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NATURAL FREQUENCIES OF A BEAM WITH
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In this article a new technique is proposed for calculating natural frequencies
of a vibrating beam with an arbitrary ®nite number of transverse open cracks.
The main feature of this method is related to decreasing the dimension of the
matrix involved in the calculation, so that reduced computation time is
required for evaluating natural frequencies compared to alternative methods
which also make use of a continuous model of the beam.
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1. INTRODUCTION

During the last decade, the use of vibration based inspection has been a topic of
active research. Several authors have proposed techniques to estimate the effects
of damage on the eigenparameters on the structure under study (usually known
as the direct problem), while others have dealt with the problem of detecting,
locating and quantifying the extent of damage (known as the inverse problem).
An extended literature review of these methods can be found in reference [1],
while Dimarogonas [2] presents a state of the art review of methods developed to
deal with cracked structures.
In order to investigate the prevailing effects of damage present in the structure

under examination, several studies introduced damage into the mathematical
model through a simple reduction of the stiffness on a given zone of the
structure [1±4].
To investigate the variation in dynamic properties due to the presence of real

damage, in several papers the evaluation of changes in natural frequencies of a
simple cantilever beam due to the presence of one or, at most, two cracks is
addressed [5±15]. Moreover, in the same papers, the method for calculating the
shift in natural frequencies is also often proposed in order to address the inverse
problem.
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The evaluation of changes in eigenfrequencies due to the presence of cracks,

notches and other geometrical discontinuities was developed by Gudmunson [16]

using a theory based on a ®rst-order perturbation. Christides and Barr [17]

developed a cracked Euler±Bernoulli beam theory by deriving the differential

equation and related boundary conditions for a uniform beam with one or more

pairs of symmetric cracks.

To deal with the effects of cracks on the eigenparameters, in some articles the

beam was subdivided into several beams, separated from one another by a crack,

which was represented through a massless rotational spring [5±12]. Usually, the

well-known general solution for the eigenfunctions of every beam in ¯exural

motion was used, such that a linear system of algebraic equations was obtained

by applying both end conditions and conditions related to the presence of the

massless springs. Finally, it was possible to evaluate natural frequencies simply

by ®nding roots of the determinant of the coef®cient matrix of the linear system.

Clearly a determinant search is time consuming, but if a continuous model is

involved in the solution procedure a determinant search will be the best method

of choice.

The general solution for the eigenfunctions of every beam contains four

unknown constants. In this way the extension of the approach developed in

reference [5] leads to a system of (4n+4) equations in the case of n cracks.

Anyway, it should be noted that to construct the linear system by using the

method proposed in reference [5] for a general case of n cracks is not a simple

task. This is the main reason for which cases of just one crack [5] and two cracks

[6] were considered in detail, without attempting to provide a solution for a

more general situation. Furthermore, an approximate asymptotical approach for

calculating eigenfrequencies was proposed in references [9±12].

Another way for evaluating natural frequencies of a cracked beam is based on

the use of the ®nite element method [13±20]. By using this approximation

technique it is possible to evaluate the dynamic properties of a cracked beam for

an arbitrary number of cracks; also this method leads to a system of linear

equations and to determinants with high order. Moreover, it should be recalled

that theoretically a ®nite element model of a beam is less accurate than a

continuous model.

In this paper a new method for evaluating natural frequencies of a beam with

an arbitrary number of cracks is presented. This method is based on the use of

massless rotational springs in order to represent the cracks and, as a main

feature, leads to a system of (n� 2) linear equations for a beam with n cracks.

