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Solutions of di�erential equations of motion for mechanical systems with
periodic impulsive excitation are represented in a special form which contains a
standard pair of non-smooth periodic functions and possesses the structure of
an algebra without division. This form is also suitable in the case of excitation
with a periodic series of discontinuities of the ®rst kind. All transformations are
illustrated on the Du�ng oscillator under a parametric non-equidistant pulsed
forcing with a dipole-like shift of the impulses, although the technique can be
applied to more general cases. An explicit form of analytical solutions has been
obtained for periodic regimes. These solutions and numerical simulations
indicate a principal role of the impulses' shift. Namely, the system performs
periodic, multiperiodic and stochastic-like dynamical regimes if varying a
parameter of the shift. The analytical approach is based on the limit of linear
system under equidistant distribution of the impulses and asymptotically takes
into account the dipole-like shift and non-linearity.

# 1999 Academic Press

1. INTRODUCTION

Instantaneous impulses acting on a mechanical system can be simulated either by
special conditions for the velocities and co-ordinates in the neighborhoods of the
impulses location or by introducing Dirac's function into the equations. An
advantage of the ®rst approach is that the differential equations describing the
system are the same as when there are no impulses acting [1]. However, these
equations should be treated separately in each of the intervals between the
impulses, and hence, instead of a single system, a whole sequence of systems
must be considered. The second method gives a single set of equations over the
whole time interval without introducing the above-mentioned conditions
imposed on the variables. However, in this case a correct way of the analysis
should be based on the theory of generalized functions (distributions) [2], which
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requires additional mathematical proofs in non-linear cases [3, 4]. Both
techniques are fruitfully employed for different quantitative and qualitative

investigations of mechanical systems under pulsed excitations [1±9]. In this

paper, the external impulses acting on the system are taken into account by

means of the special representation for periodic solutions including a standard

pair of non-smooth periodic functions. Namely, substituting the representation
into the differential equations of motion, the singular terms are eliminated in the

equations. The transformation ®nally gives solutions in the form of a single

analytic expression over the whole time interval. This means that one combines

the advantages of both the ways mentioned above. In this connection, note
reference [10] where solutions of the quasilinear systems under the action of an

impulsive or discontinuous force (with a singularity at the point t� a) are found

in the Caratheodory form [4] x(t)� x1(t)� x2(t)H(tÿ a), where H(t) is a standard

single-step function. An analogous form of the solution is used to describe
moving discontinuities in wave theory in reference [11]. In the case of systems

with rigid constraints, special piecewise linear transformations have been

constructed [12] which instantaneously rotate the co-ordinate axes at the instant

of impact on a system. As a result of the transformation, the system is free
from its bonds and the corresponding differential equations do not contain

any ``impact'' terms whatsoever. Mechanical systems which are going to be

considered here do not include any rigid constraints and hence do not belong to

a class of the vibro-impact systems. That is why the representation used below
for the solution instantaneously changes the direction and scale of time but not

of the co-ordinates. By this means the co-ordinate transformation [12] deals with

a function whereas the transformation of time transforms an independent

variable (argument). As a result one needs another mathematical tool to
manipulate with. Namely, after introduction of the saw-tooth time parameter,

the co-ordinate acquires a special algebraic structure, and this enables one easily

to use the representation associated with the solution of the differential

equations. The representation is based on a proposition that an arbitrary
periodic function x(t) (the period of which is normalized to four) can be

expressed as

x � X�t� � Y�t�e,

t � t�t;Y�, e � e�t;Y� � @t�t;Y�
@t

,
�1�

where t is the saw-tooth piecewise-linear function of argument t and period

equal to four (Figure 1):

t�t;Y� � t=�1�Y�,
�ÿt� 2�=�1ÿY�,

ÿ1ÿYEtE1�Y
1�YEtE3ÿY

� �
, �2�

where Y (ÿ1<Y< 1) is a parameter characterizing the slope (asymmetry) of the

``saw''. Note that the period has been normalized to four, not to 2p. A
convenience of this choice is going to be discussed later. Figure 1 also
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schematically shows ®rst and second generalized derivatives of the saw-tooth
function. The second one consists of the Dirac functions.
The right-hand side of equation (1) includes two (X and Y) components,

which could be easily expressed throughout x(t) if this function would be known.
If expression (1) represents an unknown solution, then both of the above
mentioned components must be de®ned by solving a generally coupled boundary
value problem (for example see section 3 below).
Originally the representation (1) was proposed for the case of symmetric saw-

