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NON-STATIONARY PROBLEMS IN DYNAMICS
OF A STRING ON AN ELASTIC FOUNDATION

SUBJECTED TO A MOVING LOAD
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The dynamics of an in®nite string on an elastic foundation subjected to a
moving load is under investigation in this paper. The load is modelled by a
moving concentrated force. Both analytical and numerical methods are used.
Non-stationary problems are analyzed. In particular the wave process caused
by the accelerating load passing through the sonic speed is investigated. It is
shown that the load at the moment when its speed is equal to the critical
velocity gives rise to a wave front travelling at the sonic speed along the string.
The asymptotical solution describing this front for large values of time is
obtained. It allows the investigation of the qualitative properties of the
solution. This solution and the results obtained in the numerical simulation
carried out are in a good agreement.

# 1999 Academic Press

1. INTRODUCTION

The problems of the dynamics of systems with moving loads are usually
considered in the statement: it is assumed that the load moves at a constant
speed and the steady-state solution is sought. There are a lot of studies devoted
to such stationary problems for different kinds of structures under the load and
different kinds of loads [1, 2].
Slepyan [3], and Andrianov and Krisov [4] considered non-stationary wave

processes in elastic waveguides caused by a load moving at a constant velocity.
In reference [4] the limiting process to the stationary regime for the case of
subsonic movement of the load on the string on an elastic bed is investigated. In
some studies an accelerating load is considered, but they consider ®nite
structures so the wave process caused by such a load is not discussed [5±8].
The purpose of this paper is to obtain the solutions of non-stationary

problems describing qualitatively the non-stationary wave processes in an in®nite
mechanical system under a moving load. One of the interesting problems is a
description of the behaviour of an elastic waveguide under a moving load which
is accelerating and passing through the sonic speed. This problem may have
applications in engineering since exceeding the critical velocity of the waveguide
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may take place in real mechanical systems [2]. However, the problems related to
real engineering constructions are very complicated. To consider these problems
one needs to study simple test problems that can be investigated in detail. The
mathematical dif®culties occurring even in this way are quite serious.
In reference [9] the passage through the critical velocity by a load moving at a

constant speed on a string on an elastic foundation with variable (piecewise
constant) parameters is investigated. Kaplunov and Muravskii consider the
passage through the sonic speed by a uniformly accelerating load on a string [10]
and on Timoshenko beam [11], respectively. In these latter papers the passage
through the critical velocity with a small acceleration is studied and the
asymptotes as the acceleration of the load becomes zero found for some special
points moving along the string.
Problems for the simplest type of elastic waveguide, which is a string on

Winckler's elastic foundation (see Figure 1) are considered. The moving load is
modelled by the Dirac function. A method appropriate for the kind of problems
under consideration is suggested. This method allows one to obtain the
asymptotes for large values of time for the solutions. To illustrate the method
the asymptotes for the non-stationary solution for the case when the load moves
at a constant supercritical velocity is obtained. It is useful since real problems
generally include a section where the load moves at constant supercritical
velocity together with a section where the load accelerates. To describe the
dynamical processes in the string for values of time, which are close to the
moment of exceeding the critical velocity a numerical calculation is used. It is
shown that a pronounced wave front rises at the moment the critical velocity is
exceeded. Unlike reference [10] not only is the solution found on the front but
also in a neighbourhood of the front.

2. MATHEMATICAL FORMULATION

The waves in the waveguide under the moving load are governed by the
following equation:

u 00 ÿ 1

c2
�uÿ ku � w�t�d�xÿ l�t��: �1�

The initial conditions are

u�x, t�jt�0 � 0, _u�x, t�jt�0 � 0: �2�

u

x

(t)   (x-l(t))

l(t)

Figure 1. A string on an elastic foundation.
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In the above equation, u(x, t) is the displacement of a point on the string at the
position x at time t; c is the sonic speed; k is the elastic coef®cient of the
foundation; l(t) is the co-ordinate of the load; w�t� is the load intensity, w�t� � 0
for t<0.