As a consequence, due to the decrease in the determinant order in comparison

with previously developed procedures, it is possible to reduce considerably

the computer time needed to calculate the natural frequencies. This aspect is of

a great importance from the inverse problem point of view, particularly if

damage is located and quanti®ed by using optimisation techniques, as in

references [21±26].
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2. CALCULATION OF THE NATURAL FREQUENCIES

A beam with length l and with n cracks is considered. It is assumed that the
cracks are located at points x1, x2 . . .xn such that 0< x1< x2< . . . < xn< l.
Amplitudes of transverse displacement of the beam axis under time-harmonic
vibration are denoted by yj(x) on the interval xjÿ1< x< xj , where j=1,
2, . . . , n� 1, x0=0 and xn+1= l.
According to the approach proposed in reference [5], it is possible to divide

the entire beam into (n� 1) beams connected by massless springs representing
the n cracks. As a sequence, the equation of harmonic transverse oscillations of
each beam, assumed with uniform cross-section, is:

EIy
0 0 0 0
j �x� � o2rSyj�x� j � 1, . . . , n� 1, xjÿ1 < x < xj , �1�

where E is the Young's modulus, I is the moment of inertia of the cross-section,
r is the material density, S is the cross-sectional area of the beam, o is a natural
circular frequency.
It is possible to introduce for each connection between two beams conditions

which impose continuity for displacement, bending moment and shear,
respectively; moreover, a last equation introduces a discontinuity into the
rotation of the beam axis, by imposing equilibrium between transmitted bending
moment and rotation of the spring representing the crack [5].

yj�xj� � yj�1�xj�,

y
0 0
j �xj� � y

0 0
j�1�xj�,

y
0 0 0
j �xj� � y

0 0 0
j�1�xj�,

y
0
j�1�xj� ÿ y

0
j �xj� � Dj � cjy

0 0
j �xj� j � 1, 2, . . . , n, �2�

where cj are the ¯exibilities of the rotational springs which are functions of the
crack extent and beam width. According to reference [5], cj for one-sided cracks
can be expressed as:

cj � 5�346 � h � f �xj�, �3�
where h is the height of the cross-section of the beam, xj= aj/h, where aj is the
depth of the jth crack and

f �x� � 1�8624x2 ÿ 3�95x3 � 16�375x4 ÿ 37�226x5 � 76�81x6

ÿ 126�9x7 � 172x8 ÿ 143�97x9 � 66�56x10:
The case of two-sided cracks can be considered similarly.
The amplitude of displacement yj (x) can be collected into the function y(x) as

follows:

y�x� � yj �x� j � 1, . . . , n� 1, xjÿ1 < x < xj ,

such that y(x) allows one to refer to the displacements of the entire beam axis.
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Equations (1) with conditions (2) can be expressed through function y(x) as
follows:

y
0 0 0 0 �x� � l4y�x� �

Xn
j�1

Djd
0 0 �xÿ xj�, �4�

in which d(x) is Dirac's delta function and l4=o2rS/(EI ). d 0 0(x) appears in
equation (4) due to the discontinuity in the ®rst derivative of y(x) at the cracks,
as expressed in (2).
Furthermore, y(x) is not a smooth function on the interval [0, l ] at x=xj. It is

possible to introduce a smooth function y0(x) such as:

y�x� � y0�x� �
Xn
j�1

Dj

2
jxÿ xj j: �5�

By introducing equation (5) into equation (4), and recalling that:

d
0 0 �xÿ xj� � 1

2 �j xÿ xj j�
0 0 0 0

,

the following equation holds:

y
0 0 0 0
0 �x� � l4y0�x� � l4

2

Xn
j�1

Dj jxÿ xj j : �6�

The general solution of equation (6) can be written in the following way:

y0�x� �A cos�lx� � B sin�lx� � C cosh�lx� �D sinh�lx�

� l
4

Xn
j�1

Dj

�x
0

�sinh�l�xÿ s�� ÿ sin�l�xÿ s���jsÿ xj j ds, �7�

where A, B, C and D are constants. By differentiating the previous function
twice it is possible to obtain the expression for y