tooth function [13], when Y� 0 and hence,

e2 � 1: �3�
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Figure 1. The asymmetric saw-tooth function and its two generalized derivatives. Non-zero
slope of the saw-tooth function (Y 6� 0) creates a dipole-like shift of the impulses, i.e., a homo-
geneous periodic sequence is transformed into a periodic sequence of the double impulses.
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The last expression provides a series of mathematically convenient properties.
These properties, geometrical and physical meaning of the representation (1)
were discussed in references [14, 15], when analyzing the oscillations of strongly
non-linear mechanical systems. More details regarding the asymmetric version
(Y 6� 0) can be found in reference [16±18]. This modi®ed version leads to a more
complicated ``multiplication table'' than (3), and as a result of the
transformation, a more complicated system appears than one would have in the
symmetric case. That is why this paper shows how to make use of the idea of an
asymptotic expansion based on the limit Y! 0.

2. A FORMULATION OF THE PROBLEM

In order to illustrate the transformations consider the Duf®ing oscillator
under a parametric pulsed excitation. De®ne a co-ordinate of the system,
x� x(t), which is described by the following differential equation of motion

�x� p� q
@e�t;Y�
@t

� �
x� ex3 � 0, �4�

where e5 1 is a small parameter; the dot denotes differentiation with respect to
time, t; p and q are constant parameters. The parametric pulsed excitation is
expressed by means of the generalized second derivative of a saw-tooth
piecewise-linear function t(t; Y) of argument t and period equal to four
(Figure 1)

@e�t;Y�
@t

� @
2t�t;Y�
@t2

� 2

1ÿY2

X1
k�ÿ1

�d�t� 1�Yÿ 4k� ÿ d�tÿ 1ÿYÿ 4k��, �5�

where Y (ÿ1<Y< 1) is a parameter characterizing the slope of the ``saw''. This
way of describing the impulsive excitation corresponds to a basic idea of the
non-smooth temporal transformation and plays a special role in derivations of
the next sections. Note that the asymmetry of the saw-tooth function stays for
extending the method on the non-equidistant series of impulses. Regarding the
model chosen, note that the oscillator (4) itself has a general enough meaning,
because it presents a well known model of non-linear mechanics (that is a
Duf®ing oscillator) under parametric excitation by a linear component of the
restoring force characteristic. The following example illustrates one of many
possible mechanical problems in which the oscillator (4) may occur. More
examples of mechanical systems under parametric impulsive excitation can be
found in reference [6].

Example 1. Consider a simply supported, axially loaded beam on a linear±cubic
elastic foundation. The partial differential equation of motion is

rA
@2w

@t2
� EI

@4w

@y4
� T

@2w

@y2
� aw� bw3 � 0, �6�

where w�w(t, y) is the lateral displacement of the beam center line; rA, EI and
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a, b are constants characterizing properties of the beam and the foundation,
respectively. The axial impulsive loading is de®ned as T�T0(@e(ot; Y)/@(ot)),
T0� const. The boundary conditions of the simple support are

w�t, 0� � w�t, l � � 0;
@2w

@y2

����
y�0
� @

2w

@y2

����
y�l
� 0:

Approximating the centerline function as

w � x�t� sinp
l
y

and applying the Galerkin technique to equation (6), one obtains ordinary
differential equation (4) with respect to the modal ``coef®cient'', x(t). In the case
considered, one has the following expressions for the parameters of the system

p � 1

rA
p
l

� �4
EI� a

� �
, q � ÿ T0

rA
p
l

� �2
, e � 3

4

b
rA

:

Figure 2 shows a possible scheme for the impulsive axial loading for the case
Y� 0, when the ``saw'' becomes symmetric.

