: EIl , flexural rigidity; ml , mass per unit length; Ll , length; ul (t), rigid hub
angle; xl , distance along the undeflected neutral axis; wl (xl , t), transverse elastic
deflection of the flexible link; Ihl , hub inertia; Itl , tip inertia; mtl , tip mass; mbl , beam
mass; cvl , viscous friction; kl , joint stiffness (electromechanical); ohl , otl , the distance
between the axis of rotation and the beam attachment for the hub and tip of link
l (i.e., geometric offsets).

For simplicity, the elbow is treated as ‘‘locked’’, hence the stiffness and damping
for the elbow joint have been omitted from Figure 1. The geometric offsets are
measured axially along the undeflected beam neutral axis, with transverse offsets
assumed to be negligible. The axis of rotation and the centre of gravity for each
rigid hub are assumed to be coincident. A global co-ordinate system is defined by
the fixed basis n, and two rotating co-ordinate systems are affixed to the shoulder
hub and elbow hub and defined by (h11, h12) and (h21, h22), respectively.

In the ensuing analysis, the joints of the manipulator are assumed to be stiff in
comparison with the links. Additionally, gravity is neglected since the focus is on
space manipulators which operate in a low gravity environment. The model in
Figure 1 is a representation of the experimental manipulator [8] used to validate
the theoretical predictions developed in this paper.

3. MODAL ANALYSIS

3.1.   

At resonant frequencies, a complex structure vibrates with global [9] or system
[10] mode characteristics, rather than a series of subsystem or component modes.
Consequently, for a multi-link manipulator it is not strictly correct to formulate
the modal deflections in terms of independent component mode expansions for
each link. However, when approximate component modes are incorporated into



. .   . . 194

a dynamic equation which includes all concentrated mass and inertia terms, the
eigenvalues of the dynamic formulation still tend to approach the correct
eigenvalues of the system when a large number of modes are retained in the
expansion; however, this approach requires the development of a dynamic model
before the eigenvalues can be predicted. This is exactly analogous to the use of
admissible functions instead of true eigenfunctions for a single beam. For a
multi-link manipulator or other complex structure, the assumed modes method
can be implemented using either admissible component modes or the true system
modes which are the eigenfunctions of the manipulator.

The deflection of each beam is expressed in a system mode framework

wl (xl , t)= s
n

i=1

fli (xl )qi (t), (1)

where wl (xl , t) is the transverse elastic displacement of the beam from the
undeformed neutral axis at position xl . The shape function fli (xl ) represents the
ith system mode shape component for link l while qi (t) denotes the ith generalised
co-ordinate. Note that a single time dependent co-ordinate describes the entire
system for each mode. Consequently the system modes representation contains
more information with a lower order model [10]. The deflection w(x, t) along the
entire compound ‘‘beam’’ comprising two links is expressed as a linear
combination of system mode shapes by

w(x, t)= s
n

i=1

Fi (x)qi (t)=
s
n

i=1

f1i (x1)qi (t) xE hL

s
n

i=1

f2i (x2)qi (t) hLQ xEL
, (2)g

G

G

F

f

where f1i (x1) and f2i (x2) are the two local components of the global mode shape
Fi (x). The total beam length L is equal to L1 +L2 and the local axial co-ordinates
are defined by

0E x1 EL1 = hL, 0E x2 EL2 = (1− h)L,

where h=L1/(L1 +L2), 0Q hE 1 is the length fraction at the elbow joint.
The only practical difference between a model derived using component modes

and one employing system modes, is that the latter equations are expressed in
terms of co-ordinates qi (t) instead of q1i (t) and q2i (t) producing half the number
of modal equations. Once the system mode approach has been adopted however,
the choice of eigenfunctions used in equation (1) can range from component modes
through to the system eigenfunctions, but has no effect on the structure of the
formulation, only its accuracy.