0 0
0 �x� at the cracks positions xi:

y
0 0
0 �xi� � ÿ Al2 cos�lxi� ÿ Bl2 sin�lxi� � Cl2 cosh�lxi�

�Dl2 sinh�lxi� � l3

4

Xn
j�1

Dj Mij�l�, �8�

where

Mij�l� �
�xi
0

�sinh�l�xi ÿ s�� � sin�l�xi ÿ s���jsÿ xj j ds: �9�

Using equations (8), (9) and the property that

lim
x4xi

y
0 0 �x� � y

0 0
0 �xi� i � 1, 2, . . . , n, �10�

the last of conditions (2) can be expressed as:
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Di � ÿ Acil
2 cos�lxi� ÿ Bci l

2 sin�lxi� � Cci l
2 cosh�lxi�

�Dci l
2 sinh�lxi� � ci l

3

4

Xn
j�1

Dj Mij�l� i � 1, 2, . . . , n: �11�

It is necessary to highlight that equations (11) are valid for all kinds of end
conditions of the beam under analysis. Furthermore, equations (11) are a system
of n linear equations with (n� 4) unknowns (constants A, B, C, D and Di). In
order to solve the system it is necessary to introduce four other equations, which
are simply obtained by taking into account the end conditions for the beam
under analysis. Even though here a cantilever beam is considered, other kinds of
end conditions can be analysed similarly.
It is well-known that for a clamped±free beam the end conditions are as

follows:

y�0� � y
0 �0� � 0, y

0 0 �l � � y
0 0 0 �l � � 0:

Because of y
0 0
0 �l � � y

0 0
0 �l � and y

0 0 0 �l � � y
0 0 0
0 �l �, boundary conditions at x= l can

be written simply as y
0 0
0 �l � � y

0 0 0
0 �l � � 0. Calculating y

0 0
0 �l � and y

0 0 0
0 �l � from

equation (7) and taking into account the end conditions, after some reductions it
is possible to obtain:

ÿA cos�ll� ÿ B sin�ll� � C cosh�ll� �D sinh�ll� � l
4

Xn
j�1

Dj Fj�l� � 0, �12�

A sin�ll� ÿ B cos�ll� � C sinh�ll� �D cosh�ll� � l
4

Xn
j�1

Dj Gj�l� � 0, �13�

where

Fj�l� �
�l
0

�sinh�l�lÿ s�� � sin�l�lÿ s���jsÿ xj j ds, �14�

Gj�l� �
�l
0

�cosh�l�lÿ s�� � cos�l�lÿ s���jsÿ xj j ds: �15�

In order to write the equations related to the conditions at the clamped end, it
is possible to write y(x) from equations (5) and (7) as:

y�x� �A cos�lx� � B sin�lx� � C cosh�lx� �D sinh�lx�

� l
4

Xn
j�1

Dj

�x
0

�sinh�l�xÿ s�� ÿ sin�l�xÿ s���jsÿ xj j ds�
Xn
j�1

Dj

2
jxÿ xj j ,

�16�
such as the end condition y(0)=0 becomes
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A� C� 1

2

Xn
j�1

Dj xj � 0, �17�

while y 0(0)=0 is

lB� lDÿ 1

2

Xn
j�1

Dj � 0: �18�

Boundary conditions (12), (13), (17) and (18) allow the system of equations
(11) to be completed, such that there are (n+4) linear equations with (n+4)
unknowns. Moreover, the system can be written as:

�M�l��fXg � f0g:
Non-trivial solutions can be obtained by determining values of l for which the
determinant of matrix [M(l)] vanishes; these values correspond to the
eigenfrequencies of the cracked beam. As a consequence, it is evident that by
dealing with a matrix with (n+4) rows and columns instead of (4n+4) as
follows from the extension of the method proposed in reference [5], this
procedure will be extremely useful, particularly if used to solve an inverse
problem which takes advantage of advanced optimisation techniques, e.g.,
genetic algorithms and simulated annealing.
The system given by the equations previously listed can be simpli®ed further

by expressing the constants C and D via A and B, and Dj by using equations (17)
and (18) and introducing these expressions in equations (11)±(13):