As follows from Floquet theory [19] the periodic solutions have a special
meaning for linear differential equations with periodic coef®cients. In fact, the
periodic solutions as a rule separate regions of stability and instability in a space
of parameters, and hence gives one enough information about the space
structure. Because of this, based on the model (4) the next section presents an
asymptotic process giving the periodic solutions of weakly non-linear systems
under the parametric impulsive excitation. A role of the generating system will
be to play a linearized (e� 0) one with the excitation generated by the symmetric
saw-tooth function (Y� 0). Supposing that the slope Y of the saw-tooth
function is of order e, then put Y� ey, where y is of order 1. A ®rst order
approximate solution will take into account both the non-linearity and the
asymmetry of the system associated with non-equidistant character of the
impulsive loading. Different non-linear systems under the equidistant impulsive
loading are considered in reference [17]. Regarding the model (4), the asymptotic
technique enables one to avoid the operations with complicated special functions
(see section 4). The technique can also be applied to more general cases when

2b

v

m

l

y
w(t, y)

0

Figure 2. One of possible mechanical treatments of the impulsive axial loading. In this case the
parameters of the loading are expressed as: o� v/b, T0� (mv2/b)t.
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solutions are not represented by special functions. The asymptotic technique will
be applied not to the system (4) directly but to the transformed one, which does
not contain singular terms and hence can be considered outside distribution
theory. Note that the equality in the original equation (4) should be correctly
understood in the sense of a distribution with respect to the variable t.
Non-periodic solutions will be studied numerically. An in¯uence of the

parameter asymmetry, Y, on a global structure of the solutions' manifold will be
questioned.

3. ANALYTICAL STUDY

3.1. THE NON-SMOOTH TRANSFORMATION OF THE SYSTEM

It was mentioned above, that system (4) will be transformed ®rst in order to
eliminate the singular Dirac's functions. The case in point is the non-smooth
temporal transformation in a manifold of periodic regimes. To provide this
transformation, a periodic solution with the period T� 4 is represented due to
(1) by the following expression

x�t� � X�t� � Y�t�e; t � t�t;Y�; e � e�t;Y�, �7�
where X and Y are functions to be determined, notations for t and e follow (1).
Note that the derivative e� @t(t; Y)/@t is a piecewise constant function.

Hence, it can be veri®ed that

e2 � a� be, �8�
where a� 1/(1ÿY2) and b�ÿ2Ya.
In the symmetric case (Y� 0) the relation reduces to equation (3).
One should take the ``multiplication rule'' (8) into account when manipulating

with representation (7).
Another relation which will be taken into account is

e
@e

@t
� b

2

@e

@t
: �9�

This relation can be obtained by a formal differentiation of both sides of
equality (8). Regarding the left-hand side of equality (9) one should note that
from the point of view of the generalized functions (distributions), a product of
the Dirac d-function and function which has a discontinuity at a ``point of
localization'' of a d-impulse does not have a de®nite meaning in the general case.
The left-hand side of equality (9) includes this kind of product. However, based
on a result of work [3], it can be shown [16] that the equality (9) holds in the
sense of the distributions theory. Continuous solutions will be sought. It implies
that the ®rst derivative of representation (7) with respect to time, t, does not
contain any singular terms. The ®rst formal derivative is

_x � aY 0 � �X 0 � bY 0�e� Y
@e

@t
, �10�
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where the prime denotes differentiation with respect to t. The last term on the

right-hand side consists of the periodic sequence of d-functions and has to be

eliminated by imposing the following condition

Yjt�21 � 0: �11�
Indeed roots of equations t(t; Y)�21 coincide with the ``points of

localization'' of periodic singular function @e(t; Y)/@t (5) (Figure 1), hence this

term vanishes under condition (11).

Substituting (7) and (10) into (4) and taking into account (8) and (9) gives

��1ÿY2�X 00 ÿ 2YY 00 � �1ÿY2�2pX� e�1ÿY2�2Rf�

� ��1� 3Y2�Y 00 ÿ 2Y�1ÿY2�X 00 � �1ÿY2�2pY� e�1ÿY2�2If�e

� �1ÿY2���X 0 � qX� ÿ 2YY 0 ÿY2�X 0 � qX� � qYe� @e
@t
� 0,

�12�

where

If � 3X2Yÿ 6Y
1ÿY2

XY2 � 1� 3Y2

�1ÿY2�2Y
3,

Rf � X3 � 3

1ÿY2
XY2 ÿ 2Y

�1ÿY2�2 Y
3:

The last (singular) term in (12) is both due to the differentiation of (10) and

because of the parametric impulsive excitation, which is described by function

@e(t; Y)/@t in the original equation of motion (4). This singular term is

eliminated analogously to (10) by imposing another condition

�X 0 � qX �jt�21 � �2YY 0 �Y2�X 0 � qX ��jt�21: �13�
On equating the remaining terms in the brackets in (12) separately to zero, one

obtains the set of equations with respect to X- and Y-components of the solution

as

�1ÿY2�X 00 ÿ 2YY 00 � �1ÿY2�2pX � ÿe�1ÿY2�2Rf ,

�1� 3Y2�Y 00 ÿ 2Y�1ÿY2�X 00 � �1ÿY2�2pY � ÿe�1ÿY2�2If :
�14�

The boundary condition (13) is now written as

�X 0 � qX �jt�21 � �2YY 0 �Y2�X 0 � qX ��jt�21 �15�
So starting from the original equation of motion (4) and considering the

manifold of periodic solutions, one has obtained the boundary value problem

(11), (14), (15) in a domain ÿ1E tE 1. In new terms the system does not

contain any singular functions, and hence its solutions can be considered from

the classical point of view. The pulsed excitation appears here as an additional
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term with coef®cient q in boundary condition (15). This term vanishes if the
excitation is equal to zero, q� 0.
A disadvantage of the transformation is that its ``real'' (X ) and ``imaginary''

(Y ) components are coupled in the inertia terms due to the asymmetry (Y), and
in the stiffness terms due to non-linearity. In the symmetric case (Y� 0), only
the non-linear coupling remains, and the boundary value problem reads

X 00 � pX � ÿe�X3 � 3XY2�, �X 0 � qX �jt�21 � 0,

Y 00 � pX � ÿe�3X2Y� Y3�, Yjt�21 � 0:
�16�

When e� 0, this problem is linear and decoupled, and possesses a standard
family of eigen-values p and eigen-functions X and Y. Based on this linear
symmetric case, an asymptotic process for small but non-zero non-linearity and
asymmetry (e and Y) will be given below.

3.2. THE ASYMPTOTIC EXPANSIONS

To construct the asymptotic process one represents unknown components of
the solution, X, Y, and parameter p in power series form with respect to e:

X � X0�t� � eX1�t� � e2X2�t� � . . . ,

Y � Y0�t� � eY1�t� � e2Y2�t� � . . . ,
�17�

and

p � l2 � ep1 � e2p2 � . . . , �18�
where X0(t), X1(t), . . . ; Y0(t), Y1(t), . . . and l, p1, p2, . . . are functions and
constants to be determined.
An iterative process is going to be constructed similar, in principal, to the

asymptotic technique for quasilinear eigen-value problems [20].
Substituting expansions (17), (18) into equations (14) and boundary conditions

(11), (15), setting Y� ey and matching the coef®cients of the respective powers
of e, one obtains the sequence of boundary-value problems. The zeroth order
(generating) problem consists of homogeneous equations

X 000 � l2X0 � 0, Y 000 � l2Y0 � 0 �19�
and homogeneous boundary conditions

�X 00 � qX0�jt�21 � 0, Y0jt�21 � 0: �20�
This problem admits two sets of eigen-functions and eigen-values. The ®rst one
is

X0j � A0jj�t�, Y0j � C0cj�t�, �21�
where A0 , C0 are arbitrary constants and the following notations for normalized
eigen-functions are introduced
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jj�t� �
���������������

2

q2 � l2j

s
�q cos ljt� lj sin ljt�,

cj�t� �
���
2
p

cos ljt

for lj � j
p
2
, j � 1, 3, 5, . . .

�22�

and

jj�t� �
���������������

2

q2 � l2j

s
�lj cos ljtÿ q sin ljt�,

cj�t� �
���
2
p

sin ljt

for lj � jp, j � 1, 2, 3, . . .

�23�

These normalized functions satisfy the conditions

hjijji �
1

2

�1
ÿ1

ji�t�jj�t� dt � dij,

hcicji � dij,

�24�

where dij is the Kronecker symbol.
Following the method of perturbation for weakly non-linear eigen-value

problems [20], one must choose a de®nite eigen-function to deal with a de®nite
non-linear solution. Take for example an arbitrary solution of the ®rst set (22).

