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Blades are idealized as twisted cylindrical thin panels and the free vibrations
of rotating blades are studied in this paper. First the steady deformation due to
rotation is studied by using the principle of virtual work for deformation, then
considering the initial deformations and the initial stress resultants, the
vibration of the panel is analyzed by using the principle of virtual work for free
vibration. The numerical procedure for analyzing the free vibrations of rotating
twisted cylindrical thin panels is presented by the Rayleigh—Ritz method. The
solutions are shown in non-dimensional frequency parameters and compared
with the previous results. Finally, the effects of twist angle, center angle, setting
angle, rotating speed and radius of rotating disc on the vibrations are
investigated.
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1. INTRODUCTION

As one knows, it is very important to study the vibrations of blades which rotate
at high speed. There are many studies on the vibrations of rotating blades. In
most of these, the blades are generally idealized as twisted cantilever plates and
shells, and the finite element technique has been used to analyze the vibrations of
the rotating blades [1-6]. Another useful and widely used method is the
Rayleigh—Ritz method. Leissa et al. [7] proposed a shallow shell model of blades
and derived a numerical method for analyzing the vibrations of rotating blades
by using the Rayleigh—Ritz method. It is not adequate for analyzing shells
having large curvature and twist, because it is based on the thin shallow shell
theory.

By using general thin shell theory, Tsuiji [8] presented a numerical procedure
for the vibration analysis of rotating twisted thin plates by applying the
Rayleigh—Ritz method. For typical twisted thin plates, the effects of twist angle,
rotating speed, setting angle and radius of rotating disc on the vibration
characteristics were studied in detail. It can be seen that the procedure is
applicable to the analysis of the vibrations of plates having a large twist.

The main purpose of this paper is to present a numerical procedure which is
adequate for analyzing the vibrations of rotating twisted cylindrical thin panels,
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even if the panels have large twist and curvature. By using reference [9], non-
linear strain—displacement relations of rotating twisted cylindrical thin panels are
proposed with considering the initial displacements due to centrifugal forces. The
governing equations for the free vibrations of rotating twisted cylindrical thin
panels are presented by the principle of virtual work and the Rayleigh—Ritz
method assuming two dimensional algebraic polynomials as displacement
functions. The procedure consists of two steps: first, the deformations caused by
centrifugal forces are evaluated by an iteration method; second, by considering
the initial displacements and initial stress resultants, the vibration characteristics
of rotating twisted cylindrical thin panels are analyzed. The results obtained by
the present procedure are compared with previous data [7, §]. The effects of twist
angle, center angle, setting angle, rotating speed and radius of rotating disc on
the vibration characteristics are investigated.

2. STRAINS WITH INITIAL DEFORMATION

A blade is treated as a twisted cylindrical thin panel mounted on the periphery
of a rotating disc of radius x, with a setting angle ¢, as shown in Figure 1. There
are two rectangular Cartesian right hand co-ordinate systems employed, one is a
(x, y, z’) with the origin O which is a point on the z’-axis. The x-axis is along the
length of the panel and the twisting center axis, the z’-axis takes up the radial
direction where the cylindrical arc is equally divided into two parts, and the y-
axis is selected in such a way that the x-, y- and z’-axes form a right hand
system. The other system is (X, Y, Z) where the X- and Y-axes are in the
horizontal plane, and the panel system rotates around the Z-axis at an angular
velocity @ (rad/s). Q,, r and b are the center angle, average radius and arc length
of the cylindrical panel respectively. O, is the center of the cylinder and 0 is the
angle measured from the z’-axis. 7 is thickness, / is the length along the x-axis, k
is the twist angle per unit length and k/ is the twist angle at the free end of the
panel. e is the distance between the two points O and O;, and the z-axis is a
normal of the middle surface and the outward direction is defined as positive. i,
i» and i3 are the unit vectors of the co-ordinate system (x, y, z’).