The initial value problem is considered: it is assumed that u� 0 if |x| is
suf®ciently large for given t <1.

3. THE GENERAL FORMULA FOR THE SOLUTION

A general formula is obtained which allows one to investigate the solution of
the problem (1)±(2) numerically and in the simplest cases, analytically. Applying
the Fourier transform in the x co-ordinate of equation (1) gives

�uF � c2�o2 � k�uF � ÿc2w�t� eiol�t� �3�
The solution of equation (3) may be expressed as

uF � ÿc
�t
0

w�t� sin c
��������������
o2 � k
p �tÿ t���������������

o2 � k
p eiol�t� dt: �4�

Applying the inverse Fourier transform and changing the order of integration in
the expression obtained gives

u � ÿ c

2p

�t
0

��1
ÿ1

w�t� sin c
��������������
o2 � k
p �tÿ t���������������

o2 � k
p eiol�t� eÿiox do dt �5�

Calculating the internal integral yields

u � ÿ c

2

�t
0

w�t�y cÿ jxÿ l�t�j
tÿ t

� �
J0

���������������������������������������������������
k�c2�tÿ t�2 ÿ �xÿ l�t��2

q� �
dt, �6�

where y(t) is the Heaviside function. Formula (6) is valid for all l(t) and all w�t�.
It was obtained in reference [10] for the case of a uniformly accelerating load.

4. THE MOVEMENT AT A CONSTANT SUPERCRITICAL SPEED

Now consider the simplest example of application of the expression (6). Let
w�t� � y�t�, v�t� � _l�t� � const > c. The notation x � xÿ vt will be used.

The formula (6) gives that u=0 if x > 0, i.e., all waves excited in the string
lag behind the load.

In accordance with equation (6) one ®nds

u � ÿ cy�ÿx�
2

�min t,
jxj
vÿc� �

jxj
c�v

J0

�������������������������������������
k�c2t2 ÿ �vt� x�2

q� �
dt: �7�

If t!1 and x is ®xed then
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u � u� � y�ÿx�������������������
k�1ÿ b2

q
�
sin

�����
k0

p
x, k0 � k

1ÿ b2

���� ����, �8�

where u* is the solution of the following problem:

u� 00 ÿ 1

c2
�u� ÿ ku� � d�xÿ vt�,

u� � u��xÿ vt�,
u� � 0, xÿ vt > 0:

8>>><>>>: �9�

Thus the load radiates running waves.
One can see from equation (7) that the steady-state solution at the position x

in the moving co-ordinate system is formed in the ®nite time |x|/(vÿ c).
The formula (7) does not allow one to visualize clearly the behaviour of the

non-stationary solution if x< t(cÿ v). It is interesting to investigate the solution
for large values of t. Consider the equation

u 00 ÿ 1

c2
�uÿ 2g _uÿ ku � y�t�d�xÿ vt�, �10�

in the moving co-ordinate system (x; t) (in this section ( ) 0� d/dx):

�1ÿ b2�u 00 � 2v

c2
_u 0 ÿ 2g _uÿ 1

c2
�uÿ ku� 2gvu 0 � y�t�d�t�, �11�

where g>0 is the coe�cient of friction. In accordance with the limit absorption
principle add the term ÿ2g _u into equation (10) to be able to apply the Fourier
transform in a classical sense in the x co-ordinate. In order to solve equation
(10) for the case g=0, one can pass to the limit as g! 0:

u�x, t�jg�0 � lim
g!0

ug�x, t�, �12�

where ug satis®es equation (10). Taking the Fourier transform of equation (11)
gives

�uF � 2�iov� c2g� _uF � c2�kÿ �b2 ÿ 1�o2 � 2igvo�uF � ÿc2: �13�
Now consider the stationary solution of equation (13)

u�F �
1

�b2 ÿ 1�o2 ÿ 2igvoÿ k
: �14�

Using the inverse transform and passing to the limit gives the steady-state
solution of equation (10) without friction:

u� � 1

2p�b2 ÿ 1� lime!�0

��1
ÿ1

eÿiox do
o2 ÿ 2ieoÿ k0

: �15�

The Jordan lemma is used to calculate the integral (15):
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��1
ÿ1

F�o� do � lim
R!1

�
�GR�

F�o� do: �16�

Here GR is the closed contour in the upper or lower half-plane of the complex

plane depending on the sign of x (Figure 2). Then the residue theorem is applied.