Taking into account (21), the next step of the asymptotic process gives the
following equations

X 001 � l2j X1 � 2yY 000j ÿ p1X0j ÿ X3
0j ÿ 3X0jY

2
0j,

Y 001 � l2j Y1 � 2yX 000j ÿ p1Y0j ÿ Y3
0j ÿ 3Y0jX

2
0j,

�25�

under the boundary conditions

�X 01 � qX1�jt�21 � 2yY 00jjt�21,

Y1jt�21 � 0:
�26�

The solution can be found as expansions on the zeroth order eigen-function

X1 �
X

k�1, 3, 5, ...
a1kjk�t� � X�1�t�,

Y1 �
X

k�1, 3, 5, ...
b1kck�t�,

�27�
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where a1k and b1k are constant coef®cients to be de®ned,

X�1�t� � 2
���
2
p

C0y cos ljt for lj � j
p
2
, j � 1, 3, 5, . . . ,

X�1�t� � 2
���
2
p

C0y sin ljt for lj � jp, j � 1, 2, 3, . . . :

The expression for X1 includes term X�1(t) in order to satisfy non-homogenous
boundary condition (26), where the non-homogeneity is due to the zeroth order
approximation (each of eigen-functions jk(t), ck(t) satisfy homogeneous
boundary condition (20)).
Substituting (27) into (25) givesX

k�1, 3, 5, ...
a1k�l2j ÿ l2k�jk � ÿ2yC0l

2
j cj ÿ p1A0jj ÿ A3

0j
3
j ÿ 3A0C

2
0jjc

2
j ,

X
k�1, 3, 5, ...

b1k�l2j ÿ l2k�ck � ÿ2yA0l
2
j jj ÿ p1C0cj ÿ C3

0c
3
j ÿ 3C0A

2
0cjj

2
j :

Multiplying the ®rst equation by jk and the second one by ck and integrating
with respect to t in domain ÿ1E tE 1 gives

a1k �
ÿ2yC0l

2
j hcjjki ÿ p1A0hjjjki ÿ A3

0hj3
j jki ÿ 3A0C

2
0hjjc

2
j jki

l2j ÿ l2k
,

b1k �
ÿ2yA0l

2
j hjjcki ÿ p1C0hcjcki ÿ C3

0hc3
j cki ÿ 3C0A

2
0hcjj

2
j cki

l2j ÿ l2k
,

�28�

where k 6� j.
If k� j the numerators of expressions (28) must be equal to zero. It gives

algebraic non-linear equations for A0 , B0 of the form

p1A0 � bC0 � f�A0,C0�, bA0 � p1C0 � g�A0,C0�, �29�
where

b � 2yl2j hjjcji � ÿ
2yl2j q���������������
l2j � q2

q ,

f�A0,C0� � ÿhj4
j iA3

0 ÿ 3hc2
j j

2
j iA0C

2
0 � ÿ

3

2
A3

0 ÿ
3

2

l2j � 3q2

l2j � q2
A0C

2
0,

g�A0,C0� � ÿhc4
j iC3

0 ÿ 3hc2
j j

2
j iA2

0C0 � ÿ 3

2
C3

0 ÿ
3

2

l2j � 3q2

l2j � q2
A2

0C0:

Equations (29) indicate that the ®rst order correction to the eigen-value, p1,
depends on both the asymmetry of the impulses location and the non-linearity.
To obtain an explicit form of the dependencies one should add and subtract
equations (29). As a result the equations take the form
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p1 � b� 3

2
A2

0 � C2
0 �

2q2

l2j � q2
A0C0

 !" #
�A0 � C0� � 0,

p1 ÿ b� 3

2
A2

0 � C2
0 ÿ

2q2

l2j � q2
A0C0

 !" #
�A0 ÿ C0� � 0:

�30�

These equations have two non-trivial solutions if the following relations hold
A02C0� 0. It gives two branches for parameter p as

A0 �2C0 � A

p � l2j ÿ e 2
2yl2j q���������������
l2j � q2

q � 3
l2j � 2q2

l2j � q2
A2

0B@
1CA�O�e2�:

�31�

The related periodic solutions are

x � A

���������������
2

q2 � l2j

s
�q cos ljt� lj sin ljt�2e

���
2
p

cos ljt

" #
�O�e�

for lj � j
p
2
, j � 1, 3, 5, . . .

and

x � A

���������������
2

q2 � l2j

s
�lj cos ljtÿ q sin ljt�2e

���
2
p

sin ljt

" #
�O�e�

for lj � jp, j � 1, 2, 3, . . .

where t� t(t; ey), e� e(t; ey).
Expression (31) indicates a branching of curves p� p(q) on a plane of the

system parameters, pq, when a non-zeroth slope (y 6� 0) of the saw-tooth function
appears. The branching generate instability regions on the parameters plane and
strongly affects on the system dynamics.
To justify the above written asymptotic solution both the non-linearity of the

system and the shift of the impulses associated with parameter Y have to be
small enough. Results of the numerical simulations for all domains 0<Y< 1 will
be discussed in section 5.