The strain—displacement relations for twisted cylindrical thin panels can be
obtained from reference [9] where the curvature of the x-axis becomes zero,
which are given by the following:
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Figure 1. A model of rotating twisted cylindrical thin panels for rotating blades.
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ete = (1/F)ZG U + %(zeU)T(zeU)a em = (1/F)ZGy U + (Ger) (Gp2U),

vh = (1/F)ZG U + (GuU) (GpU), 3k =0, 7y =0, & =0, (1)

where (£, 1, {) is a local co-ordinate system with respect to a point. Matrices Z,
G.1, Gy, Gp and U are expressed as

ou Ou ov  Ov FPw  Pw  Pw Ow  Ow "

T (X% Y% - -
U=l 30 “ ax a0 ' a2 a® axa0 oax a0 "

Ga =[1Gijl, Go =[Gyl Gw =[Gl (=123j=1...,12), (2)
the non-zero elements of matrices G,;, Gg; and G, are

Bk k2
lel,l = B, X1G1,2 = —(}’ — € COoS 0), x1G1,6 = %SIHHCOS 0,
r r

2
ek 1 k
G =——(r—ecosO)cosl, 1Gy1=~, xGa=-,
Br r r
2
ek e
«1Grg = — B—zcos 0, «Gys= 2 (ecos —r)cos®b,

. 1
x1Gog = [ (r — ecos 0)) cos? 9} sinf, Gy =— 3
k2 2k
2
x]Gzﬂg = —p(eCOSO — V) , x1G259 = E(@COS@ — I’),
k3 )
x1Gar10 = By (r—ecosf)sinfcosb,
k> [ek? ) k>
Gl = eB [ZZ (ecos O — r) cos 0 — 1} sinf, 1Gy2 = —%cos 0,
ek ek? 1
x1G34 = — 53,208 0, «1Gss= — 53,208 0, «Gs7= B
2 k
x1G3,g B2 ) (6 cos — I) x1G3,9 = W (6 cosf — 21’),
273 2 2
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«1G310 = Esm000s 0, G311 = — ;a2 [1 +— 7 (ecos —r)cosf| sinf,
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91G2,1 = ;—2?(80089 — r) COS 0, 91G2,2 = —/;, 91G2’4 = ;—ZCOS 0,
0Gas = riz’ 011G = —%Smecosa 01Gag = —FE;,
91G2,10 = —%sin@, 91G2,11 = 2—;(60089 — V) sin@,
91G2,12 = —2—;008 9, 91G3’1 = —Z—;COS 9, 91G3,4 = Bi—l;COS 9,
011G36 = %sin@cosZ 0, 001Gz = —Bez—];cos 0,
01G3.10 = e;f;sinﬁcos 0, 0Gs1 = —}iﬁi(ecos@ —r)sinfcos 0,

1
XHGI,I = k(eCOSQ — r), x(gG],z = ; [32 — k2(60080 — r)z], x9G1,4 = 1,

k k . 2ek
wG1s =—(r—cosf), «Gie=— e_sm 0, xGii2= —LCOS 0,
r r Br
2k 2k? 2
G2l = Br (ecos —r), 1Grp= B (r—ecosf), ,9Gra= o
2k 3k3 )
0G5 = B2 (r—ecosf), y9Garg= #sm 6 cos 0,
2k 2 20262
x0G2,8 = r—z (e cosf — r), x9G2,9 = —;’ x9G2,10 = ;2” sin 6 cos 0,
20°k3 , k
0G211 = — % (ecosO —r)sinfcosl, 9Gz7=— %cos 0,
k 1 [ek?
X9G3,8:_W: x9G3,9:ﬁ E(ECOSH—I’)COSQ—l s
2k3 ]
x0G3.11 = —Wsmecos 0,

and matrices G , G are expressed as
x2 02

Go=[0 0 0 0 0 (ek/B’r)cosf 0
Gpo=[0 0 kK/B 0 0 —1/Br 0 0

(1/B) (k/Br) (r —ecos?)