There are two poles �ô2 � ie2
�����
k0
p � inside of the contour if x<0 and no poles

if x>0. The result is expression (8).

Another method of inversion of u�F is more ef®cient. It will be used for more

complicated cases. Consider its application to the inversion of equation (14) as

an example. One has

u� � 1

4p
��������������������
k�b2 ÿ 1�

q lim
e!�0

��1
ÿ1

eÿiox

oÿ ieÿ �����
k0
p ÿ eÿiox

oÿ ie� �����
k0
p

� �
do: �17�

The formula obtained can be interpreted as a result of the action of distributions

1/(o2
�����
k0
p ÿ i0) on the test function eÿiox. Using Sohotskiy's formulae [12]

1

o3i0
�2ipd�o� � Vp

1

o
, �18�

one obtains

u� � 1

4p
��������������������
k�b2 ÿ 1�

q �
ip�eÿi

����
k0
p

x ÿ ei
����
k0
p

x�

� Vp

��1
ÿ1

eÿi
����
k0
p

x eÿiox do
o

ÿ Vp

��1
ÿ1

ei
����
k0
p

x eÿiox do
o

�
: �19�

In equation (18) Vp 1=o denotes the distribution such that the result of its action

on a test function j�o� is the Cauchy principal value of the integralR
j�o�oÿ1 do.

ˆ –
•

ˆ +
•

Re

R

Im

Figure 2. The contour GR. Ð x< 0; - - -, x> 0.
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Usually Sohotskiy's formulae are proved in supposition that test functions are
in®nitely differentiable functions of compact support. However, the suf®cient
conditions for validity of formulae (18) are quite weaker. In particular one can
prove that Sohotskiy's formulae are valid for suf®ciently smooth test functions
C�o�, such that the integrals

R21
2R C�o�oÿ1 do �R > 0� exist in proper or

improper sense.
Calculating the integral in equation (19) gives expression (8) again. With this

method of inversion one does not need to investigate the behaviour of the
integrand in equation (15) in the whole complex plane but only on the real axis.
Now apply this method to ®nd the non-stationary solution. The solutions of

equation (13) are given by

uF � C� ei�ÿov�
���������
o2�kp �t � Cÿ ei�ÿovÿc

���������
o2�kp �t � u�F

�
X
�2�

C2 ei�ÿov2
���������
o2�k
p

�t � u�F � u�F � uÿF � u�F , �20�

where constants

C2 �
��������������
o2 � k
p

2ov

2
��������������
o2 � k
p �kÿ �b2 ÿ 1�o2� �21�

are found from the initial conditions (2).
Applying the inverse Fourier transform of u2

F and using Sohotskiy's formulae
(18) as before one obtains

u� � uÿ � ÿ sin
�����
k0
p

x

2
������������������
k�bÿ 1�p ÿ S

4p�b2 ÿ 1� , �22�

where

S �
X
�2�

Vp

��1
ÿ1

��������������
o2 � k
p

2ob��������������
o2 � k
p �o2 ÿ k0�

ei�2
���������
o2�kp ÿob�ctÿiox do: �23�

Let x=Wt. To investigate the behaviour of S in the co-ordinate system
moving at a velocity W, search for the principal part of the asymptotic
expansion of S as t!1. The expression (23) can be rewritten as

S �
X
�2�

Vp

��1
ÿ1

��������������
o2 � k
p

2ob��������������
o2 � k
p �o2 ÿ k0�

ei�2c
���������
o2�kp ÿoW�t do: �24�

According to the stationary phase method, if t!1 one can integrate only in
small neighbourhoods (2

�����
k0
p ÿ e; 2

�����
k0
p � e� of singularities. The part omitted

has an order O�tÿ1�. Hence,

S �
X
�2�

Vp

�2
����
k0
p �e

2
����
k0
p ÿe

��������������
o2 � k
p

2ob��������������
o2 � k
p �o2 ÿ k0�

ei�2c
���������
o2�kp ÿoW�t do�O�tÿ1�: �25�
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Since e > 0 is arbitrary small, the integrand in equation (25) can be
approximated in the following way (o=2k0+ d):

S � 1�����
k0
p

X
�2�

2 e3i
����
k0
p

xVp

�e
ÿe

e
i�cgd2 cg

2
���
k0

p �1ÿbÿ2�d2�o�d2��tÿdx�

d� o�d� dd

0@ 1A�O�tÿ1�, �26�

where cg= c2/v is the value of group velocity such that it corresponds to the
value of phase velocity to be equal to the load velocity [3].
Omitting the terms O(d2) one ®nds the approximate expression for u, which is

valid as t!1 for x such that xÿ cgt!1:

u � u� � uÿ � u� ' ÿ sin
�����
k0
p

x

2

��������������������
k�1ÿ b2�

q ÿ eÿi
����
k0
p

x ÿ ei
����
k0
p

x

4p
��������������������
k�1ÿ b2�

q ��e
ÿe

i sin��cgtÿ x�d�
d

dd

� sin
�����
k0
p

x��������������������
k�1ÿ b2�

q y
x

t
ÿ c2

v

� �
y vÿ x

t

� �
: �27�

However, expression (27) does not describe well the behaviour of the solution
if |cgtÿ x|' 0 (in this case the quadratic term of the exponent becomes the
principle one). Keeping this term one can obtain a more precise expression for
the asymptotes:

u � 1

2

��������������������
k�b2 ÿ 1�

q sin
�����
k0

p
x ÿ1� C

k��������
2pm
p
� �

� S
k��������
2pm
p
� �� �

sign k
� ��

ÿ cos
�����
k0

p
x C

k��������
2pm
p
� �

ÿ S
k��������
2pm
p
� �� �

sign k
� �

� 2 sin
�����
k0

p
xy�ÿx��, �28�

where

k � xÿ cgt��
t
p , m � c4�b2 ÿ 1�3=2

2v3
���
k
p , �29�

C�z� �
�z
0

cos
p
2
t2 dt, S�z� �

�z
0

sin
p
2
t2 dt, �30�

(S(z) and C(z) are Fresnel integrals).
Thus, there exist two pronounced wave fronts for large values of t. The ®rst

one is the front under the load travelling at the velocity v. The second one
travels at the velocity cg . In Figure 3 the graph of solution (28) in the
neighbourhood of the second front is presented.
Slepyan [3] obtained similar results by solving this problem with another

method. However, it is believed that his solution is not quite accurate since he
used the asymptotically non-equivalent approximation in certain steps of the
construction for the solution. Having corrected the inaccuracies, a formula is
obtained which concides with equation (28).
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5. THE PASSAGE THROUGH THE CRITICAL VELOCITY

It is interesting to consider the wave process given rise by the load passing
through the critical velocity. Indeed, in the case w(t)= y(t), v(t)= c general
formula (6) yields

u � ÿ

���������������
ctÿ jxj

2
2kjxj

vuuut
J1

��������������������������������
2kjxj ctÿ jxj

2

� �s !
y tÿ jxj

2c

� �
y�ÿx�: �31�

For x!ÿ0

u � ÿ ct

2
� o�1�: �32�

Thus, if the load moves at the critical velocity during a ®nite time interval then
the solution of that problem is discontinuous. The question of interest is what
would happen if the load moving at gradually increasing velocity overcomes
instantly the sound speed.
Numerical calculation of the integral in formula (6) shows that at the moment

t= t0 when the load is moving at the critical velocity the pronounced ``pit''
under the load is beginning to lag behind it (Figure 4). Here x is the co-ordinate
in the co-ordinate system moving together the load; t1ÿ t0>0 is a small time
interval. Later this ``pit'' transforms into a pronounced wave front running at
the critical velocity c. There are intensive oscillations behind the front (Figure 5).
An attempt will be made to describe the evolution of this front for the large
values of t.
Suppose that v(t) varies as follows:

v�t� �
�

at, 0Et < T
aT, teT

: �33�

Since the problem is linear the solution can be represented as a superposition of

–0.5

0.0

0.5

u

c2

v t
x

Figure 3. Non-stationary solution for the case v=const> c; the value of t is large. The
neighbourhood of the second wave front.
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the following two problems. In the ®rst one the load appears at the moment
t=0, moves with constant acceleration a and disappears at t=T. In the second
one the load appears at the moment t=T and moves at the constant supersonic
speed. The second problem was considered above. Consider now the ®rst
problem.

5.1. THE ANALYTICAL SOLUTION

The principal part of asymptotic expansion of u as t!1 will be sought.
Applying the double Fourier transform of equation (1) according to the limit
absorption principle gives:

u � lim
e!�0

1

4p2

��1
ÿ1

��1
ÿ1

F�O, o� eÿi�Ot�ox�
O2 ÿ c2�o2 � k� � 2ieO

dO do, �34�

–2

–4

–6

–8

0

–20 –10 0 10 20

u

Figure 4. The ``pit'' under the load. Ð, t= t0; - - -, t= t1.

2

1

0

–1

–2

–100 –50 0–150

u

Figure 5. Passage through the critical velocity. The solution of the problem for large t.
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where F(O, o) is

F�O, o� � c2
�T
0

ei
at2

2 o�tO
ÿ �

dt � ÿ
c2

���
p
p

ei
p
4 eÿi

O2
2ao erf ei

3p
4
�ato� O���������

2ao
p

� �
���������
2ao
p

����t�T
t�0

, �35�

erf�z� � 2���
p
p
�z
0

eÿt
2

dt: �36�

The integral representation (34) will be used to ®nd the asymptotes. The main

dif®culty is the suf®ciently complicated behaviour of the function F(O, o). The
basic idea of our method is the following. It is known that a load moving

uniformly at velocity v> c radiates waves with phase velocity equal to the load

velocity. It suggests that the wave packet radiated at the moment of overcoming

the critical velocity involves the waves with phase velocities aproximately equal

to c (and to be greater than c). The values of frequencies 2O �3co as o!1
correspond to these values of phase velocity. Therefore, it is hoped that the

integral (34) as t!1 is determined by values of the integrand in the domain

where 2O �3co, o!1. But for these values O, o one can easily calculate

the asymptotes of F(O, o) and use it instead of the exact expression. Keeping

this idea in mind proceed to the exact formulae.

Let x=x0+Wt. The parameter W determines the velocity of a moving co-

ordinate system in terms of which the solution will be investigated.

Further one needs to know the behaviour of F(O, o) for large O, o. One can

investigate it making use of the stationary phase method. It is easy ®nd F to

vanish in in®nity in plane �O; o� as hÿ1=2 at the worst, where h �
�����������������
O2 � o2

p
.

It may be shown that the integral (34) exists in a Lebesgue's sense if e 6� 0 and

the external integral in equation (34) converges uniformly in t and e. In order to

transform the limit of the internal integral value to an integral in the sense of a

Cauchy principal value, use Sohotskiy's formulae (18) again:

u � lim
e!�0

1

4p2

��1
ÿ1

��1
ÿ1

F�O, o� eÿi�Ot�o�x0�Wt��

�Oÿ c
��������������
o2 � k
p ÿ ie��O� c

��������������
o2 � k
p ÿ ie� dO do

� 1

8p2c

��1
ÿ1

eÿio�x0�Wt���������������
o2 � k
p

X
�2�

2�e2ict
���������
o2�kp
�piF�3

��������������
o2 � k

p
, o� ÿ F�o, t��� do,

�37�
where

F�o, t� � Vp

��1
ÿ1

F�3c
��������������
o2 � k
p � O, o� eÿiOt

O
dO: �38�

The asymptotes of the kind of integrals similar to integral (38) is considered in

reference [13]. It can be calculated by the stationary phase method. Now rewrite

(38) as follows:
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F�o, t� � Vp

��1
ÿ1
�Z�O� � �1ÿ Z�O��F�3

��������������
o2 � k
p � O, o� eÿiOt

O
dO � I1 � I2,

�39�
where Z(O) is an in®nitely differentiable function, the support for which lies in a
small neighbourhood of zero. Taking into account the asymptotical and
differential properties of F one ®nds that I2 � O�tÿ1�. The integral I1 may be
calculated by integration on a small neighbourhood of zero in which the
integrands can be replaced by its approximations. The calculation yields

F�o, t� � ÿipF�3c
��������������
o2 � k

p
, o� �O�tÿ1�, t!1: �40�

The result is

u � i

4pc

X
�2�

2
��1
ÿ1

eÿiox0 ei�ÿoW2c
���������
o2�kp �tF�3c

��������������
o2 � k
p

, o���������������
o2 � k
p do

 !
�O�tÿ1�:

�41�

The asymptotes of the solution in a neighbourhood of the wave front under
consideration will be obtained from this solution.

5.2. THE ASYMPTOTES OF THE SOLUTION BEHIND THE WAVE FRONT

For the kind of integrals as follows

I�t� �
�b
a

f�o� eij�o�t do, �42�

in the case when f (o) and j(o) are suf®ciently smooth functions and j(o) has
one and only one stationary point o� in the integration interval, for t!+1 the
asymptotical formula [13]

I � eij�o�� ei
p
4 signj

0 0�o��
��������������������

2p
jj 0 0�o��jt

s
f �o�� �O�tÿ1� �43�

is right.
Let x0=ÿc2/(2a). For this choice x0 in the case W= c the origin of the

moving co-ordinate system and the wave front under consideration are moving
together. Denote

f2�o� �2
ieÿiox0F�3c

��������������
o2 � k
p

, o�
4pc

��������������
o2 � k
p , �44�

j2�o� � ÿoW2c
��������������
o2 � k

p
: �45�
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Let |W|< c, i.e., the moving co-ordinate system under consideration lags
behind the wave front. In this case in both of the two integrals in equation (41)
the phases j2�o� have single stationary points 2o�:

o� �W

�����������������
k

c2 ÿW2

r
: �46�

Applying formula (43) to (41) results in (the contributions from the ends of
integration interval 21 have the asymptotic order O�tÿ1�, thus one can obtain
more precise estimation than in equation (43))

u �
X
�2�

��1
ÿ1

f2�o� eij2�o�t do

�
X
�2�

eij2�2o�� ei
p
4 signj

00
2�2o��

�������������������������
2p

jj 00
2�2o��jt

s
f2�o�� �O�tÿ3=2�: �47�

Using formula (47) and making the hard calculation one can ®nd the
following expression for the principal term of the asymptotes for u:

u � ÿ c��������������
2Wakt
p cos

�����������������������
k�c2 ÿW2�

q
tÿ c2

2aW

� �
� p

4

� �
S

ato� ÿ c
��������������
o2� � k

p�����������
pao�
p

 ! 

�sin
�����������������������
k�c2 ÿW2�

q
tÿ c2

2aW

� �
� p

4

� �
C

ato� ÿ c
��������������
o2� � k

p�����������
pao�
p

 !!�����
t�T

t�0
�O�tÿ3=2�:

�48�
Choosing W' c one obtains the solution in a small neighbourhood of the wave
front. In this case formula (48) reduced to

u ' ÿ c������������
Wakt
p cos

������������������������
k�c2 ÿW 2�

q
tÿ c

2a

� �� �
: �49�

Formula (49) can be easily obtained directly proceeding from (41). One can
®nd that o� ' �1 if W ' c, W< c. On calculating the asymptotes of u one can
use the asymptotes of F�3c

��������������
o2� � k

p
, 2o�� as o�!+1 instead of the exact

formula for it. Now

F�3c
��������������
o2� � k

q
, 2o�� � c2

�T
0

e2i at2

2 o�ÿct
���������
o2��k
pÿ �

dt

� c2
�T
0

e2i at2

2 ÿct
ÿ �

o� e2ict�o�ÿ
���������
o2��k
p

� dt: �50�

In this case a direct application of formula (43) to calculate the asymptotes of
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the function F�3c
��������������
o2� � k

p
, 2o�� is not possible because one has an integrand

of a more common kind than in equation (43). However, the asymptotes can still
be calculated. To do this take notice of o� ÿ

��������������
o2� � k

p
4 0 as o�4�1. The

function e2ict�o�ÿ
���������
o2��k
p

� can be expanded in a convergent series of negative
powers of o� . Changing the order of integration and summation one obtains the
series of integrals each of them has one and only one stationary point t� � c=aÐ
the moment of time in which the load passes through the critical velocity. Now
one can apply the formula (43) for each integral. After this the series is summed

F�3c
��������������
o2� � k

q
, 2o�� � c2

�T
0

e2i at2

2 ÿct
ÿ �

o�
X1
k�0

ck�t�oÿk� dt

�
X1
k�0

c2oÿk�

�T
0

e2i at2

2 ÿct
ÿ �

o�ck�t� dt

� c2

�����������
2p
jo�ja

s
eÿi

c2

2a o� ei�3
���������
o2��k
p

�o��c2a e2ip4

�O�ei�3
���������
o2��k
p

�o��c2aoÿ1� �: �51�
The asymptotic expansion obtained should be interpreted as an asymptotic
expansion in asymptotic scale hk � ei�3

���������
o2��k
p

�o��c2=aoÿk� . Substituting equation
(51) into equation (44), and equation (44) and (45) into equation (47) one gets
formula (49).
In order to ®nd the value of u(z, t) in the moving together with the wave front

co-ordinate system one needs to substitute W= c+ z/t into equation (48) (or
into equation (49)). For z=0 this yields

ujz�0 � ÿ
�������
c

akt

r
�O�tÿ3=2�: �52�

Formula (52) is in a good agreement with the results obtained in reference [10].

5.3. THE ASYMPTOTICS OF THE SOLUTION BEFORE THE WAVE FRONT

For |W|>c the integrals in equation (41) have no stationary points, so
u � O�tÿ1� because the integrands are smooth functions and contributions from
the ends of integration interval have the asymptotic order O�tÿ1�. This result is
easy to understand: choosing |W|> c the behaviour of the solution in the co-
ordinate system moving at a velocity greater than c is investigated. Hence, u will
be equal to zero in ®nite time at any point of this co-ordinate system because u is
not equal to zero only for x 2 �ÿct; ct�.
The question of interest is does a right neighbourhood exist in which u�z, t�

has the asymptotic order O�tÿ1=2� (this is order of u in a left neighbourhood).
Put W= c and x0=ÿ c2/(2a)+D(t) in equation (41) (the analysis before
corresponds to the case D(t)= (Wÿ c)t). Let D(t)= dta, d> 0. To answer this
question ®nd the maximal a= a0 such that the value of u calculated from
equation (41) has the order O�tÿ1=2� for small d. After respective calculations
(the asymptotes of such integrals are consdered in reference [14]) one can ®nd
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that a0=ÿ1. This means that the neighbourhood required exists and its size
decreases as O�tÿ1�.
So let D(t)= d/t. For W= c the stationary points of the integrals in equation

(41) are 21 and the value of u is asymptotically determined by the behaviour
of integrands in equation (41) in the neighbourhoods of 21. Based on this
one can replace the integrands by an approximate one. In addition one can
integrate on arbitrary neighbourhoods (2R; 21) (for F�3c

��������������
o2 � k
p

, o� using
asymptotical estimation (51)):

u � ic

2
��������
2pa
p

X
�2�

�21

2R

ei 2p
4ÿoDÿ k

2ot� ����������
2o
p joj�1�O�oÿ1�� do

 !
� o�tÿ1=2�: �53�

One can transform formula (53) changing the variable as follows:
o � tÿ1t�ck=2d�1=2, and taking into account that t!1:

u � ÿ c3=4d1=4

�2k�1=4�pat�1=2
��1
0

sin

��������
dck
2

r
�tÿ tÿ1� � p

4

 !
tÿ1=2 dt� o�tÿ1=2�: �54�

After the calculation of the integral in equation (54) one gets

u � ÿ
�������
c

akt

r
eÿ
�������
2ckd
p

� o�tÿ1=2�: �55�

One can take notice that both asymptotes obtained ((49) and (55)) have equal
values on the wave front so that the string does not lose the continuity.

5.4. COMPARISON OF ANALYTICAL AND NUMERICAL RESULTS

It is possible to investigate the dynamical processes in the string by the
numerical calculation of the integral in formula (6). All numerical results listed
further were obtained using the following values of problem parameters: c=1,
k=0�1, a=0�01, T=150. In all ®gures cited below the solid line corresponds
to the numerical solution and the dashed line corresponds to the analytical
solution.
In Figure 6 the string displacement on the front is shown (the analytical

solution is given by formula (52)). The numerical solution oscillates in the
neighbourhood of the analytical one, and its oscillations decrease with time.
In Figure 7 the displacements of points on the string in a small neighbourhood

of the wave front are displayed for t=400 (z is the co-ordinate in the co-
ordinate system moving together with the wave front under consideration). Here
the analytical solution is given by formulae (49) and (55) to the left and to the
right of the wave front, respectively.
In Figure 8 the displacements of points on the string behind the wave front

are shown (t=900). The analytical solution is given by equation (48).
The graphs presented show the asymptotical solution obtained to describe well

the dynamical processes in the string and to allow one to see clearly the principle
qualitative properties of the problem solutions.
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6. CONCLUSION

The analytical and numerical investigations carried out allow one to describe
qualitatively the behaviour of the string under the action of the moving load
passing through the sound speed.
On the time interval where the load moves with acceleration, when the velocity

of the load is less than the critical velocity there is a ``pit'' on the string. The
de¯ection of the string vanishes rapidly in moving away from the load. The
graph of de¯ection of the string is qualitatively similar to the graph of the
stationary solution for the case of subsonic speed. Starting from the moment t0,
when the velocity of the load passes through the critical value c this ``pit'' begins
to lag behind the load (Figure 4), moving at the velocity c. Intensive oscillations
begin behind the load whereas before the load the solution vanishes
exponentially in the space co-ordinate after a long time. Thus, some time after t0,
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Figure 6. The displacements of the string on the wave front.
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Figure 7. The displacements of the string in a neighbourhood of the wave front.
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the pronounced wave front on the string running at the velocity c is formed. The
value of displacement of the point on the front decreases as O�tÿ1=2�. It is as
large as the acceleration of the load is small at the moment of passing through
the critical velocity (52).
It should be noted that the method presented in this paper allows one to

consider the problem with the load moving with non-constant acceleration. In
this case one needs to make harder calculations. However, the result will be the
same in essence, since the asymptotes (49) and (55) are determined only by the
contribution from the moment t0 of passing the critical velocity. It is only
signi®cant that �l�t0� 6� 0. It is quite possible to obtain the formulae analogous to
equations (49) and (55). It is important that the value of de¯ection on the front
will be expressed by formula (52), where a � �l�t0�. If one considers a degenerate
case ��l�t0� � 0� one ®nds the principal term of the asymptotes to vanish more
slowly than tÿ1=2 as t!1.
It is easy to analyze the solution of the aggregate problem that also includes

the section where the load is moving at a supersonic speed. As it has been shown
before for t>T the approximate solution of the second problem is given by
formula (27) (where one needs to substitute tÿT instead of t). Hence, after some
time, the wave front generated on the ®rst section of movement outruns the back
front of the sine-shaped quasi-stationary wave described by equation (27).
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