4. EXACT SOLUTION IN TERMS OF ELLIPTIC FUNCTIONS

Note that between the points of localization of impulses equation (4) takes the
form of a Du�ng oscillator and hence admits a general solution in terms of
special Jacobi functions [21]. The corresponding way of analysis will now be
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illustrated. To simplify derivations assume that Y� 0. In this case the resulting
boundary value problem (after elimination of the impulses from the system)
admits a family of solutions on which Y� 0, and the original co-ordinate
consists of the X-component only, x�X(t). Setting Y� 0 and Y� 0 in equations
(11), (15) and (14), one obtains the reduced boundary value problem as follows

X 00 � pX� eX3 � 0; �X 0 � qX �jt�21 � 0: �32, 33�
The general solution of equation (32) can be written in terms of Jacobi functions
as

X � a cn�ut� vjm�, �34�
where m is the parameter; a, u and v are constants to be de®ned due to the
di�erential equation and boundary conditions.
Substituting equation (34) into equation (32) gives

X 00� pX� eX3 � a cn�ut� vjm�� pÿ n2 � 2mu2 ÿ �a2eÿ 2mu2� cn2�ut� v jm��
� 0:

This expression leads to

p � u2 ÿ ea2, m � ea2

2u2
: �35�

Substituting equation (34) into the boundary condition (33) and combining
the related expressions after a transformation gives

cn�u jm��um sn2�u jm� sn�v jm� cn2�v jm�dn�v jm�

ÿ u dn2�u jm� sn�v jm� dn�v jm� � q cn�v jm�
ÿ qm cn�v jm� sn2�u jm� sn2�v jm�� � 0 �36�

and

sn�u jm�dn�u jm��u dn2�v jm� cn�v jm�
ÿ um cn2�u jm� sn2�v jm� cn�v jm� � q sn�v jm�dn�v jm�
ÿ qmdn�v jm� sn2�u jm� sn3�v jm�� � 0: �37�

Equations (36) and (37) split into the two sets of equations. The ®rst of them
is

cn�u jm� � 0,

u cn�v jm� dn2�v jm� � q sn�v jm�dn�v jm� ÿmq dn�v jm� sn3�v jm� � 0:

In this case one has u� (2n� 1) K(m), n� 0, 1, 2, . . . , where K(m) is a complete
elliptic integral of the ®rst kind. The coef®cient of linear rigidity of the oscillator
is expressed by means of equation (35) as
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p � �2n� 1�2K2�m� ÿ ea2, n � 0, 1, . . .

The second set of equations is

sn�u� � 0

q cn�v jm� ÿ u sn�v jm�dn�v jm� � 0:

This respectively gives u� 2nK(m), n� 1, 2, . . . and

p � 4n2K2�m� ÿ ea2, n � 1, 2, . . .

The reduced boundary value problem (32), (33) can be solved by means of the
asymptotic process of section 3.1. Taking Y� 0 and realizing two steps of the
process give the following expression for the coef®cient of linear rigidity

p � l2j ÿ e32A
2
0 �O�e2� �38�

and the related periodic solutions as

x � A0

���������������
2

q2 � l2j

s
�q cos ljt� lj sin ljt�

" #
�O�e�; lj � j

p
2
, j � 1, 3, 5, . . .

and

x � A0

���������������
2

q2 � l2j

s
�lj cos ljtÿ q sin ljt�

" #
�O�e�; lj � jp, j � 1, 2, 3, . . .

To compare these approximate solutions with the exact solution one should
obtain a relationship between parameters of the two kind of solutions. Equating
the right-hand sides of equations (35) and (38) gives

a2 � 1

e
�u2 ÿ l2j � �

3

2
A2

0:

Figure 3 shows a good enough agreement between the exact and asymptotic
solutions.

5. NUMERICAL ANALYSIS

In this section some numerical results will be presented to illustrate a global
structure of the solutions manifold and location of the periodic regimes on the
manifold. Numerical simulations take much less time after the system has been
represented in an appropriate form by some standard analytical steps.
Expression (5) shows that the positive and negative impulses of the external

parametric force are located at points t�k � 3ÿY� 4k, and tÿk � 1�Y� 4k,
respectively, for any integer k. Introducing notations q2

k instead of 22aq, the
system (4) can be written in a more general form
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�x� p�
Xk�1

k�ÿ1
�q�k d�tÿ t�k � � qÿk d�tÿ tÿk ��

( )
x� ex3 � 0, �39�

where each of the impulses has its own amplitude. Also assume that the

amplitudes q2
k of the impulses do not necessarily depend on the asymmetry

parameter Y as the form of the original equation (4) implies.

6

4

2

0

–2

–4

–6
0 1 2 3 4

t

x

1.0

0.5

0.0

–0.5

–1.0

(a)

(b)

Figure 3. Exact periodic solution in terms of Jacobi's functions (the solid gray line) and asymp-
totic approach (the dashed line). Parameters of calculations have been taken as: e� 0�5, q� 1�3,
p� 1, lj� p, u� 2K(m); (a) A0� 1, (b) A0� 4.
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First, conditions for co-ordinates and velocities at the point t2k will be
obtained. The condition of continuity of the co-ordinate is

x�t2k ÿ 0� � x�t2k � 0� � x�t2k �: �40�
The velocity is a discontinuous function at points {t2k }. To obtain the condition
for ``jumps'' of the velocity one should integrate equations (39) in a domain
t2k ÿ E< t< t2k � E, E> 0 and then take a limit E! 0. It follows from a de®nition
of the Dirac's function that�t2

k
�E

t2
k
ÿE

x�t�d�tÿ t2k � dt � x�t2k �:

Taking this expression and expression (40) into account gives

dx

dt

����
t�t2

k
�0
ÿ dx

dt

����
t�t2

k
ÿ0

 !
� q2

k x�t2k � � 0: �41�

Expressions (40) and (41) completely describe the system in the neighborhoods
of points {t2k }, where the impulses are located. Between the impulses the system
(39) is reduced to

�x� o2
0x� ex3 � 0 �42�

where notation o2
0� p has been introduced.

To avoid numerical calculations between the impulses a simple analytical
approach will be employed. The system will be replaced with an average one.
The averaging will be done in terms of the action and angle variables. To
introduce these variables, take the Hamiltonian function of the system (42) as

H � 1

2
_x2 � o2

0

x2

2
� e

x4

4
, �43�

where x and _x are considered as the Hamiltonian co-ordinates and momenta,
respectively.
The action I and angle j variables can be introduced by means of the

relationships

x �
������
2I

o0

s
cosj, _x � ÿ

����������
2Io0

p
sinj: �44�

Substituting (44) into (43), one obtains

H � Io0 � e
I2

o2
0

cos4 j: �45�

The equations of motion associated with (45) are

_j � @H
@I

, _I � ÿ @H
@j
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or

_I � e
I2

o2
0

sin 2j� 1

2
sin 4j

� �
, _j � o0 � e

I

o2
0

3

4
� cos 2j� 1

4
cos 4j

� �
:

Let D2I and D2j be jumps of variables when passing the kth impulse. As a
result of the impulse action one has transmission: {I, j}! {I�D2I, j�D2j}.
Expressions for D2I and D2j follow from (40) and (41). Taking into account
(44) gives �����������������

I� D2I
p

cos�j� D2j� �
��
I
p

cosj,�����������������
I� D2I

p
sin�j�D2j� �

��
I
p

sinj� q2
k

o0

��
I
p

cosj:

Combining these equations squared gives

D2I � 2I
q2
k

o0
sinj cosj� I

q2
k

o0

� �2

cos2 j: �46�

Multiplying the ®rst equation by sin(j�D2j) and the second one by
cos(j�D2j) and equating the right-hand sides leads to expression

D2j � arctan

q2
k

oo
cos2 j

1� q2
k

o0
sinj cosj

0BB@
1CCA: �47�

Expressions (46) and (47) de®ne the jumps of variables when passing the kth
impulse.
Between the impulses the system considered will be also replaced by an

averaged one. The last step enables one to use a simple enough analytical
approach in terms of trigonometric functions between impulses. As a result, the
problem will be reduced to standard map calculations.
Averaging terms of order e with respect to the fast phase j gives

_I � 0, _j � o0 � e
3I

4o2
0

�48�

and admits a direct analytical integration.
Let I, j and �I; �j, be action and angle variables calculated after an arbitrary

positive impulse and arbitrary negative impulse, respectively (Figure 4). After a
negative impulse one has