0 0
00 1 0

0],
(4)

where u, v and w are the displacement components of a point on the middle
surface of the panel, and coefficients B, F and p are defined as follows:
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B=1+¢%k*sin0, F=B(1+zp), p=(1/Br)[1 - (ek?/B*)(r —ecos0)cos0).
(5)

It is necessary to consider the strains with initial deformations for analyzing the
vibrations of rotating blades. From equation (1), the strains of the twisted panel
having initial deformations are given by

L N L N L N
e = tee o= oyt Vo= vy tVa va=00 v =0 e =0,
(6)

where ()z, ()y denote linear and non-linear strain components respectively,
represented by

Vé“\;fy = (Gx2U)T(G(92U)a Yer = 0, Yoo = 0, & = 0, (7)

Uy is the initial deformation matrix due to centrifugal forces, and matrix H is
defined as

H' =[1 p 0] (8)

3. PROCEDURE ANALYZING FREE VIBRATION

For a thin panel, changes in centrifugal forces in the thickness direction can be
neglected. Hence, deformation the position vector r of an arbitrary point in the
rotating twisted cylindrical thin panel is given by

X0 T rul® 1 0 —eksin0/B T i
r= rsin 0 +|v k(e —rcosf) cos0 sind/B ir
rcosf —e w krsin @ —sin 6 cosf i3
fi ! N I
= ]2 +1v ET 1 ) (9)
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By application of the second partial derivative of the position vector r with
respect to time ¢;,,, the D’Alembert force vector F for per unit volume of the
panel is given by the following:

F - —pazr/8t2 - F[n + Fcen + Fsup + Fcor: (10)

me

where F;, is an inertia force vector, F., is a centrifugal force vector, F,, is a
supplementary centrifugal force vector and F,,,. is a Coriolis force vector. In the
case of neglecting the effect of F.,, the virtual work of F due to virtual
displacement vector oD, is

FéDis = FinéDis + FcenéDistup(SDiw

[ B2+ k2(r — ecos 0)*u + k(ecos 0 — r)v [ ou
Fi6Dj = —w’p k(ecos® — r)u+v ov |,
L w ow
i1 [ ou £i17 [ ou
FoondDiy = —Q%p| /| CE| v | =-Q%p | fo ov |,
£ ] Sw f3 ow
u]’ ou
FsupéDis = _sz v ETCE ov
W ow
(u] [ b b by [ ou
=—Qp|v hy hy || ov],
W Sym. h33 ow
ou T i]
oDy = | ov | ET|iy |, (11)
ow i3

where p is the density of the material, w is the angular frequency of vibration
and matrix C is a transfer matrix between the co-ordinate systems given by

1 0 0
C=10 cos?(kx + ¢) —sin(kx + ¢) cos(kx + ¢) | . (12)
0 —sin(kx + ¢)cos(kx + ¢) cos?(kx + ¢)

Jfiand hy; (i, j = 1, 2, 3) are given in the Appendix.

3.1. DEFORMATION DUE TO CENTRIFUGAL FORCE

To analyze the vibrations of rotating panels, the deformations caused by
centrifugal forces must be known. For the steady state deformation analysis, the
steady equilibrium equation of a rotating twisted cylindrical thin panel is given
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by the principle of virtual work,

JJJ (0cedeze + oyt + &0y, ) F dx r dO dz

— JJJ (Fcen + Fsup)éD,'SF dxrdfdz=0. (13)

By substituting equation (6) into equation (13), integrating with respect to z
and neglecting the terms having the factor z' where i is greater than 2, equation
(13) becomes