Figure 2 defines the co-ordinate system corresponding to the ith system mode
for an elbow angle of u2 and arbitrary shoulder angle. The elastic deflections are
assumed to be transverse with respect to the undeformed neutral axis, and
continuity is maintained between the slope and displacement at the end of link 1
and the start of link 2. As a result, the co-ordinate system which is affixed to link
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Figure 2. System mode co-ordinate system definition.

2 (h21, h22) is both rotated by u2 and translated by w1(L1). Joint rotations can be
arbitrarily large.

When the exact eigenfunctions are computed, the assumed modes method will
exactly model the modal characteristics of the system. It is generally difficult to
develop the exact eigenfunctions for a complex structure, which motivated the
development of the assumed modes technique, where approximate admissible
functions may be used. Subsequent refinement of the mode shapes can be
accomplished using the eigenfunctions of the final dynamic formulation [10]. This
refinement is not required when the true system modes are utilized as in the
following section.

3.2.   

Given a model of the system (Figure 1) and the assumed modes structure
(Figure 2), the exact eigenvalues and eigenfunctions can be computed. The
differential eigenvalue problem for the above distributed parameter system is
described by an infinite dimensional PDE and results in an infinite number of
eigenvalues in contrast to the algebraic eigenvalue problem for a finite-dimensional
system (see, e.g., reference [1]). It is assumed that the flexible links are slender and
that deflections are small compared with their length, so that Euler–Bernoulli
beam theory can be used to model the free transverse vibration of the beams. The
discontinuity at the elbow requires that two PDEs be used to describe the elastic
behaviour of the links [11]

EIl
14wl (xl , t)

1x4
l

+ml
12wl (xl , t)

1t2 =0, l=1, 2, (3)

which also retains the mass properties of the individual links. The spatial
component of the general separation of variables solution (see, e.g., reference [2])
to equation (3) is

fli (x)=Ali sin (blixl )+Bli sinh (blixl )+Cli cos (blixl )+Dli cosh (blixl ), (4)
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where i=1, 2, . . . , n and l=1, 2. The frequency parameter bli is defined from
equation (3) as

b2
li =2pfi0ml

EIl1
1/2

, l=1, 2 (5)

for the ith natural frequency fi and for the first link is related to the eigenvalues
through the relation

b1i =
li

L
. (6)

The mode shape constants Ali , Bli , Cli and Dli and eigenvalues li are calculated in
the sequel.

The geometric offsets shown in Figure 1 are included in the boundary conditions
when solving the differential eigenvalue problem, since their effects can be quite
significant [10]. Furthermore, the contribution of the rigid-body motion is
neglected, since the modal analysis is based on small perturbations about a
nominal configuration, in this case u1 =0° and u2 = u20, where u20 is the elbow
angle about which the system equations are linearised and u� 1 = u� 2 =0. The
boundary conditions associated with the constrained structure described by
equation (3) are now formulated explicitly from equilibrium relations for
displacement, slope, bending moment and shear force denoted respectively by

wl (xl , t),
1wl (xl , t)

1xl
, EIl

12wl (xl , t)
1x2

l
, EIl

13wl (xl , t)
1x3

l

at each of the four beam boundaries (see, e.g., reference [12]). The physical
arrangement and the assumptions made are also described for each case. The effect
of the DC servomotors on the boundary equations are described in the appendix.

(a) Joint 1 (shoulder): x=0, x1 =0

The shoulder joint is modelled as spring-hinged with rotary inertia and a viscous
damper [6, 13]

w1(0, t)=0, (7)

EI1
12w1(x1, t)

1x2
1 bx1 =0

= k1
1w1(x1, t)

1x1 bx1 =0

+ cv1
1

1t 01w1(x1, t)
1x1 bx1 =01

+ Ih1
12

1t2 01w1(x1, t)
1x1 bx1 =01, (8)

where k1 is the equivalent spring stiffness of the joint defined in equation (A3) and
cv1 is the viscous damping in the joint including the back electro motive force
(EMF) and servo rate feedback. Large values of k1, cv1 or Ih1 all lead to a
near-cantilevered boundary condition i.e., 1w1(0, t)/1x1c 0, and it is possible to
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replace the second natural boundary condition equation (8) with the following
geometric boundary condition for a cantilever:

1w1(x1, t)
1x1 bx1 =0

=0.