�cos�ll� � cosh�ll��A� �sin�ll� � sinh�ll��B

ÿ 1

4

Xn
j�1

lFj�l� � 2

l
sinh�ll� ÿ 2xj cosh�ll�

� �
Dj � 0, �19�

�sin�ll� ÿ sinh�ll��Aÿ �cos�ll� � cosh�ll��B

� 1

4

Xn
j�1

lGj�l� � 2

l
cosh�ll� ÿ 2xj sinh�ll�

� �
Dj � 0, �20�

cil
2�cos�lxi� � cosh�lxi��A� ci l

2�sin�lxi� � sinh�lxi��B

�
Xn
j�1

dij ÿ ci l
3

4
Mij�l� � ci l

2

2
cosh�lxi�xj ÿ ci l

2
sinh�lxi�

� �
Dj � 0, �21�

where

dij � 1, i � j,
0, i 6� j:

�
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By introducing the analytical expression for Mij (l), Fj (l) and Gj (l), which can
be found in the Appendix, into the previous n+2 equations (19)±(21), it is
possible to simplify the system as follows:

�cos�ll� � cosh�ll��A� �sin�ll� � sinh�ll��B

� 1

4

Xn
j�1

�
xj�cos�ll� � cosh�ll�� ÿ 1

l
�sin�ll� � sinh�ll� � 2 sinh�l�lÿ xj��

ÿ 2 sin�l�lÿ xj���
�
Dj � 0, �22�

�sin�ll� ÿ sinh�ll��Aÿ �cos�ll� � cosh�ll��B

� 1

4

Xn
j�1

�
xj�sin�ll� ÿ sinh�ll�� � 1

l
�cos�ll� � cosh�ll� � 2 cosh�l�lÿ xj��

ÿ 2 cos�l�lÿ xj���
�
Dj � 0, �23�

ci l
2�cos�lxi� � cosh�lxi��A� ci l

2�sin�lxi� � sinh�lxi��B

�
Xn
j�1
�dij � ci Rij�l��Dj � 0, i � 1, . . . , n, �24�

where

Rij�l� � l2xj
4
�cos�lxi� � cosh�lxi�� ÿ l

4
�sin�lxi� � sinh�lxi��, when iEj,

Rij�l� � l2xj
4
�cos�lxi� � cosh�lxi�� ÿ l

4
�sin�lxi� � sinh�lxi��

ÿ l
2
�sinh�l�xi ÿ xj�� ÿ sin�l�xi ÿ xj���, when iEj:

The value of the determinant of a matrix does not change by adding to some
column a linear combination of other columns, such that the determinant of the
system of linear equations (22)±(24) is equal to the determinant of the following
matrix [U(l)]:
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U1,1�l� � cos�ll� � cosh�ll�,
U1,2�l� � sin�ll� � sinh�ll�,

U1, j�2�l� � 1

2l
�sin�l�lÿ xj�� ÿ sinh�l�lÿ xj���,

U2,1�l� � sin�ll� ÿ sinh�ll�,
U2,2�l� � ÿ cos�ll� ÿ cosh�ll�,

U2, j�2�l� � 1

2l
�cosh�l�lÿ xj�� ÿ cos�l�lÿ xj���,

Ui�2,1�l� � cil
2�cos�lxi� � cosh�lxi��,

Ui�2,2�l� � cil
2�sin�lxi� � sinh�lxi��,

Ui�2, j�2�l� �
0

cil
2
�sin�l�xi ÿ xj�� ÿ sinh�l�xi ÿ xj���

1

i < j, i, j � 1, . . . , n,

i > j,

i � j:

8>><>>:
Natural frequencies of the cracked beam can be evaluated by solving the non-
linear equation

det��U�l��� � 0

and recalling that it has been assumed that

o � l2
������
EI

rS

s
:

3. NUMERICAL RESULTS

In order to validate the procedure proposed in this article, results obtained
according to this method are compared with available results for beams with one
and two cracks.
The evaluation of natural frequencies reduction for a cantilever beam with a

crack at the clamped end was addressed by Chondros and Dimarogonas [8].
Using the method proposed in this article it is possible to deal with the problem
addressed in reference [8] by locating the crack very close to the clamped end of
the beam. In Figure 1 the normalised stiffness of the spring representing the crack
(l/c1) is plotted versus the reduction in the ®rst two natural frequencies, oi/o0i

where oi and o0i are natural circular frequencies of the cracked and uncracked
beam, respectively. Results obtained in reference [8] are shown, demonstrating a
good agreement with that obtained by using the procedure proposed in this
article.
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The calculation of natural frequencies for a beam with two cracks was dealt
with by Ruotolo et al. in reference [7]. The beam under analysis has the
following properties: length l=0�8 m, rectangular cross-section with width
b=0�02 m and height h=0�02 m, a ®rst crack with position x1=0�12 m and
depth a1=2 mm, a second crack with variable position from the clamped to the
free end and a depth of 2, 4 and 6 mm. The ratio between the ®rst three natural
frequencies of cracked and uncracked beam is shown in Figures 2±4. It is
possible to observe that the results are quite close to those published in reference
[7] and obtained by using the so-called ``continuous model''.
Figures 5±7 show the effect of the third crack upon the ®rst three natural

frequencies of the cantilever beam with length l=0�8 m and rectangular cross-
section with width b=0�02 m and height h=0�02 m. It is assumed that:
a1=6 mm, x1=0�04 m, a2=4 mm and x2=0�08 m. The position of the third
crack ranges from 0�1 to 0�8 m, and extents of 2, 4 and 6 mm are considered.
In order to show that the reduction in the size of the determinant involved in

the natural frequency evaluation has the effect of reducing calculation times with
respect to the procedures proposed in references [5] and [6], some comparisons
are carried out. The cantilever beam under analysis has the following properties:
length l=0�8 m, rectangular cross-section with width b=0�02 m and height
h=0�02 m, Young's modulus E=2�16 1011 N/m2, material density
r=7800 kg/m3. Results of a ®rst comparison of calculation times related to a
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Figure 1. Effect of a single crack at clamped end on the ®rst two natural frequencies (Ð, o1/
o01; ± � ±, o2/o02; *, reference [8]).
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Figure 2. Effect of the second crack on the ®rst natural frequency (Ð, a2/h=0�1, ± ±, a2/
h=0�2; ± � ±, a2/h=0�3; *, reference [7]).
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Figure 3. Effect of the second crack on the second natural frequency (Ð, a2/h=0�1, ± ±, a2/
h=0�2; ± � ±, a2/h=0�3; *, reference [7]).
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Figure 4. Effect of the second crack on the third natural frequency (Ð, a2/h=0�1, ± ±, a2/
h=0�2; ± � ±, a2/h=0�3; *, reference [7]).
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Figure 5. Effect of the third crack on the ®rst natural frequency (Ð, a3/h=0�1, ± ±, a3/h 0�2;
± � ±, a3/h=0�3).
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Figure 6. Effect of the third crack on the second natural frequency (Ð, a3/h=0�1, ± ±, a3/
h=0�2; ± � ±, a3/h=0�3).
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Figure 7. Effect of the third crack on the third natural frequency (Ð, a3/h=0�1, ± ±, a3/
h=0�2; ± � ±, a3/h=0�3).
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single crack with depth a1=2 mm and located at x1=0�12 m from the clamped
end, are shown in Table 1. A similar comparison is performed also for the
previous beam with two cracks: the ®rst with depth a1=2 mm and located at
x1=0�12 m and the second with depth a2=3 mm and position x2=0�4 m.
Related results are shown in Table 2.
Both calculations are performed for the ®rst three natural frequencies,

moreover roots of the non-linear equation

det��U�l��� � 0

were obtained by using the Matlab function fzero(�), which requires a starting
point indicated in the tables.