JJ 5UTQU dx rdo — JJ F oD Bt dx r d6 — JJ Fy,,0D;Bt dx r dO
A A A

= —“ oUTR dx rdo, (14)
A

in which
Q = G, Dy(Gy + vGor) + Gy, D1 (Gt + Gor) + [(1 — 1)/2)G D1 Gog
+N¢

¢

GG + N, GGy + N (GL Gy + GG,

R = {GL,GLUDy (G, + vGyr) + G},GpaU'Dy(vG,y + Gyy)
+[(1 = 2)/2/(GL,Gpn + G,G2)UD,G
+ %GL D] (U)'(GLGx + vGj,Gp)
+1Gy DI (U (VGG + GLG) + [(1 = 1)/2]G (DI (U") G, G
+ (BH/2)[G,G U (U") (GG + vG,Gin)
+GLGHU (U (vGLG, + GLGp)
+ (1 = 1)(GLGn + GjG)U'(U°) GG U’

T

+G, MY, + G,, M) + G M

on’

t/2 0 t/2 0 t/2 0
Ngin aééFdz, NO :J o Fdz, Ng :J r£,7Fdz,

nm nm n
—1/2 —t/2 —t/2

0 7 0 ot 0 Ea—
Miin_I/zaééZ dz, M'm:J oL’ dz, Mi":J_z/zQ”Z dz,

—t/2
E (7?1 E (72 Et
= ~7'7dz, D, = Zdz, H=—— 15
1 2
— U

D
! —1/2F 1 — V2 —1/2 1 — 1/2,

where E is Young’s modulus and v is Poisson’s ratio.
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In order to investigate the parameters which influence the vibrations of the
panels conveniently, the following non-dimensional variables are introduced:

X _ u _ vV _ w _ r _ e - B X0 _ Q
= — = — = — = — = — = — = = — Q:—
X=g, U=, V=g, W=o, T=o = k=kl, X 7 o0’

(16)

where ®, is the fundamental angular frequency of the non-rotating panel.

The Rayleigh—Ritz method is used to present a numerical procedure, and so
the non-dimensional displacement functions #, v and w are assumed to be two
dimensional algebraic polynomials with respect to X and 6, which should satisfy
the geometrical boundary conditions at X = 0, given by the following:

NTI Mt? N\' Mv N\\' Mw
= E ;X0 V= E E bax 0, w= E E Comx"0", (17)
i=1 j=0 k=1 =0 m=2 n=0

where a;, b,; and ¢, are unknown coefficients, and N,, M; (i, j = u, v, w) are the
coefficients related to the number of terms in the displacement functions,
namely, N; x (M + 1), Ny x (M5 + 1) and (Ny — 1) x (My; + 1) terms in #, v and
w displacement functions respectively.

By substituting equations (16) and (17) into equation (14) and integrating over
the panel area, the equilibrium equation of rotating panel in respect to
deformation is given by

K+ K(U°) + K(N°) — Q’K(F,,,)|q = (Q) + Fun, (18)

where K is a stiffness matrix of the non-rotating panel, K(U% and K(N°) are
stiffness matrices due to rotation, which depend on the initial deformations U°
and initial stress resultants N° respectively, K(F,,,) is a supplementary stiffness
matrix, 9(.(_22) is a centrifugal force vector acting on the panel, and %,, is an
imbalanced force vector obtained from the term on the left side of equation (14).
q is a vector consisting of unknown coefficients a;;, b,; and c,,,.

For the non-linearity of equation (18), the initial deformations and the initial
stress resultants corresponding to the centrifugal forces can be estimated by the
interative method. First, assume U° = 0 the q is evaluated by equation (18), and
the initial deformations and the initial stress resultants can be obtained from
equations (17) and (15) respectively. Second, the matrices in equation (18) are
calculated through the obtained initial deformations and initial stress resultants,
and q is modified by equation (18) again. The second calculating routine is
iterated until the vector q converges.

3.2. FREE VIBRATION ANALYSIS

After the determination of the steady initial deformations U° and the initial
stress resultants N, considering the virtual work done by the vibration inertia
force and supplementary centrifugal force, and by using the principle of virtual
work, the vibration equation for rotating the panel is presented based on the
Rayleigh—Ritz method, namely,
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K + K(U°) + K(N°) — Q@’K(F,,,) — °M]q = 0, (19)

where M is a mass matrix, q is an eigenvalue vector, 4 is a non-dimensional
frequency parameter defined as

22 = pto’*/D, (20)

and D = Ef}/{12(1 — %)} is flexural rigidity.
Equation (19) is a standard eigenvalue equation, and the eigenvalues and
corresponding eigenvectors can be evaluated through general methods.