�j � j� jdist � Dÿjjj4j�jdist
, �I � I� D�Ijj4j�jdist

, �49�
where

jdist � o0 � e
3I

4o2
0

� �
�2� 2Y�:
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After an arbitrary positive impulse one has

j � �j� �jdist � D�jjj4�j��jdist
, I ��I� D�Ijj4�j��jdist

, �50�
where

�jdist � o0 � e
3I

4o2
0

� �
�2ÿ 2Y�:

Equations (49) and (50) give a complete variation of the action and angle for
one period of external force as following maps: �j� �j(j, I ), �I��I(j, I ) and
j� (�j,�I ), I� I(�j,�I ). Figures 5 and 6 illustrate results of the numerical analysis
of the maps depending on the asymmetry parameter, Y. One should understand
the diagrams as follows. For a certain parameter Y measured along the
horizontal axes, starting from Y� 0, one has a sequence of points along the
vertical axes I showed after each iteration of the mapping, that is after each
circle of the impulsive excitation until the angle variable reaches a certain
magnitude has been chosen as j� 300. Then, parameter Y is increased by a
small step (DY� 0�001) and a new series of iterations is implemented under the
same initial data for I and j. If all iterations of the series appear at the same
point, i.e., the action variable I remains constant, one has a periodic motion of
the amplitude

������������
2I=o0

p
in terms of the original co-ordinate. Several points should

be treated as a modulated multiperiodic regime. The mapping may also produce
an irregular random-like sequence of points along I-axes. In this case, one
should expect a complicated oscillation of a randomly varying amplitude. The
diagrams show that the mapping frequently forms a ``continuous'' family of
curves on the plane Yÿ I. The periodic regimes are associated with ``knots'' of
the diagrams. For instance, Figure 6(c) gives an impression about the knot's
neighborhood. The knot's location on the Y-axes can be approximately detected
if using the linear related system (e� 0). It can be done both directly and by
means of the saw-tooth transformations [16]. Using the present notations, an
equation for Y can be written as

2+2 2–2

t+
k–1 t– 

k
t+

k

{I,   } {I,   }{I,   }

t

Figure 4. A scheme of the action and angle transformation during a single period of the pulsed
excitation.
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Figure 5. Diagram of the solution's structure for the following parameters: |q2
k |� p/2, o0� 2p;

(a) e� 0�5, (b) e� 1�5. Knots of the diagrams indicate a periodicity of solutions for the parameter
of the shift related, Y.
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q2

4
�cos 4o0Yÿ cos 4o0� � cos 4o0 ÿ 1

where q� |q2
k |/o0 .

Figures 5(a, b) show an evolution of the diagram for o0� 2p when the
parameter of non-linearity is growing from e� 0�5 to e� 1�5. Figures 6(a±c)
show the evolution for o0� p. Analyzing the diagrams one can conclude that the
stochastic-like regions are caused by parametric instability. The non-linear cubic
term ®rst of all decreases amplitudes of oscillations.
To this end, one should keep in mind that the diagrams have been obtained by

using an approximate (averaged) model, and this may bring some doubts
regarding extension of the numerical results on the original system. In the linear
case (e� 0), however, the analytical approach becomes exact and hence one can
verify that the basic qualitative features of the diagrams are not produced by
errors of the approximation.

I

0.00

2.00

1.60

1.20

0.80

0.40

0.600.40 0.44 0.48 0.52 0.56

(c)

P

= 1.5

Figure 6. Diagram of the solution's structure for the following parameters: |q2
k |� p/2, o0� p;

(a) e� 0�5, (b) e� 1�5, (c) magnitude portion of the diagram at the neighborhood of periodic
solution for e� 1�5.
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6. CONCLUSIONS

In this paper the non-smooth temporal transformation has been applied to
construct a family of periodic solutions of a weakly non-linear system under the
parametric impulsive excitation. The transformation eliminates singular terms
and reduces in the equation of motion to a standard weakly non-linear boundary
value problem. To solve this problem asymptotic expansions were applied. As a
result explicit form analytical solutions in terms of elementary functions have
been obtained for small asymmetry of the distribution of impulses' sequences,
(the dipole-like shift of each two neighboring impulses). The solutions and
numerical simulations show a principal role of the shifts of the impulses'
sequences. Namely, periodic, multiperiodic and stochastic-like regimes may be
realized if varying the shift parameter. From a point of view of the asymptotic
process, a small shift leads to branching of curves of the periodic solutions on
the parameters plane and hence generates instability regions.
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