4. CONCLUSIONS

In this paper, as in references [5] and [6], natural frequencies of a cracked
beam are evaluated by representing cracks as massless springs and using a
continuous mathematical model of the beam in transverse vibration. Utilising
this approach, it is possible to write a determinantal equation whose roots are
the eigenfrequencies of the beam.
This article demonstrates mathematically that the determinantal equation can

be written in a very simple way for any number of cracks. In particular, it is
shown that just (n+2) equations are suf®cient to solve the problem for a beam
with n cracks, while by extending the procedure proposed in references [5] and
[6] to the case of several cracks, (4n+4) equations are required.
Therefore, a key feature of the procedure is related to the relatively small

dimension of the determinant to be evaluated, which enables the times of
computation to be reduced. As a consequence, this procedure opens new

TABLE 1

Comparison of calculation times for a beam with one crack

Natural frequency Starting point Time (present work) Time (s)
(Hz) (Hz) (s) (reference [5])

f1=26�1231 25 0�33 0�96
f2=164�0921 150 0�50 1�25
f3=459�6028 450 0�45 0�87

TABLE 2

Comparison of calculation times for a beam with two cracks

Natural frequency Starting point Time (present work) Time (s)
(Hz) (Hz) (s) (reference [6])

f1=26�0954 25 0�53 1�56
f2=163�3221 150 0�71 2�22
f3=459�6011 450 0�62 1�15
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possibilities in the reduction of times needed for solving the inverse problem
through advanced optimisation techniques.

ACKNOWLEDGMENTS

The research described in this article was partially funded by the NATO-CNR
Fellowship Research Program 1996. The authors would like to thank Professor
G. Surace for the opportunity of working in his research group at the
Department of Aeronautical and Space Engineering at the Politecnico di Torino
and acknowledge useful discussions with Dr C. Surace, Dr D. M. Storer and Dr
C. Mares.

REFERENCES

1. S. W. DOEBLING, C. R. FARRAR, M. B. PRIME and D. W. SHEVITZ 1996 Report no.
LA-13070-MS, Los Alamos National Laboratory. Damage identi®cation and health
monitoring of structural and mechanical systems from changes in their vibration
characteristics: a literature review.

2. A. D. DIMAROGONAS 1996 Engineering Fracture Mechanics 55, 831±857. Vibration
of cracked structures: a state of the art review.

3. M. M. YUEN 1985 Journal of Sound and Vibration 103, 301±310. A numerical study
of the eigenparameters of a damaged cantilever.

4. A. JOSHI and B. S. MADHUSUDHAN 1991 Journal of Sound and Vibration 147, 475±
488. A uni®ed approach to free vibration of locally damaged beams having various
homogeneous boundary conditions.

5. P. F. RIZOS, N. ASPRAGATOS and A. D. DIMAROGONAS 1990 Journal of Sound and
Vibration 138, 381±388. Identi®cation of crack location and magnitude in a cantile-
ver beam from the vibration modes.

6. W. M. OSTACHOWICZ and M. KRAWCZUK 1991 Journal of Sound and Vibration 150,
191±201. Analysis of the e�ect of cracks on the natural frequencies of a cantilever
beam.

7. R. RUOTOLO, C. SURACE and C. MARES 1996 Proceedings of 14th International
Modal Analysis Conference, 1560±1564. Theoretical and experimental study of the
dynamic behaviour of a double-cracked beam.

8. T. G. CHONDROS and A. D. DIMAROGONAS 1980 Journal of Sound and Vibration 69,
531±538. Identi®cation of cracks in welded joints of complex structures.

9. R. Y. LIANG, J. HU and F. CHOY 1992 Journal of Engineering Mechanics 118, 384±
396. Theoretical study of crack-induced eigenfrequency changes on beam structures.

10. R. Y. LIANG, J. HU and F. CHOY 1992 Journal of Engineering Mechanics 118,
1468±1487. Quantitative NDE techniques for assessing damages in beam structures.