This observation is only noted for potential algebraic simplification since large
values of k1 in equation (8) will result in the same eigenvalues. To retain the
generality of the present derivation, this simplification is not made, although the
viscous damping term was neglected.

(b) Joint 2 (elbow): x= hL, x1 =L1 = hL, x2 =0

The elbow is spring-hinged like the shoulder, but is treated as locked, to reflect
a system with high Coulomb friction and high servo gain. The accuracy of this
assumption is demonstrated analytically in the Appendix. Unlike the shoulder
joint, the inboard side of the joint is affixed to the end of the first link instead of
a rigid support. Thus, the natural boundary conditions are:

EI1
12w1(x1, t)

1x2
1 bx1 = hL

=EI2
12w2(x2, t)

1x2
2 bx2 =0

− (It1 +mt1o2
t1)

12

1t2 01w1(x1, t)
1x1 bx1 = hL1

− mt1ot1012w1(x1, t)
1t2 bx1 = hL1

− (ot1 cos u2 + oh2)EI2
13w2(x2, t)

1x3
2 bx2 =0

, (9)

EI1
13w1(x1, t)

1x3
1 bx1 = hL

=mt1$12w1(x1, t)
1t2 bx1 = hL

+ ot1
12

1t2 01w1(x1, t)
1x1 bx1 = hL1%

+ EI2
13w2(x2, t)

1x3
2 bx2 =0

cos u2

+ (mb2 +mt2) sin2 u2
12w1(x1, t)

1t2 bx1 = hL

. (10)



. .   . . 198

Since the joint is not free to rotate, dependence on Ih2, cv2 and k2 has been removed
from equations (9) and (10). The terms corresponding to the shear force and
bending moment from link two would be omitted in a component mode
development. Extra terms also arise from the elbow angle and offsets. The
continuity or geometric boundary conditions for the joint are:

w1(hL, t) cos u2 =w2(0, t), (11)

1w1(x1, t)
1x1 bx1 = hL

=
1w2(x2, t)

1x2 bx2 =0

. (12)

(c) End-point: x=L, x2 =L2 = (1− h)L

The manipulator end-point is free carrying a concentrated mass with significant
rotary inertia:

EI2
12w2(x2, t)

1x2 bx2 = (1− h)L

=−(It2 +mt2o2
t2)

12

1t2 01w2(x2, t)
1x bx2 = (1− h)L1

− mt2ot2
12w2(x2, t)

1t2 bx2 = (1− h)L

, (13)

EI2
13w2(x2, t)

1x3
2 bx2 = (1− h)L

=mt2
12w2(x2, t)

1t2 bx2 = (1− h)L

+ mt2ot2
12

1t2 01w2(x2, t)
1x bx2 = (1− h)L1. (14)

Substituting the expressions for the assumed modes summation for the beam
deflection in equation (1) and mode shape functions (4) into the above boundary
conditions (7–14), taking Laplace transforms and combining the set of eight
homogeneous equations into matrix form, the characteristic equation is obtained
as

M(li )[A1i B1i C1i D1i A2i B2i C2i D2i ]T =0. (15)

The characteristic matrix M(l) is partitioned as

M(l)=$M11 M12

M21 M22%, (16)
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where the equation D1i =−C1i arising from equation (7) has been omitted,
reducing the dimension of M(l) to 7×7.

The dimensionless parameters ol , hl , jl , al , zhl , ztl , zmb which appear in the above
matrices are defined in Table 1 which eliminates all dependency upon actual
physical parameters from equation (15), with the exception of the elbow angle u2.
The relatively compact expression obtained for M(l) results from the following
additional definitions:

G=
EI2

EI1
, G'=

b2i

b1i
, (17, 18)

ai = hli , bi =G'(1− h)li . (19, 20)

Clearly from equation (5), when the mass properties EIl and ml of the two links
are equal, G=G'=1. Several additional simplifying expressions are needed to
obtain equation (16);

b4
li =−s2 ml

EIl
, (21)

Ihls2

EIlbli
=−oll

3
i

Itls2

EIlb
2
li
=−all

3
i . (22)h
G

G

G

G

J

j
mtls2

EIlb
3
li
=−hlli

T 1

Dimensionless ratio definitions

Dimensionless
ratio Definition Description

ol
Ihl

mlL3 Hub to beam inertia ratio

hl
mtl

mlL
Tip mass to beam mass or

load ratio

jl
klL
EIl

Joint/servo stiffness to

beam bending stiffness

al
(Itl +mtlo2

tl )
mlL3 Payload rotary inertia to beam

inertia ratio

Zhl
ohl

L Hub offset length ratio

Ztl
otl

L Tip offset length ratio

Zmb
(mb2 +mt2)

m1L
–
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The upper left 3×3 partition of M(l), M11 is equivalent to the characteristic
matrix for a single-link manipulator with the same boundary conditions as the
upper link.

An expression for the natural frequencies of the two-link system is obtained
from equations (5), (6) and (18) and is given by

fi =
l2

i

2pL2 0EI1

m11
1/2

=
(G'li)2

L2 0EI2

m21
1/2

, (23)

where fi is the resonant frequency corresponding to the system eigenvalue li . Thus,
the natural frequencies can be computed in terms of the mass properties of either
beam without formulating a dynamic model.

The geometric offsets have two fundamental effects on the eigenvalues: the
effective inertia of each tip inertia Itl is increased by mtlo2

tl which increases al in
Table 1, and extra terms are present in the boundary condition equations (9–14),
where the former effect is the most significant. Generally higher modes are more
sensitive to inertia and offset terms since the modal slope along the beam increases
with mode number and consequently it requires more accurate modelling and
parameter determination to accurately predict higher frequencies.

3.3.   

The differential eigenvalue problem posed is to find non-trivial solutions to
equation (15) i.e., the zeros of the characteristic equation defined by,

Q(l)=det [M(l, u2, o1, j1, h1, a1, h2, a2, . . . )]=0. (24)

For simple systems, such as a single-link, Q(l) can be expressed algebraically.
However, even for a simple cantilever, the characteristic equation still requires
numerical solution, despite being able to obtain a closed-form expression for Q(l).
For the two-link case, M(l) is 8×8 and computing an algebraic expression for
the determinant can only be achieved using a symbolic code which would produce
a cumbersome expression. Alternately the determinant can be computed
numerically and incorporated into the numerical solution for the eigenvalues li .
The accuracy of the numerical solution of the transcendental function Q(l)
associated with the characteristic equation is validated by Milford [8], where the
formulation itself is also validated by reduction to published examples such as
those provided by Liu and Huang [14].

The corresponding eigenvectors of equation (15) are obtained by substituting
the eigenvalues li into the characteristic matrix M given in equation (16), and
computing the eigenvectors of the following eigenvalue problem from equation
(15)

Mvi =civi , (25)

where ci are the eigenvalues of M(li ) which are not the same as the eigenvalues
li from the characteristic matrix equation (24). The eigenvectors, vi , constitute the
vector of mode shape constants defined in equation (4) for mode i. This is an
alternative to the algebraic solution of the homogeneous simultaneous equations
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(15) for the eigenvectors. The normal modes of vibration are defined by
substituting li and vi into equation (4) with frequency defined in equation (23).

The benefits of this approach can be readily seen. One only needs to formulate
the boundary condition expressions (7–14) which can be obtained for an arbitrary
number of serial links with arbitrary boundary conditions. The eigenvalues and
eigenvectors are obtained numerically without the need for excessive algebraic
manipulation. The eigenfunctions will accurately model the true system mode
eigenfunctions since the boundary conditions have been rigorously determined.

4. RESULTS

4.1.    

The effect of the manipulator configuration defined by the elbow angle will now
be addressed. In addition to the characteristic function (24) being a non-linear
hyperbolic function, it is also a non-linear function of the elbow angle u2 which
is the source of configuration dependence observed for the modal parameters of
a two-link manipulator. Using the numerical values in Table 2, the first three
eigenvalues are computed by numerical solution of equation (24) and plotted as
a function of elbow angle over a 0–90° range in Figure 3. Clearly the variation
in frequency is significant over the 90° elbow angle, with the second mode
decreasing by 31·7%. Similar properties have been observed for the space shuttle
remote manipulator system (RMS) while executing a large planar manoeuvre [9],
where the frequencies vary by as much as 25%. The physical properties of the

T 2

Two-link manipulator parameters

Upper Lower
Component Parameter Symbol Units arm/shoulder arm/elbow

Beam Length L m 0·500 0·540
Thickness – mm 0·61 0·60
Width – m 0·051 0·051
Mass mb kg 0·121 0·129
Stiffness EI Nm2 0·203 0·193

Motor Hub inertia Ih kgm2 0·0204 0·0088
Gear ratio Ng – 50:1 66:1
Torque constant Km Nm/A 0·0596 0·0171
BEMF constant Kb V s/rad 0·0573 0·0171
Armature Ra V 2·7 3·7
resistance
Viscous friction cv Nm s/rad 7·5e−5 7·5e−5

Loads Tip loads mt kg 0·61 0·224
Inertia It kgm2 1·5e−3 1·3e−4

Offsets Hub offset oh mm 16 37
Tip offset ot mm 41 20
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Figure 3. Modal parameter variation with elbow angle. ——, Analytical prediction; (,
experimental value (Df=0·049); +, experimental value (Df=0·098).

RMS differ significantly from the manipulator investigated in this paper, however,
the degree of flexibility and observed trends are similar.

4.2.        

The experimental manipulator shown in Figure 4 [8] was used to verify the
analytical results presented in the previous section. The manipulator comprises
two flexible links driven by two DC servo-motors with parameters defined in

Figure 4. Experimental two-link flexible manipulator.
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Figure 1 and Table 2. Vibration is sensed by a tip mounted accelerometer for
system identification purposes.

Frequency domain system identification methods were used to obtain
eigenfrequencies for several discrete elbow angles. At each elbow angle the
manipulator was excited by applying a band-limited white noise input voltage to
the shoulder servo-motor. A transfer function estimate was computed from the
input excitation voltage and measured tip acceleration [15]. The first three natural
frequencies extracted from the transfer function estimate are plotted in Figure 3,
along with those predicted by the mathematical model. The error bars denote the
resolution of the frequency spectrum available during the system identification
procedure, which is a conservative upper bound on the accuracy of the identified
eigenfrequencies; two separate sets of data are presented, corresponding to
frequency resolutions of 0·049 and 0·098 Hz, respectively. Clearly the theoretical
results accurately predict the experimentally observed variation in frequency for
the three modes shown. In particular, the large variation in mode 2 is predicted
with an accuracy of approximately 2·2%.

5. CONCLUSIONS

A system mode solution to the PDE was derived for a general two-link
manipulator, extending the method presented by Oakley [10]. By correctly
modelling the shear force and bending moment at the elbow joint and including
geometric offsets, solution of the characteristic equation produced true system
mode eigenfrequencies without recourse to a dynamic formulation. A numerical
solution approach was developed for the high order eigenvalue problem resulting
from the system mode formulation. The analysis was subsequently shown to
accurately predict the modal frequency variations with elbow angle observed
experimentally for the two-link manipulator.

The eigenfrequencies vary by up to 30% over a 90° elbow angle, which is
sufficient to challenge the robustness of a fixed gain controller. In related research,
the authors incorporate the modal analysis techniques presented in this paper into
dynamic models for synthesis of fixed gain [8] and gain scheduled [15] vibration
compensators.
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APPENDIX: DC SERVO ACTUATOR BOUNDARY CONDITION MODELLING

Each joint of the manipulator in Figure 1 is powered by a DC servo-motor.
Considering a single actuator/beam pair in isolation, the servo powered joint
contributes increased hub inertia and viscous friction, and adds a control gain
dependent electromechanical stiffness to the dynamics of the flexible structure.
Consideration of these effects is required to accurately model the boundary
conditions for solution of the PDEs. The equivalent stiffness of the servo-motor
under closed-loop feedback, when modelled as a torsional spring boundary
condition for the flexible beam is determined by both its mechanical stiffness and
the electromechanical controller stiffness. Given the relatively high stiffness of
commercial gear trains, the combined or resultant stiffness is dominated by the
servo torque. The relation between the control law and the equivalent stiffness is
developed in this Appendix, where we shall demonstrate that a high gain servo
loop produces the locked elbow boundary condition assumed in section 3.

The linear dynamics for an armature controlled DC servo-motor are developed
from the model in Figure A1 which is segmented into motor, gearbox and load
components where the latter is the manipulator link driven by the servo.
Neglecting inductance La , Coulomb friction and backlash, the electromechanical
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Figure A1. DC servo-motor schematic.

torque applied by the gearbox output shaft to the load contributed by the flexible
beam IL is [6, 8],

t(s)=
NgKm

Ra
va (s)−N2

g0KmKb

Ra
+ cv1u� (s)− ImN2

gu� (s), (A1)

where Ng is the gear ratio (Ng e 1), u is the gearbox output shaft angle, Km is the
motor gain constant, va is the applied armature voltage, Kb is the back EMF
(BEMF) constant, Ra is the armature resistance, Im is the inertia of the motor shaft
and cv is the total viscous friction of the joint. The subscript ‘‘a’’ denotes armature
circuit quantities while the subscript ‘‘m’’ designates the motor side of the gearbox.

The armature voltage va derived from closed-loop position control is
approximated by the proportional feedback control law

va (k)=KPe(k), (A2)

where e(k)= ud(k)− u(k) is the joint angle error while tracking the target
trajectory ud(k) and KP is the proportional feedback gain. The equivalent stiffness
of the servo relative to the gearbox output under closed-loop proportional
feedback control is computed from equations (A1) and (A2) and defined by

k=
t(s)
e(s) bs=0

=
NgKmKP

Ra
. (A3)

This active servo stiffness definition is independent of the inertia and the passive
stiffness of the servo; it is determined by the control law which can be designed
to be of sufficiently high bandwidth to constitute a clamped boundary condition
neglecting backlash and the mechanical stiffness of the support structure. In fact,
it is probable that the servo bandwidth will be high in most applications to enable
high bandwidth hub trajectory tracking, and hence the servo stiffness can usually
be assumed to be constant for the modal analysis. This ability to partially
‘‘control’’ the boundary condition of the beam is a useful result which reduces the
modelling uncertainty (see, e.g., reference [6]) provided that sufficient control
authority exists to enforce this condition.
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Figure A2. Spring-hinged boundary condition. The eigenvalues are shown versus the servo
proportional gain KP for both joints. The eigenvalues for the standard cases are also shown for
reference: – – –, clamped–free; · · · · · , pinned–free. (a) Shoulder servo; (b) elbow servo.

It is convenient to relate the proportional gain to the equivalent dimensionless
spring stiffness parameter j. The proportional gain corresponding to j from
equation (A3) and Table 1 is

KPl =
EIlRal

LNglKml
jl , l=1, 2, (A4)

where the link subscript l has been added for generality.
Treating the two links independently, from equation (A4) the first four

eigenvalues are plotted against Kpl in Figure A2. The proportional gain which
yields a near clamped boundary condition (j=50) is KP 1 8·7 V/rad for the
shoulder and 43·9 V/rad for the elbow servo, using the parameters given in Table 2.
We can also observe that the sensitivity to KP decreases with mode number. In
practice, friction also contributes to the boundary condition enabling a lower value
of KP to achieve the same result.
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