4. RESULTS AND DISCUSSIONS

In this paper, the x-axis is considered as the twisting center axis which passes
through the center of gravity of each cross section. Thus e is given by

e = rsin(Q,/2)/Q1/2. (21)

The Gauss—Legendre integration method having 12 integration points is used,
which ensures that the frequency parameters converge.

4.1. CONVERGENCE OF FREQUENCY PARAMETERS

The convergence property of the frequency parameters about the number of
terms in the displacement functions is studied for a model having the following
parameters: an aspect ratio b// = 0-5, a thickness ratio b/t =20, Q; = 60°,

k =60°, ¢ = 0°, Poisson’s ratio v = 0-3, a radius of the rotating disc X, = 0 and

TABLE 1
Convergence of A versus the number of terms in the
displacements  (b/l = 0-5, b/t =20, € = 60°,
k=60° ¢ =0° X% =0,Q2=05)

Nu M; 6,7 7.7 7.8
Ny, M5 6,7 7,7 7,8
Ny, My 7,8 8, 8 8,9
Terms
No. 48/48/54  56/56/63  63/63/70

65632 65719 6:5716
19-986 19-997 19-996
36-425 36-391 36-391
54-998 54-781 54-780
76:615 76-389 76389
91-938 91-715 91-714

107-16 106-45 106-45
110-87 109-47 109-46
136-81 13573 13573
166-79 161-62 161-62

SO0 R W —

—_—
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TABLE 2

Comparison with the frequencies (Hz) of the blades [7] (a = b = 30-5 cm,
t =0-305 cm, r = 61-0 cm, Xo =0, Q =1-0)

é 0° 450 90°

Mode Leissa Present Leissa Present Leissa Present

150-98 150-72 110-23 124-20 105-10 90-403
418-24 41897 404-90 409-79 403-48 400-38
623-35 572-55 592-37 549-42 589-06 52576
829-04 81723 819:63 809-27 818-58 797-42

Anti. 1
2
3
4
Sym. 1 170-28 173-01 150-22 15898 147-84 142-07
2 30194 296-58 266-56 274-49 262-69 250-42
3 46348 459-78 448-12 448-82 446-48 43842
4

789-09 800-38 78063 795-71 779-76 78336

Ao = 5:6373 which is the fundamental angular frequency of the non-rotating
panel. The variations in the first ten frequency parameters A for the different
number of terms in the displacement functions are shown in Table 1 when the
rotating speed Q = 0-5. It can be seen that the first ten frequency parameters A
converge using the displacement polynomial functions #, v and w with 63, 63,
and 70 terms respectively.

4.2. COMPARISON WITH PREVIOUS RESULTS

To verify the practicability of the numerical procedure presented in this paper,
first, a shallow shell model with a rectangular planform for a blade [7] is
analysed by the present method. The length ¢ and the width b of the planform
are 30-5 cm, the radius r of curvature in the chordwise direction is 61-0 cm, the
thickness ¢ of the blade is 0-305 cm and the properties of the material are:
v =03, E=21x 10° kgf/cm? and p = 7-85 x 10~ kgf s?>/cm*. The comparison
is shown in Table 2 which gives the first four antisymmetric and four symmetric
frequencies (Hz) in the case of the radius of the rotating disc Xy = 0, the rotating
speed Q = 1-0 and the fundamental angular frequency w, of the non-rotating
panel. For the case of the setting angle ¢ = 0°, the two results agree well except
for the third antisymmetric frequency. When the setting angle ¢ = 45° and 90°,
there are differences in the first and third antisymmetric frequencies of the two
results respectively. But they have the same tendency to decrease with an
increasing setting angle. It is possible that the differences are caused by using the
shallow shell theory, approximate initial stress resultants [7] and the different
number of terms in the displacement functions in two methods.

Second, a rotating twisted plate having an aspect ratio b/l = 0-5, a thickness
ratio b/t = 20, twist angle k = 60° and the radius of the rotating disc X, = 0 is
studied by the present method for a different setting angle ¢ (0°, 45°, 90°). The
comparison between the present results and the previous results [8] are shown by
Table 3. It can be seen there is good agreement between the two results.
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4.3, RESULTS FOR ROTATING TWISTED PANELS

Models having an aspect ratio b/l =0-5, a thickness ratio b/t =20 and
Poisson’s ratio v = 0-3 are investigated for the effects of twist angle, center
angle, setting angle, radius of the rotating disc and rotating speed on the
vibrations of the panels. For non-rotating panels with different twist angles and
center angles, the fundamental frequencies are considerably different. In order to
compare the influences of twist angle, center angle, setting angle, radius of the
rotating disc and rotating speed on the frequency parameters for different
rotating twisted panels, w, is selected as the fundamental angular frequency of
the non-rotating twisted cantilevered plate to analyze the vibrations of rotating
twisted cylindrical thin panels.

The effects of center angle Q, and twist angle k on the vibrations of rotating
panels are investigated first. Table 4 shows the first ten frequency parameters of
the panels with different center angles Q; (30°, 60°, 90°) and different twist
angles k (0°, 30°, 60°) at the rotating speed Q = 0-4 and 0-8.

In the case of a given twist angle k, the fundamental frequency parameter /.
increases with the increasing center angle. When the rotating speed Q increases,
the fundamental frequency parameter 4 increases and the ratio of the increase
decreases with an increase in the center angle, which is 20% for the case of
Q, =30° 10% for 60° and 6% for 90° with respect of the case of k = 60°,
respectively.

In the case of a given center angle Q,, for the panel with twist angle k = 0°
and 30°, the first four frequency parameters show the increases as the rotating
speed Q increases, but only the first two increase as the rotating speed increases
for the case of k = 60°. The fundamental frequency parameter 4 decreases with
an increase in the twist angle k, and their variations are different as rotating
speed Q increases. For an instance of Q; = 30°, the variation is 13% for the case
of k = 0°, 17% for 30° and 20% for 60° as the rotating speed changes from 0 to
0-8.

TABLE 5
Effect of setting angle ¢ on the frequency parameter 7 (b/l = 0-5, b/t =20, Q; = 30°,
k =30°, xo =10)
0° 45° 90°

<

Q 0-0 0-4 0-8 0-4 0-8 0-4 0-8

1 47744 5:2658 6-5311 5-1524 5-8749 5-:0968 59141
2 18-271 18-329 18-827 18-260 18-127 18-371 18-676
3 27-370 27725 28-800 27709 28:950 27-704 28686
4 53-007 53-248 53953 53-238 53-739 53-284 54-010
5 63-881 63-579 63-354 63-554 63-328 63-765 63-684
6 78338 78:695 79-673 78:687 79-686 78734 79-815
7 93-157 93-147 93-365 93-118 93-300 93:173 93-262
8 100-03 100-09 100-69 100-06 100-52 100-26 101-02

9 127-05 127-10 127-52 127-09 127-47 127-16 127-54

0 139-89 140-35 141-68 140-36 141-82 140-38 141-77
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TABLE 6
Effect of the radius Xy of the rotating disc on frequency parameter A (b/l = 0-5, b/t = 20,

Q) = 30°, k = 30°, ¢ = 45°, 2=0-7)

X0
0 0-5 1-0 15 20
1 5-:0750 5:4748 57512 6-0059 6-7069
2 18-211 18-305 17-946 17-656 19-274
3 27777 28-094 28-399 28:694 29-095
4 53-259 53-466 53-539 53629 54-332
5 63-377 63-343 63-263 63217 63-365
6 78-709 79-014 79-295 79-570 80-035
7 93-129 93-148 92-879 92:656 93-622
8 99-961 100-16 100-25 100-37 101-06
9 127-08 127-20 127-17 127-17 127-78
10 140-44 140-85 141-25 141-64 142-17

The effect of setting angle ¢ on the vibration of the panel with Q; = 30°,
k=30° and Xy =10 is shown in Table 5. The first frequency parameters
increase and the other frequency parameters increase or decrease as rotating
speed Q increases. It can be seen that the maximum variation of the fundamental
frequency parameter appears when the setting angle ¢ = 0°. Comparing the
results between Q = 0 and 0-8, the ratio of the increase is 36:8% for the case of
¢ = 0°, 23% for 45°, and 24% for 90°, respectively.

Table 6 shows that the frequency parameters change as the radius of the
rotating disc changes for the panel having Q, = 30°, kK = 30° and ¢ = 45°. It can
be seen that the changes of the lower frequency parameters are larger than those
of the higher ones with the radius of the rotating disc Xo. When the radius X
changes from 0-0 to 2-0, the variation is 32:2% for the fundamental frequency
parameter, 9:2% for the second one and 4:7% for the third one, respectively.
The other frequency parameters show increases or decreases with an increasing
radius Xy, but the variations are less than 2%.

5. CONCLUSIONS

In order to present a procedure for analyzing the vibrations of rotating blades,
blades are treated as a model of curved and twisted cylindrical thin panels and
the exact strain—displacement relations under considering initial deformation due
to rotation are proposed. The numerical procedure is presented by applying the
principle of virtual work and the Rayleigh—Ritz method assuming two
dimensional algebric polynomials as the displacement functions. By comparison
of the results obtained by the present procedure with previous data, it is shown
that the present procedure is applicable to vibration analysis of rotating curved
and twisted thin panels. Also, the present procedure is based on the general thin
shell theory so that there are no limitations for twist and curvature of panels.
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The effects of various parameters such as twist angle, center angle, setting

angle, radius of rotating disc and rotating speed on the vibrations of rotating
twisted cylindrical thin panels are investigated by this method. It is found that
the fundamental frequency parameter for the rotating twisted panels investigated

in

this paper shows an increase as the rotating speed increases, and also that the

parameters have little effects on the higher frequency parameters.

10.
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APPENDIX
The coefficients f; and h; (i, j =1, 2, 3) in equation (11) are given by the

following,

f1 = xo — (ek/B)sin0cos(kx + ¢)[—rsin(kx + ¢ — 0) + esin(kx + ¢)],

f> = xok(e — rsin0) + cos 0 cos(kx + ¢)[—rsin(kx + ¢ — 0) + esin(kx + ¢)]
+ (1/B) sin O cos(kx + ¢)[rcos(kx + ¢ + 0) — ecos(kx + ¢)],

f3 = xokrsin 0 — cos(kx + ¢)[rsinOsin(kx + ¢ — 0)
+ (rcosf — e)cos(kx + ¢ + 0)],
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hiy = 1+ (e*k*/B*) sin® 0 cos*(kx + ¢),

hiy = k(e — rcos 0) + (ek/4B) sin 20sin 2(kx + ¢) — (ek/B?) sin® 0 cos®(kx + ¢),
hy3 = krsin 0 — (ek/B) sin 0 cos(kx + ¢) cos(kx + ¢ — 0),

hyy = k*(e — rcos 0) + cos® O cos?(kx + ¢) — (1/2B) sin 20'sin 2(kx + ¢)
+ (1/B) sin® 0 cos*(kx + ¢),

hy3 = k*r(e — rcos 0) sin 0 — cos 0 cos(kx + ¢) sin(kx + ¢ + 0)
+ (1/B)sinOcos(kx + ¢) cos(kx + ¢ — 0),

hys = k*r? sin? 0 + cos(kx + ¢)[sin 20 sin(kx + ¢) + cos(kx + ¢)]. (22)
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