11. R. Y. LIANG, F. CHOY and J. HU 1991 Journal of the Franklin Institute 328 505±
518. Detection of cracks in beam structures using measurements of natural frequen-
cies.

12. J. HU and R. Y LIANG 1993 Journal of the Franklin Institute 330, 841±853. An inte-
grated approach to detection of cracks using vibration characteristics.

13. G.-L. QIAN, S.-N. GU and J.-S. JIANG 1990 Journal of Sound and Vibration 138,
233±243. The dynamic behaviour and crack detection of a beam with a crack.

14. Y. NARKIS 1993 Journal of Sound and Vibration 172, 549±558. Identi®cation of
cracks location in vibrating simply supported beams.

15. A. MORASSI 1993 Journal of Engineering Mechanics 119, 1768±1803. Crack-induced
changes in eigenfrequencies of beam structures.



NATURAL FREQUENCIES OF A CRACKED BEAM 423

16. P. GUDMUNSON 1983 Journal of Mechanics and Physics of Solids 31, 329±345. The
dynamic behaviour of slender structures with cross-sectional cracks.

17. S. CHRISTIDES and A. D. S. BARR 1984 International Journal of Mechanical Science
26, 639±648. One-dimensional theory of cracked Euler±Bernoulli beams.

18. G. GOUNARIS and A. D. DIMAROGONAS 1988 Computer and Structures 28, 309±313.
A ®nite-element of a cracked prismatic beam for a structural analysis.

19. T. Y. KAM and T. Y. LEE 1992 Engineering Fracture Mechanics 42, 381±387.
Detection of cracks in structures using modal test data.

20. B. S. HAISTY and W. T. SPRINGER 1988 Journal of Vibration, Acoustics, Stress and
Reliability in Design 110, 389±394. A general beam element for use in damage
assessment of complex structures.

21. R. RUOTOLO and C. SURACE 1997 Journal of Sound and Vibration 206, 567±588.
Damage assessment of multiple cracked beams: numerical results and experimental
validation.

22. C. MARES and C. SURACE 1996 Journal of Sound and Vibration 195, 195±215. An
application of genetic algorithm to identify damage in elastic structures.

23. R. RUOTOLO, C. SURACE and C. MARES 1997 Proceedings 15th International Modal
Analysis Conference, 954±960. Damage identi®cation using simulated annealing.

24. D. C. ZIMMERMAN and K. C. YAP 1997 Proceedings 15th International Modal
Analysis Conference, 551±557. Evolutionary approach for model re®nement.

25. K. C. YAP and D. C. ZIMMERMAN 1998 Proceedings 16th International Modal
Analysis Conference, 165±171. The e�ect of coding on genetic algorithm based struc-
tural damage detection.

26. M. I. FRISWELL, J. E. T. PENNY and G. LINDFIELD 1995 Proceedings 13th
International Modal Analysis Conference, 1640±1645. The location of damage from
vibration data using genetic algorithms.

APPENDIX

Mij�l� � xj
l
�cosh�lxi�� ÿ cos�lxi�� � 1

l2
�sin�lxi� ÿ sinh�lxi��, iEj

Mij�l� � xj
l
�cosh�lxi� ÿ cos�lxi�� � 1

l2
�sin�lxi� ÿ sinh�lxi�

� 2 sinh�l�xi ÿ xj�� ÿ 2 sin�l�xi ÿ xj���, i > j

Fj�l� � xj
l
�cosh�ll� ÿ cos�ll��

� 1

l2
�sin�ll� ÿ sinh�ll� � 2 sinh�l�lÿ xj�� ÿ 2 sin�l�lÿ xj���,

Gj�l� � xj
l
�sinh�ll� � sin�ll��

� 1

l2
�cos�ll� ÿ cosh�ll� � 2 cosh�l�lÿ xj�� ÿ 2 cos�l�lÿ xj���:


