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1. INTRODUCTION

The dynamic behavior of structural systems with continuously or
discontinuously varying material properties is of considerable interest in several
areas of applied science and technology [1-3]. The present note deals with the
study of a vibrating rectangular membrane with a discontinuously varying
density distribution (Figure 1).

The problem is solved by expanding the displacement amplitude in terms of a
double Fourier Series which constitutes the exact solution in the case of an
homogeneous membrane. The Rayleigh—Ritz method is then used to generate the
determinantal equation.

2. APPROXIMATE ANALYTICAL SOLUTION

In the case of normal modes the problem is governed by the differential
system

V2W+w2%W:O, W(0D,) = 0, (1a,b)

with
Y V) — plv()??j})eDl) 2
p(x.7) {pz\f(fc,y)eDz—Dl‘ 2)

From the point of view of finding an approximate solution it is convenient to
formulate the problem in terms of the functional

2
J[W:” (W§+W§)dxdy—wp2<y” Wzdxdy+” Wzdxdy>,
D T D Dy—D,

(2)
where

7 =p1/p2, D1 C Dy
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Figure 1. Non-homogeneous rectangular membrane considered in the present study
(u=1u/a=v="u/b).

Introducing the dimensionless variables x = X/a,y = y/b, expression (3)
becomes

02 p?
T

(VJJ w2 dx dy—i—[J w2 dx dy>, 4)
C G -Cy
where 4 = a/b.

The displacement amplitude will now be approximated by a truncated Fourier
series of the form

2J[W) :”C (Wi+2W3)dxdy -

N M
wWeWw, = Zanm sin?sin?. (5)

n=1 m=1

Substituting equation (5) in equation (4) and requiring

oJ

b, (Wa] =0, (6)

one obtains a linear system of equations in the b,,,’s. The non-trivial solution of
the system leads, finally, to the determinantal equation in the eigenvalues of the
problem.
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TABLE 1

Values of the fundamental frequency coefficient Qy = \/p,/T wia as a function of 1, y and
u = v (Figure 1)

y u A=1 A=15 A=2

0-1 4776 4765 475667 6089 6078 606862 7-552 7-541 7-52943
3 02 3897 3:877 3:85974 4967 495 492989 6-161 6:142 6:11907
10 2:899 2-819 2-74548 3:695 3-619 3-53542 4-583 4:501 4-40164
0-1 5235 5-182 516617 6:673 6:624 6-60432 8277 8224 8:19986
3 0-3 3488 3:456 3-44392 4-447 4-417 4-40214 5516 5483 5-46554
10 2279 2211 2-18316 2906 2-839 2-80628 3-604 3-532 3-49159
0-1 596 5809 5-78831 7-598 7-458 7-43036 9-424 9-274 9-23879
3 04 3151 3-123 3:11758 4-017 399 3-98372 4:982 4953 4-9455

10 1904 1-862 1-85357 2:427 2387 237616 3-01 2:966 2:95344

3. NUMERICAL RESULTS

The present investigation deals with the determination of the lower natural
frequencies of symmetric normal modes of the system depicted in Figure 1. For
this configuration # = /a = v = v/b the inner, concentric portion possesses the
same aspect ratio as the outer boundary of the membrane.

The frequency coefficients were determined using the terms: n =1, m =1, 3, 5,
T,mn=3 m=3,57n=5 m=5.

Table 1 depicts values of the fundamental frequency coefficient Q) =
\/p,/T wya for several combinations of values of /, y and u = v when one, two
and eight terms of the approximating function are employed. Table 2 shows the
second frequency coefficient corresponding to a symmetric mode when one and
eight terms of the truncated double Fourier series are used. From the analysis of

TABLE 2
Values of the frequency coefficient Q, = \/p,/T w, a in the case of symmetric modes
(Figure 1)
Y u A=1 A=15 A=2
r— e
W2 Wg W2 Wg W2 WS
0-1 10-62 10-4668 15-471 15-1337  20-411 19-7972
3 0-2 919 9-03024  13-379 13-0143 17-645 17-0086
10 8-464 805261  12:252 11-3749 16-126 14-7275
0-1 11-403  10-9616 16-576 15-5947  21-851 20-1661
3 0-3 8993 8-80481  13-078 12-6817 17-242 16-5803
10 8198 7-15777  11-861 10-1834 15-608 13-2428
0-1 12-422  11-579 17-979 16-1315  23-664  20-6305
3 0-4 8729 8:37533  12:696 12-0911 16:739 15-8351

10 7-:216 5:54573  10-462 7-9857 13777 10-4495
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TABLE 3
Comparison of values of § in the case of a square non-homogeneous membrane

Y u=v Q
Present study Reference [1]
0-1 5:166 517
3 0-3 3-444 3-54
10 2-183 234

Tables 1 and 2 one concludes that the rate of convergence appears to be
satisfactory.

Finally, Table 3 depicts a comparison of fundamental frequency coefficients in
the case of a square, non-homogeneous membrane between the results obtained
in the present investigation and those determined in reference [1], where a single
polynomial expression was used to represent, the fundamental mode shape. The
agreement is excellent in the case of moderate values of y leading to the
conclusion that a simple, polynomial co-ordinate function yields very good
accuracy in the case of a rather complex elastodynamics problem.
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