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In a problem of structural acoustics with non-linear formulation of structural
dynamics, a linearized compatibility condition at the ¯uid±structure interface is
used along with the linear wave equation for the acoustic medium [1±7]. This
approach is referred to as a light acoustic loading limit. Another aproach is to
formulate a compatibility condition at the moving boundary and solve a non-
linear wave equation in a volume. As it is shown in references [3±5], a solution
for this problem predicts shock wave formation at a certain distance from a
vibrating surface. In the present paper, one more model of interaction between
an acoustic medium and a non-linear structure is suggested for heavy ¯uid
loading conditions. In this model, propagation of acoustic waves is described
by a linear wave equation, but the continuity condition is formulated at the
moving boundary and the contact acoustic pressure acting at the vibrating non-
linear structure is calculated by the Bernoulli integral with a quadratic velocity
term retained. Two model problems of coupled structural acoustics are
consideredÐoscillations of a ¯uid-loaded piston and oscillations of an in®nitely
long periodically supported elastic plate. A method of multiple scales is used
for analysis of the local non-linear dynamics of the model systems, whilst
matched asymptotic expansions are used to model the ¯uid's motion. Several
speci®c e�ects of structural vibrations generated by the non-linearity of ¯uid±
structure interaction, rather than by structural non-linearity are demonstrated.

# 1999 Academic Press

1. INTRODUCTION

Various aspects of non-linear interaction between elastic structures and acoustic
medium have been explored by many authors; see the comprehensive list of
references in references [1±7]. In particular, special interest has been focused on
perturbations in a linear acoustic ®eld generated by structural non-linearities. To
use a theory of linear acoustics, structural±acoustic coupling conditions have
also been taken in a linear formulation as a light ¯uid loading limit. However, in
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the case of heavy ¯uid loading, non-linearities in the coupling formulation
should be taken into account and in¯uence both the acoustic ®eld and the
structural dynamics. Then the whole formulation of structural±acoustic coupling
should be re-examined. The aims of this paper are to suggest a formulation of a
problem of structural acoustics for non-linear heavy ¯uid loading of a non-linear
elastic structure and to exemplify the theory by analytical solutions for two
elementary model problems.

1.1. LINEAR FORMULATION OF THE PROBLEM

For clarity we begin with the statement of a linear problem of structural±
acoustic coupling. This formulation has been proved to be able to predict
reliably dynamics of ¯uid loaded elastic structures when the excitation frequency
does not coincide with their eigenfrequencies. It contains two conditions posed
at the ¯uid±structure interface S. The ®rst one constitutes continuity of velocities
of ¯uid and solid particles at the ¯uid±structure interface

@wv=@t � vv: �1�
Here wv is a displacement component normal to surface S, and vv is the ¯uid
particle velocity in the same direction. The positive normal is directed out of
acoustic medium, positive directions of wv and vv coincide with each other. As a
coupled formulation is explored, velocities of the structure are not prescribed.
They are governed by a driving force acting at the structure (which is given) and
by ¯uid loading (a contact acoustic pressure which should be found). The second
condition at the ¯uid±structure interface formulates equations of structural
dynamics containing a ¯uid-loading term (contact pressure)

Lw � q� p�, �2�
where L is a matrix of the linear differential operator acting at a vector of
structural displacements, q is a vector of driving forces, p is a contact acoustic
pressure, and � is a normal to the ¯uid±structure interface, outward to the
acoustic medium.
Fields of ¯uid and solid variables are matched at the immobile interface (a

surface of the undeformed structure) in linear problems of ¯uid±structure
interaction. A ®eld of velocities of ¯uid is assumed to be irrotational and
velocity potential j is induced as

v � grad j: �3�
Then the contact pressure becomes

p � ÿr0@j=@t: �4�
r0 is the density of the undisturbed acoustic medium.
As equations (3 and 4) are used along with linear wave equation for dynamics

of ¯uid one obtains the purely linear formulation of coupling. This formulation
®ts well with a linear theory of structural dynamics (2) and constitutes a theory
of linear structural acoustics.
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1.2. NON-LINEAR FORMULATION

Apparently, in the non-linear dynamics of ¯uid-loaded structures, it is
necessary to consistently revise formulations of (i) structural response, (ii) ¯uid
response and (iii) compatibility conditions. In this section, we brie¯y discuss the
roles of these non-linearities in the formulation of a coupled problem.
It is well-known that essential non-linear phenomena of ¯uid±structure

interaction are generated by the structure [1±7]. Non-linearities in structural
response are typically classi®ed into two groupsÐnon-linearities in the
constitutive law for a material of the structure and non-linear geometry. We
concentrate our attention on the non-linear geometry (normally resulting in
cubic non-linearity of governing equations for structural dynamics) and neglect
other sources of structural non-linearities. As has been shown in references [1, 6],
structural non-linearity controls the stationary dynamics of structures in
conditions of light ¯uid loading. In effect, the assumption of light ¯uid loading
implies that a zero-order problem is posed as linear vibrations of a structure
which does not experience any acoustical ``feedback''. Then structural non-
linearities and ¯uid±structure interaction effects (both, the linear and the non-
linear ones) show up in problems of higher orders. Speci®cally, if the problem of
the ®rst order is considered, then this assumption in fact couples an enhanced
theory of non-linear structural dynamics with a simpli®ed linear theory of ¯uid±
structure (structural±acoustic) interaction. This approach has been developed in
references [6, 7].
Apparently, when heavy ¯uid loading is considered, strucural and acoustical

problems become coupled in equal shares. Thus, a problem of each order should
be treated as essentially coupled and non-linearities in ¯uid response and
compatibility conditions should be brought to light. This simple observation
makes it necessary to address the theory of non-linear acoustics [3±5, 8]. It is
well known that as soon as the non-linear wave equation is used, then acoustic
waves distort and eventually become shock waves at a certain distance from a
source. Thus, a problem of non-linear vibrations of a heavy ¯uid-loaded
structure cannot be posed in the framework of standard structural acoustics.
Actually, these considerations have been treated in references [6, 7] as the
motivation to use the light ¯uid loading limit in the analysis of wave
propagation in an acoustic medium in contact with a structure which exhibits
large amplitude oscillations.
The third source of non-linearity is associated with the formulation of

compatibility conditions at the ¯uid±structure moving interface. In the coupled
formulation of a problem, its position at any instant of time is not known and
should be found simulteneously with a contact pressure. In fact, this non-
linearity is closely linked with the non-linearity of the structural geometry (large
deformations).
In the following section, some physical motivations are discussed for adopting

a model of generation of linear acoustic waves by an oscillating surface when a
contact acoustic pressure is calculated by a non-linear Bernoulli integral at the
moving boundary.
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1.3. MODEL OF GENERATION OF ACOUSTIC WAVES BY AN OSCILLATING SURFACE

In classic works [9±11] it is anticipated that the whole volume of the acoustic
medium may be divided into two regions. The ¯uid motions in the vicinity of a
vibrating body are predominantly similar to a ¯ow of incompressible ¯uid.
Apparently, the thickness of such a layer is very small and it is controlled by the
amplitude of the motions of a vibrating structure. In the outer region the
predominant type of ¯uid motion is propagation of acoustic waves. Hence, in
the inner region energy transportation is associated with kinetic energy of
¯owing (in effect, incompressible) ¯uid, whereas in the outer region energy
transportation is associated with propagation of acoustic waves. We should note
that a similar concept has recently been explored to analyze sound generation by
vorticity [12, 13].
To clarify the matter reference [11] is followed and the process of radiation of

small amplitude sound waves by an oscillating body is considered. Then (i) local
variability of density and sound speed is neglected and (ii) it is assumed that
suf®ciently far from a surface the ¯uid motion is acousticalÐit radiates a sound
wave and velocities are governed by the linear wave equation.
Two inequalities are now assumed in the whole volume occupied by a ¯uid:

relative changes in the ¯uid's density are very small so that for the surplus
pressure p one has

p5r0c
2
0; �5�

and the velocity of the ¯uid particle, is much less than c0, the speed of a sound
wave,

v5c0: �6�

Let the velocity of an oscillating structure U also be small as compared with the
speed of sound. As U0Ao, (A, o are the magnitude and the frequency of
vibrations), then

e � Ao=c051: �7�

This small parameter in the literature is called the acoustic Mach number. If a
length of the acoustic wave l, radiated by the structure obeys an inequality
l= c0/o4 l (l being the characteristic size of the structure), then in the vicinity
of a vibrating structure it is possible to neglect the term �1=c20�@2j=@t2 in the
wave equation for the velocity potential,

Djÿ �1=c20�@2j=@t2 � 0, �8�

because it is of order j/l2, while the ®rst term is of order j/l2. Thus, near the
vibrating structure the ¯uid appears incompressible [9±11] and the pressure p is
determined by the Bernoulli integral

p=r0 � ÿ@j=@tÿ 1
2 �rj�2: �9�
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On the other hand, suf®ciently far from a vibrating structure wave motion is
governed by standard linear acoustics.
In the linear formulation of the structural±acoustic coupling problem

amplitudes of oscillations of a structure are treated as negligibly small by
de®nition. This automatically results in the elimination of an ``inner'' zoneÐits
length tends to zero. In non-linear structural acoustics, compatibility conditions
are posed at the moving boundary and it is essential to distinguish between these
two zones. In fact, a contact pressure which acts at the vibrating structure and
controls amplitude of vibrations is developed in the ``inner'' zone. The above
considerations become of the most importance from the ``structural'' viewpoint,
since structural dynamics becomes very sensitive to non-linearities at resonant
excitation conditions.
A use of formula (9) in acoustics has been discussed in references [14±16]. In

reference [14] it was shown for an uncoupled problem that temporal ¯uctuations
of velocity of the ¯ow result in ¯uctuations of presure in equation (9) not only
because of explicit time-dependence of the ®rst term, but also due to time-
dependence of the second term. In reference [15] the uncoupled problem of
pulsation of an axisymmetric cavity has been considered and it has been shown
that propagation of waves should be described by a linear wave equation, while
the pressure should be found in the form of a Bernoulli integral (9). Similar
results have been obtained in reference [16]. The above examples do not deal
with phenomena of non-linear structural dynamics, but they demonstrate
regimes described by the linear wave equation and the non-linear formulation (9)
for a pressure.

2. NON-LINEAR DYNAMICS OF A FLUID LOADED PISTON

In this section a model 1-D problem of non-linear dynamics of a structure in
heavy ¯uid loading conditions is considered. The aim of this analysis is two-fold.
First, since it presents serious mathematical dif®culties to carry out asymptotic
matching of solutions of ¯uid dynamics problem in the ``inner'' and the ``outer''
zones for a general 3-D case, it is relevant to exemplify this matching by
considering a relatively simple 1-D case. This outlines the contents of section 2.1.
Second, the simple model problem of non-linear ¯uid±structure interaction
solved in section 2.2 is of some practical value for analysis of motion of elastic
membranes designed to control pressure jumps in pipe lines.

2.1. ANALYSIS OF HYDRODYNAMICS FOR 1-D PROBLEM

Non-linear formulation of the problem in physical variables (a pressure p and
a velocity v) is

1

r0c
2
0

@p

@t
� @p
@x

v

� �
� @v
@x
� 0,

@v

@t
� @v
@x

v� 1

r0

@p

@x
� 0: �10a, b�

The boundary condition is posed at the moving surface x=w(t), x is the
Eulerian co-ordinate
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vjx�w�t� � U � dw=dt:

Our aim is to construct an asymptotic solution for equations (10) in the ``inner''
zone and match it with the solution for a linear problem in the ``outer'' zone.

2.1.1. Formulation in the ``inner'' zone

Non-dimensional variables are introduced as �t � ot, �v � v=�Ao�, �w � w=A,
U=�Ao�, �p � p=�r0c20e�. The last formula provides the same order for non-
dimensional functions �v and �p. This is necessary for further asymptotic analysis.
In the ``inner'' zone spatial variability is scaled by the magnitude of the

vibration amplitude A, and it is meaningful to induce non-dimensional spatial
co-ordinate �z as �z � �xÿ w�=A. In the new variables the equations of
hydrodynamics are (upper symbols are omitted)

e
@p

@t
ÿ �vÿU� @p

@z

� �
� @v
@z
� 0, e

@v

@t
ÿ �vÿU� @v

@z

� �
� @p
@z
� 0, vjz�0 � U�t�:

�11�
A solution of equations (11) is sought in the form of asymptotic expansions in
the small parameter e. Then the following zero order problem is formulated:

@p0=@z � 0, @v0=@z � 0, v0jz�0 � U�t�:
A problem of the ®rst order becomes

@p0=@t� @v1=@z � 0, @v0=@t� @p1=@z � 0, v1jz�0 � 0

and a problem of the second order is

@v1
@t
� v1

@v0
@z
� @p2
@z
� 0,

@p1
@t
� v1

@p0
@z
� @v2
@z
� 0, v2jz�0 � 0:

The solution for the velocity and pressure in the ``inner'' zone is

v�t, z� � Uÿ ez
df1
dt
� e2

z2

2

d2U

dt2
ÿ z

df2
dt

� �
, �12�

p�t, z� � f1�t� � e ÿz dU
dt
� f2�t�

� �
� e2

z2

2

d2f1
dt2

: �13�

It is valid for small z and e.
Equations (12) and (13) contain undetermined functions f1(t), f2(t) because

one has the degeneration of the equations (11) as e! 0. To ®nd these functions
one should address the problem in the ``outer'' zone.

2.1.2. Formulation in the ``outer'' zone

As has been discussed in section 1.3, at a certain distance from a vibrating
piston ¯uid's motion becomes of acoustical nature. Thus, instead of having to
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know all about the ¯uid dynamics in the ``inner'' zone, one can assume the
hydrodynamics in the ``outer'' zone are purely linear. The spatial scale in the
``outer'' zone is de®ned by the acoustic wavelength and one can introduce the
new non-dimensional spatial variable �x � xo=c0 ��x � �ze�.
In non-dimensional variables the linearized equations of hydrodynamics are

@p=@t� @v=@x � 0, @v=@t� @p=@x � 0: �14�
By substitution b=xÿ ew equations (14) can be re-written as

@p=@tÿ eU @p=@b� @v=@b � 0, @v=@tÿ eU @v=@b� @p=@b � 0: �15�
One can now ®nd a solution of equations (15) in the form of an asymptotic
expansion in the small parameter e and retain only the ®rst two terms (similar to
those in the `inner'' zone). The substitution of these series into equations (15)
gives the following zero order problem:

@p0=@t� @v0=@b � 0, @v0=@t� @p0=@b � 0: �16�
A solution of this problem is v0�b, t� � p0�b, t� � F1�tÿ b�. Here F1 is an
arbitrary function. The problem of the ®rst order becomes

@p1=@t� @v1=@bÿU @p0=@b � 0, @v1=@t� @p1=@bÿU @v0=@b � 0: �17�
As pressure is excluded from equations (17), one obtains an inhomogeneous
wave equation for the velocity v1:

@2v1

@b2
ÿ @

2v1
@t2
� ÿ2U @2v0

@b @t
ÿ dU

dt

@v0
@b

: �18�

The particular solution of this inhomogeneous wave equation is ÿ{dF1(tÿ b)/
dt}w(t), and the general solution of the homogeneous equation is F2(tÿ b) (here
F2 is an arbitrary function). Thus, the general solution of the ®rst order problem
is

v1�t, b� � F2�tÿ b� ÿ dF1�tÿ b�
dt

w�t�: �19�

Finally, one has thus obtained the following formula for the velocity in the
``outer'' zone:

v�t, b� � v0 � ev1 � F1�tÿ b� � e F2�tÿ b� ÿ dF1�tÿ b�
dt

w�t�
� �

: �20�

Equation (20) is valid for large b and small e and it contains undetermined
functions f1(t), F2(t) which should be de®ned by matching of the solutions for the
``inner'' and the ``outer'' zones.

2.1.3. The matching of asymptotic expansions

In following the van Dyke method [17] of matching asymptotic expansions for
the velocity (12) and (20) it is necessary to rewrite the ``outer'' representation
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(20) by using the ``inner'' spatial co-ordinate z and to expand the result in power

seria on small parameter ze:

v�t, b� � F1�tÿ ze� � e F2�tÿ ze� ÿ dF1�tÿ ze�
dt

w�t�
� �

0F1�t�

� e ÿz dF1�t�
dt
ÿ F2�t� ÿ w

dF1�t�
dt

� �

� e2
z2

2

d2F1�t�
dt2

ÿ z
dF2�t�
dt
� zw�t� d

2F1�t�
dt2

� �
: �21�

Comparing expression (21) with equation (12), one concludes that

f1�t� � F1�t� � U, F2�t� � w dU=dt, f2�t� � 1
2U

2,

and from equation (13) one obtains

p�t, z� � U� e�ÿz dU=dt� 1
2U

2�: �22�
In particular, on the surface of the piston one has

p�t, 0� � U� e12U
2: �23�

From the standpoint of structural dynamics, formula (23) is suf®cient to perform

analysis of non-linear oscillations of a ¯uid-loaded piston, as it gives a relation

between the velocity of piston at any instant of time and a contact pressure

acting at the piston (¯uid loading).

We have matched asymptotic expansions for velocity in ``inner'' and ``outer''

zones up to terms of order e. Matching of pressure is achieved only up to terms

of order 1. Physically this means that the pressure in the ``outer'' zone is

calculated as if there were no ``inner'' zone at all. To construct a unique

representation for pressure one should use the non-linear equation (10b), to

obtain

p

r0
� ÿ

�
@v

@t
dxÿ 1

2
v2, �24�

and formula (20) for velocity. Note, that in reference [18, #244] it is suggested to

retain the second term in equation (24) for analysis of the pressure ®eld in the

whole volume. Substituting equation (24) into equation (10a), yield, to terms of

order e the following equation in dimensional variables:

ÿ 1

c20

@2

@t2

�
v dxÿ 2

c20
v
@v

@t
� @v
@x
� 0:

The second term is relevant to the kinetic energy of the ¯uid particles in acoustic

waves and in the ``outer'' zone this term is omitted.
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2.2. COUPLED PROBLEM FOR A PISTON ATTACHED TO A MODEL NON-LINEAR

STRUCTURE

Consider a structure modelling dynamics of a switch used in the automatic
control of pressure jumps in pipe lines (see Figure 1). It consists of two
weightless linear springs of stiffness k. The length of each spring in unloaded
state is l. There is a concentrated mass m placed in the hinge connecting the
springs. The angle between the horizontal axis and each spring in the unloaded
position is a0. The concentrated mass is attached to a piston in contact with an
acoustic medium of density r0 and sound speed c0. It is assumed that a piston
may move only along the x axis so that one has a one d.o.f. model characterized
by the existence of three equilibrium con®guration (two stable and one unstable)
in the absence of external loading. The non-linear dynamics of this system with
no contact with a ¯uid has been considered in reference [19].
The equation of motion of this system driven by a force F is

M�w � Fÿ 2k�l sin a0 � w� 1ÿ 1

2 cos a0
1� tga0 � w

l cos a0

� �2
 !ÿ0�524 35ÿ p: �25�

, 
C

ll

A A

k

M

k

0

0
0

Figure 1. A model non-linear structure loaded by an acoustic medium.
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Here w is the displacement of mass along the z axis which coincides with the
axis of the tube, p is a contact pressure acting at the piston from the ¯uid. In
this paper we restrict ourselves by considering non-linear dynamics of a
comparatively shallow system with no snap-through motion. Thus,

tga051,
w

l cos a0
51,

so that equation (25) may be expanded in a power series about the vicintity of
the upper unloaded position w=0 (see Figure 1) as

M�w � Fÿ kla30 2
w

la0
� 3

w

la0

� �2

� w

la0

� �3
" #

ÿ p: �26�

A contact pressure is given by equation (24). Introducing the following non-
dimensional parameters

x � w

la0
, o2

0 �
2ka20
M

, t � o0t, g � r0la0
M

, m � r0c0
Mo0

, f �t� � f �o0t�
2kla30

,

one obtains the equation

�x� x� 3
2x

2 � 1
2x

3 � m _xÿ 1
2g

_x2 � f�t�: �27�
This is Duf®ng's equation for a driven non-linear oscillator. If a linear
formulation of ¯uid dynamics is used then this equation does not contain terms
quadratic in the velocity (those underlined). A new parameter g (the parameter
of the ¯uid's non-linearity) has a simple physical interpretation. It is the ratio of
¯uid mass contained in a channel between two stable equilibrium positions of
the piston (see Figure 1) to the mass of the piston. In principle it may vary in a
wide range and is not necessarily small. The parameter m is relevant to acoustical
damping in the linear formulation of the problem and may be presented as
m= g c0/o0la0. The factor c0/o0la0 may also vary in a wide range depending
upon the stiffness k of the spring.
To illustrate the effects generated by the additional non-linear term one

analyzes by the multiple scales method weak excitation an primary resonance
(o=o0) and hard excitation at o=o0/2.
A detailed formulation of the multiple scales method is available, for example,

in references [20, 21]; we adhere to notations adopted in reference [22].

2.2.1. Weak excitation at primary resonance

First, equation (27) is analyzed, which is re-written as

�x� x � e0� f ÿ 3
2x

2 ÿ 1
2x

3 ÿ m _x� 1
2g

_x2�, �28�
with e0 selected as a bookkeeper for asymptotically small terms.
A solution for the problem of zero-order �x0 � x0 � 0 is simply

x0 � A�t1� exp it� cc: �29�
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Here t1 is a slow time which controls the modulation of amplitudes. We induce a
detuning parameter vt= st1+ t and present the driving force as

f � 1
2 f0�exp�i�t� � cc�: �30�

Then the following equation describes the non-linear dynamics to e10 order:

�x1 � x1 � 1
2 f0 exp it exp ist1 � 1

2g�ÿA2 exp 2it� A�A� ÿ miA exp it

ÿ 3
2�A2 exp 2it� A�A� ÿ 1

2�A3 exp 3it� 3A2 �A exp it�
ÿ 2i�@A=@t1� exp it� cc: �31�

To remove secular terms from the solution for this equation it is necessary to
satisfy the condition

1
2 f0 exp ist1 ÿ imAÿ 3

2A
2 �Aÿ 2i @A=@t1 � 0:

Hereafter differentiation by t1 will be denoted as ( 0).
Solving this modulation equation it is assumed that A � 1

2 a exp�ij�, where a is
amplitude, and j is a phase of stationary solution; after some standard
transformations one obtains two equations,

1
2 f0 sin�st1 ÿ j� � a 0 � 1

2ma, �32a�

ÿ1
2 f0 cos�st1 ÿ j� � aj 0 ÿ 3

16a
3, �32b�

in ``slow time''. It is more convenient to induce a new variable c=st1ÿj, so
that j 0=sÿc 0. Stationarity conditions a 0=j 0=0 give a solution for
amplitude and phase shift:

3a3

16
ÿ as

� �2

� 1

4
m2a2 � 1

4
f 20, tgc � m

2

3a2

16
ÿ s

� �ÿ1
: �33a, b�

One can see that at the primary resonance both the amplitude and the phase
shift are controlled only by linear damping and a term quadratic in the velocity
does not enter the modulation equations. However, a complete solution for the
e10 problem does contain terms generated by ¯uid-induced quadratic non-
linearity:

x � a cos��tÿ c� � gÿ 3

4
a2 � g� 3

12
a2 cos�2�tÿ 2c� � a3

64
cos�3�tÿ 3c�: �34�

Examination of this formula reveals that the contribution of ¯uid-induced non-
linearity is small as long as

g � r0la0=M51: �35�
This means a light acoustic medium in contact with a heavy piston. In effect,
structural non-linearity and linear acoustic damping govern dynamics of a
piston. Therefore, this case is not discussed any further and proceed to hard
subharmonic excitation of a piston.
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2.2.2. Hard excitation at o=o0/2

In the case of hard excitation equation (27) is re-written as

�x� x � f � e0�ÿ3
2x

2 ÿ 1
2x

3 ÿ m _x� 1
2g

_x2�: �36�
A detuning parameter is induced and the driving force is presented as

f � 1

2
q exp

t
2
� st1

2

� �
i� cc

� �
:

A solution for the problem of zero-order becomes

x0 � A�t1� exp it� 2

3
q exp i

t
2
� 1

2
st1

� �� �
� cc: �37�

Then the following equation describes the non-linear dynamics of e10 order:

�x1 � x1 � ÿ2Ai exp it� 1

2
iqs exp i

t
2
� 1

2
st1

� �� �
ÿ 1

18
gq2 exp�it� ist1�

ÿ mAi exp itÿ 2

3
q2 exp�it� ist1�

ÿ 3

2
A2 �A exp itÿ 4

3
Aq2 exp it� � � � � cc: �38�

To remove secular terms from the solution of this equation it is necessary to
solve the modulation equation

ÿ2A 0iÿ 1
18gq

2 expst1iÿ imAÿ 2
3q

2 exp st1iÿ 3
2A

2 �Aÿ 4
3Aq

2 expst1i � 0: �39�
As before one searches for a solution of equation (39) in the form

A � 1
2a exp�ij�:

After some standard transformations one obtains, for the stationary regime
a 0=j 0=0,

�asÿ 2
3q

2aÿ 3
16a

3�2 � �ma=2�2 � q4� 118g� 2
3�2, �40a�

tgj � ÿ1
2m=�sÿ 2

3q
2 ÿ 3

16a
2�, �40b�

and it follows from equation (40a) that the amplitude of the vibrations at the
resonance frequency o0 is controlled by the ¯uid's non-linearity, while a phase
shift is governed by simple linear acoustic damping.
To plot a dependence of amplitude a upon frequency o the dimensionless

parameter are induced O=o/o0 and the detuning parameter then becomes
s=Oÿ 1

2. Then equation (40a) may be rewritten as

O � 1

2
� 3a2

16
� 2q2

3
2

q4

a2
g
18
� 2

3

� �2

ÿ m2

4

" #0�5
: �41�
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One should note that in a case of linear structural dynamics, formulas (40a, b)
are reduced at s=0 to

a2 � q4� 118g�2
m2 � �43q2�2

, tgj � 3

4

m
q2

, O � 1

2
2

����������������������
g2q4

324a2
ÿ m2

4

r
, �42a, b, 43�

so that oscillations at the frequency o0 are generated only by the ¯uid's non-
linearity.
As there are three non-dimensional parameters q, m, g in the modulation

equations, it is appropriate to analyze the roles of each one of them. In Figure 2,
non-dimensional frequency response curves are plotted for q=0�1 and m=0�1.
The curve 1 is relevant to g=1 (mass of ¯uid in volume between two stable
equilibrium positions is equal to mass of piston), the curve 2 is plotted for heavy
¯uid (g=10). There is a pronounced non-linear effect of ``hardening'' type. This
effect is controlled by the parameter g, as well as by the loading parameter q, as
is seen also from Figure 3. Graphs in this ®gure are plotted for m=0�1, g=1
and q=0�3 (curve 1) and q=0�5 (curve 2). It is clear that non-linearity in the
dynamics of the model system becomes much stronger with an increase of the
amplitude of excitation. The role of the linear damping m is opposite: as it grows,
the non-linearity is weakened (see Figure 4). A set of parameters is: q=0�3, g=1
and m=0�1 (curve 1), m=0�2 (curve 2).
In Figure 5, three sets of curves are presented to show a dependence of phase

angle upon excitation frequency parameter. Speci®cally, in Figure 5(a), it is
plotted for q=0�3, m=0�2 and g=1. A dependence of amplitude upon
frequency parameter in this case is given by curve 2 in Figure 4. In this case non-
linearity is weak and phase is simply changed from p/2 to ÿp/2 as a resonance
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Figure 2. Non-linear forced amplitude response of a ¯uid-loaded piston at hard subharmonical
excitation for q=0�1, m=0�1 and g=1 (curve 1), g=10 (curve 2).
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peak is passed. Graphs in Figure 5(b) are plotted for q=0�3, m=0�1 and g=1.
A dependence of amplitude upon frequency parameter in this case is given by
curve 1 in Figure 3. In this case, there are three co-existing solutions in a zone
0�67<O< 0�91. Curve 1 in Figure 4(b) presents a phase of stable solution given
by the left part of the curve 1 in Figure 3. The upper branch of curve 2 (to the
left from the dashed straight vertical line) in Figure 5(b) presents a phase of a
post-resonance stable branch of curve 1 in Figure 3. The lower branch of the
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Figure 3. Non-linear forced amplitude response of a ¯uid-loaded piston at hard subharmonical
excitation for g=1, m=0�1 and q=0�3 (curve 1), q=0�5 (curve 2).
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Figure 4. Non-linear forced amplitude response of a ¯uid-loaded piston at hard subharmonical
excitation for g=1, q=0�3 and m=0�1 (curve 1), m=0�2 (curve 2).
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Figure 5. Phase angle versus excitation frequency parameter for (a) q=0�3, m=0�2, g=1; (b)
q=0�3, m=0�1, g=1; (c) q=0�3, m=0�1, g=10.
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curve 2 is relevant to an unstable solution. Graphs shown in Figure 5(c) are
similar to those in Figure 5(b) but they are plotted for a system with stronger
non-linearity: q=0�3, m=0�1 and g=10.
Finally, in Figure 6 the forced amplitude response of a linear structure

(curve 1) obtained from formula (43) is plotted against the forced amplitude
response of a non-linear structure (curve 2, formula (41)) for ¯uid parameters
m=0�1, g=10 and excitation force q=0�3. Structural non-linearity enhances
resonance behaviour of a system, as compared with that of a linear structure.
However, it should be noted that a model of linear structure loaded by a linear
¯uid would give no response at all in subharmonic excitation conditions.
We do not dwell upon the analysis of characteristic curves for other

combinations of parameters m and g because the model of a ¯uid-loaded piston
is chosen here mostly to clarify with reasonably simple mathematics the physics
of non-linear structural-acoustic coupling. In principle, any combination of these
two parameters can be adjusted to some model of a structure with non-linear
geometry, shown in Figure 1 (say, very soft spring + very heavy ¯uid or hard
spring + heavy ¯uid, etc.) However, non-linear phenomena exposed in the
above analysis are expected to show up in much more complicated, but realistic
problems. We also do not discuss the possible transitions to chaos that are
characteristic in the periodically forced Duf®ng's equation since this aspect lies
beyond the framework of this paper.
In conclusion to this section we should note that the 1-D problem for ¯uid

motions generated by a piston does not permit one to look at modal interaction
which in other situations may result in pumping of energy from non-radiating
modes to radiating ones. This aspect of the problem is discussed for another
model problem.
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Figure 6. Non-linear forced amplitude response of a ¯uid-loaded piston at hard subharmonical
excitation for g=10, q=0�3 and m=0�1. Curve 1, linear structure; curve 2, non-linear structure.



NON-LINEAR HEAVY-FLUID/STRUCTURE OSCILLATIONS 441

3. NON-LINEAR VIBRATIONS OF A FLUID-LOADED PERIODICALLY
SUPPORTED INFINITE PLATE

An in®nitely long plate which is periodically supported by immobile hinges is
considered. The plate is acoustically loaded and a driving force is applied to
provoke skew-symmetric motions. In effect, any span of a plate may be
considered individually together with ¯uid in an attached channel-like domain if
conditions at the vertical boundaries of a ¯uid domain are of soft baf¯e f=0.
This problem in a linear formulation has elementary analytical solution [23] that
gives a clear insight into two distinct mechanisms of structural±acoustic coupling
(pure radiation damping and pure accession to inertia). In reference [4] this
problem has been analysed in a general non-linear formulation with an emphasis
put on shock waves formation. Here we begin with speci®cation of a model
suggested in section 1 for the problem in hand. Then two typical cases in non-
linear dynamics are considered in detail.

3.1. FORMULATION OF THE PROBLEM

The co-ordinates of a plate at rest are speci®ed as

y�s� � s, z�s� � 0: �44�
A driving force is lateral and it produces predominantly normal displacements,
so that the co-ordinates of the vibrating plate are

y�s, t� � s, z�s, t� � w�s, t�: �45�
Then compatibility condition (velocities continuity condition) at the moving
¯uid±structure interface may be formulated as

@f
@z
ÿ @w
@s

@f
@s

� �����
z�w�s, t�

� @w
@t
: �46�

As suggested in reference [2], one may expand equation (46) as

@f
@z

����
z�w�s, t�

� @f
@z

����
z�0
� @

2f
@z2

����
z�0

w� . . . , �47�

provided that w(s, t) is ``not too large''. Then boundary conditions are
formulated at an immobile interface, but the second order derivative of the
velocity potential enters this condition. This indicates an approximate nature of
posing the problem because the second order derivative fzz is the leading order
term in the wave equation.
An alternative way to formulate the continuity condition is to use deformable

co-ordinates in a way used in a piston problem: s, b= zÿw(s, t) and then to
formulate velocities continuity as

@f
@b
ÿ @w
@s

@f
@s

� �����
b�0
� @w
@t
: �48�

The formulation of the contact acoustic pressure in equations of structural
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vibrations in deformable co-ordinates (s, b) becomes

p � ÿr0
@f
@t
ÿ @w
@t

@f
@b
� 1

2

@f
@s

� �2

� 1

2

@f
@b

� �2
" #

:

As one substitutes here equation (48) for dw/dt one obtains

pjb�0 � ÿr0
@f
@t
� 1

2

@f
@s

� �2

ÿ 1

2

@f
@b

� �2
" #

, �49�

which in fact expresses quadratic non-linearity of compatibility conditions at the
moving boundary.

Similar to the case of a ¯uid-loaded piston one can assume amplitudes of
vibrations of a structure to be large enough to pose continuity conditions at the
moving boundary, but at any point of a ¯uid volume velocities are much less
than the sound speed (6) and acoustic pressure is much less than the bulk
modulus of the ¯uid (5). One can transform the linear wave equation to
deformable co-ordinates s, b as

@2f

@b2
� @

2f
@s2
ÿ 2

@w

@s

@2f
@s@b

ÿ @
2w

@s2
@f
@b
ÿ 1

c20

@2f
@t2
� 2

c20

@w

@t

@2f
@b@t

� 1

c20

@2w

@t2
@f
@b
� 0, �50�

and use a theory (48, 49, 50) coupled with an elementary theory of non-linear
dynamics of a plate (a beam):

h2

12
w�4� � p�1ÿ �2�

Eh
� r�1ÿ �2�

E
�wÿ 1ÿ �2

2l
w 00
�l
0

�w 0�2 dxÿ q�1ÿ �2�
Eh

� 0: �51�

Here h is the thickness of the plate, r is its material density, E is its Young's
modulus, � is Poisson's ratio. A driving force is denoted by q and w is the
displacement of the plate.

3.2. WEAK EXCITATION AT PRIMARY RESONANCE

At the primary resonance, weak excitation of a plate under heavy ¯uid loading
is assumed, which is described by a set of equations

h2

12
w�4� � p�1ÿ �2�

Eh
� r�1ÿ �2�

E
�wÿ 1ÿ �2

2l
ew 00

�l
0

w 02 dxÿ e
q�1ÿ �2�

Eh
� 0, �52a�

Fbb � Fss ÿ 1

c20
Ftt ÿ e w 00Fb � 2w 0Fss ÿ 2

c20
_wFbt ÿ 1

c20
�wFb

� �
� 0, �52b�

Fb ÿ ew 0Fs � _w, �52c�

p � ÿr0�Ft ÿ e _wFb � e12F
2
s � 1

2eF
2
b�: �52d�

Here e is a bookkeeper of asymptotically small terms.
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A linear problem of zero order becomes

h2

12
w
�4�
0 �

p0�1ÿ �2�
Eh

� r�1ÿ �2�
E

�w0 � 0, �53a�

�F0�bb � �F0�ss ÿ �1=c20��F0�tt � 0, �53b�

�F0�bjb�0 � _w0, p0 � ÿr0�F0�t : �53c, d�
A solution can be presented as

F0�s, b, t� � ~j0 exp�ÿio0t� sin�ps=l� � cc, �54a�

w0�s, t� � C exp�ÿio0t� sin�ps=l� � cc, �54b�
and this brings one to the well-known formulation of structural response:

ÿo2 � h2

12

p
l

� �4 E

r�1ÿ �2� ÿ
r0
r

l

h

o2����������������������������
p2 ÿ �ol=c0�2

q
264

375C � 0: �55�

A solution of resonance type may exist only if the following inequality applies:

o0l=c0 < p, �56�
which in turn de®nes a non-acoustical behaviour of a ¯uidÐthe second term in
brackets is purely real and has a physical meaning of added mass. One can easily
®nd the eigenfrequency of a ¯uid-loaded plate from the equation

o0l

c0

� �2

1� r0
r

l

h

1������������������������������
p2 ÿ �o0l=c0�2

q
0B@

1CA � p4

12

h

l

� �2
c

c0

� �2
1

�1ÿ �2� , c2 � E

r
�57�

In the case when a sign in the inequality (56) is inverted there is no added mass
effect and the ¯uid produces only radiation damping (the second term in the
brackets becomes pure imaginary). In such a case a resonance solution in the
zero-order approximation does not exist and to be able to use a multiple scales
method it becomes necessary to revise the assumption regarding heavy ¯uid
loading of the structure. This case is left for discussion later and examination is
continued of the case when the ¯uid produces added mass so that a problem of
order e0 has a solution

w0 � �C1�T1� exp�ÿio0t� � C2�T1� exp�io0t�� sin�ps=l�, C2 � �C1, �58�

where o0 is an eigenfrequency of vibrations of a plate with an added mass,
de®ned by equation (57). A formulation of the velocity potential is
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F0 � iol
k
�C1�T1� exp�ÿio0t� ÿ C2�T1� exp�io0t�� exp ÿk

l
b

� �
sin

ps
l
,

k �
��������������������������
p2 ÿ o0l

c0

� �2
s

, �59�

and the motions of the ¯uid's particles are essentially localized near the vibrating
structure. Note that all formalism of the multiple scales method that have been
used in section 2 are valid for analysis of this problem and T1 is presented as
``slow time'', T1= et.
Now one can address the problem of order e1 which is formulated by

h2

12
w
�4�
1 �

p1�1ÿ �2�
Eh

� r�1ÿ �2�
E

�w1

� ÿ r�1ÿ �2�
E

2�w0�T1
� 1ÿ �2

2l
w 000
�l
0

�w 00�2 dx� q�1ÿ �2�
Eh

, �60a�

�F1�bb � �F1�ss ÿ
1

c20
�F1�tt

� ÿ 2

c20
�F0�T1

ÿ 2

c20
_w0�F0�bt ÿ

1

c20
�w0�F0�b � w0 � 2w0�F0�bs , �60b�

p1 � ÿr @F1
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@T1
ÿ _w0

@F0
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� 1
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@F0
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@s
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" #

, �60c�

ÿ�F1�b � _w1 � ÿw 00�F0�s ÿ �w0�T1
: �60d�

Modulations of the amplitudes C1, C2 in equations (58) and (59) should be
determined from conditions of cancelling of secular terms in equation (60a). A
driving force is speci®ed as q � 1

2Q sin�ps=l��exp�ÿiOt� � exp�iOt��. One can
search for solutions for velocity potential and displacement in the two-terms
expansions

w1 � w11 sin
ps
l
� w12 sin

2ps
l

, F1 � F11 sin
ps
l
� F12 sin

2ps
l
: �61a, b�

Orthogonalization of the boundary condition (60d) to selected trial functions
gives a set of two equations:

�F11�bb � _w11 � dC1

dT1
exp�ÿio0t� � dC2

dT1
exp�io0t�

� 4po0

lk
�C2

1 exp�ÿ2io0t� ÿ C2
2 exp�2io0t��, �62a�
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�F12�b � _w12 �62b�
Respectively, wave equation (60d) transforms to

�F1�bb ÿ
p2

l 2
F11 ÿ 1

c20
�F1�tt

� 2

c20

@ _F0

@T1
ÿ 8io3l

pc20
�C2

1 exp�ÿ2io0t� ÿ C2
2 exp�2io0t��

� �
exp�ÿkb�, �63a�

�F11�bb ÿ
4p2

l 2
F2 ÿ 1

c20
�F12�tt � 0: �63b�

One can see that the second terms in equations (61) are not of interest since
there is no effect of modal coupling in equations (62) and (63).

Our attention is speci®ed only at stationary response and put derivatives on
``slow time'' to zero:

dC1=dT1 � 0, dC2=dT1 � 0:

Then, due to linearity of the problem (62a, 63a) a velocity potential is presented
as

F11 � F110 � F111 � F112, �64�
Each component of equation (64) is a solution of the following problems:

�F112�bb ÿ
p2

l 2
F112 ÿ 1

c20
�F112�tt

� ÿ 8o3i

pc20
�C2

1 exp�ÿ2io0t� ÿ C2
2 exp�2io0t�� exp�ÿkb�, �65a�

�F112�b � 0, �65b�

�F111�bb ÿ
p2

l 2
F111 ÿ 1

c20
�F111�tt � 0, �66a�

�F111�b �
4poi
lk
�C2

1 exp�ÿ2io0t� ÿ C2
2 exp�2io0t��, �66b�

�F110�bb ÿ
p2

l 2
F110 ÿ 1

c20
�F110�tt � 0, �F110�b � _w11: �67a, b�

As has been already discussed, inequality (56) is held. Now one can see that a
qualitative type of solution for problems (65) and (66) is governed by the sign of
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the expression

p2 ÿ �2o0l=c0�2: �68�
If it is positive, then similarity to a solution for a zero-order problem will have
localised motions of an acoustic medium. However, it is also possible that
formula (68) is negative, as for example, one chooses the following set of
parameters: r0=r � 1�65eÿ 0�4, c0=c � 0�0736, h=l � 0�05, here c is the sound in
the plate's material. A natural frequency of a ¯uid-loaded plate, o0l/c0=1�9354,
satis®es both inequalities. This combination of dimensionless parameters is
relevant, for instance, to a steel plate (r=7�8 g/cm3, c=4500 m/s) vibrating in
air r0=0�00129 g/cm3, c0=331 m/s. The length of the span is 2 cm, while the
thickness of the plate is 0�1 cm. Then the ®rst natural frequency becomes
5098 Hz, and as vibration at this frequency is not associated with propagation of
waves from a structure, at the doubled frequency 10 196 Hz there is sound
radiation from the plate.

Then some simple algebra gives

F12 � ÿ 8oC2
1

3p
i exp ÿ kb

l
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� k
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ik2b
l

� �� �
exp�ÿ2io0t�
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� �
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3kk2
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1 exp
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2 exp ÿ
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� �
, �69b�

where k2=
��������������������������������
�2o0l=c0�2 ÿ p2

q
, while a solution for a problem (67) does not

contain amplitudes C1, C2 which must be found.

In turn, a problem of structural dynamics is de®ned as

h2

12
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E
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and after Galerkin's orthogonalization one arrives at the following modulation
equation

3
16�p=l�4C2

1C2 � Q=Eh:

Its solution,

C1 � C2 �
�������������
16Ql4

3p4Eh
3

r
� a, �71�

controls amplitudes of displacements at frequency o0. Formula (71) is valid for a
stationary regime at detuning parameter equal to zero. It does not present any
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dif®culty to derive modulation equations for a general case when the detuning
parameter is induced in a standard way (see section 2) and derivatives on slow
time are retained in solution, but the detailed analysis of such a case is beyond
the scope of this paper.
We should emphasis that a potential, induced by non-linearity of an acoustic

medium is expressed as

F111 � F112 � ÿ 16oa2

3p
exp ÿ bk

l

� �
sin 2ot

� 8oa2

3p
2�ol=c0� ÿ p2����������������������������

p2 ÿ �ol=c0�2
q ������������������������������

�2ol=c0�2 ÿ p2
q cos

k2b
l
ÿ 2ot

� �
, �72�

and while the ®rst term has the same type as a solution for a zero-order
problem, i.e., exponentially decaying wave, the second term describes
qualitatively a new effectÐgeneration of a propagating wave. It is presented in
deformable co-ordinates, but it may be transformed to Eulerian co-ordinates as
b tends to in®nity:

~F � 8oa2
2�ol=c0�2 ÿ p2

3p
����������������������������
p2 ÿ �ol=c0�2

q ������������������������������
�2ol=c0�2 ÿ p2

q cos
k2z
l
ÿ 2ot

� �
: �73�

It is remarkable that sound radiation appears in the case which from the
standpoint of the linear formulation of acoustics is classi®ed as trivial. Of course,
the intensity of sound radiation is very weak, but it is still likely to be registered
experimentally.
When the sign in inequality (56) is inverted, characteristic equation (57) has no

real roots. Thus, in heavy ¯uid loading conditions the problem in the zeroth
order cannot be posed as weak excitation at a primary resonance. This is not a
case in light ¯uid loading, see reference [6], when no non-linearities in structural±
acoustic interaction enter a problem of the ®rst order.
It should be emphasized that in the model problem of vibrations of an in®nite

periodically supported plate in contact with an acoustic medium, the latter
produces either purely real added mass or purely imaginary radiation losses. As
soon as one addresses vibration of, say, a baf¯ed plate, then one gets both the
added mass effect and the effect of radiation damping. As is well-known (see, for
example reference [24]), accession to inertia in a heavy ¯uid loaded plate may be
very large. Then a resonance frequency must be found with ¯uid added mass
taken into account and a non-linear problem of a weak excitation at primary
resonance may be posed with effect of added mass included in the zeroth order
approximation while radiation damping and non-linear terms are accounted for
in the problem of the ®rst order.

3.3. HARD EXCITATION AT O=o0/2

Heavy ¯uid loading of a plate is still considered and resonant vibrations are
assumed to be non-acoustical in nature: i.e., there are purely real
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eigenfrequencies de®ned by equation (57). Then hard excitation of a plate at the
frequency of o0/2 is described by the set of equations (52). However, the last
term in equation (52) now does not contain the multiplier e and becomes simply
q(1ÿ �2)/Eh. Hence, the problem of zero order becomes

h2

12
w
�4�
0 �

p0�1ÿ �2�
Eh

� r�1ÿ �2�
E

�w0 � q�1ÿ �2�
Eh

, �74a�

�F0�bb � �F0�ss ÿ �1=c20��F0�tt � 0, �74b�

�F0�bjb�0 � _w0, p0 � ÿr0�F0�t , �74c, d�
and a driving force can be chosen as

q � 1
2Q sin�ps=l��exp�ÿiOt� � exp�iOt��, O � �o0=2� � �es=2�:

A solution for the linear problem of zero order becomes

w0 � fAq�exp�ÿiOt� � exp�iOt�� � �C exp�ÿio0t� � �C exp�io0t��g sin�ps=l�, �75�
where

Aq � Q�1ÿ �2�
Eh

h2

12

p
l

� �4
ÿ rO2�1ÿ �2�

E
1� r0

r
l

hk1

� �� �
, k1 �

�������������������������
p2 ÿ Ol

c0

� �2
s

,

�76�
and C is an amplitude of the resonance wave that should be found from the
modulation equation. Respectively, the velocity potential is

F0 � iFl
k1

Aq�exp�ÿiOt� ÿ exp�iOt�� sin px
l
exp ÿ k1b

l

� �
� io0l

k
�C exp�ÿio0t� ÿ �C exp�i0t�� sin�px=l� exp�ÿkb=l�: �77�

Similarly as in the previous case of weak excitation one can search for a
stationary solution at s=0 and put derivatives of C on slow time to zero.
Then the problem of order e1 becomes

h2

12
w
�4�
1 ÿ

r0�1ÿ �2�
Eh

�F1�t �
r�1ÿ �2�

E
�w1

� 1ÿ �2
2l

w 000
�l
0

�w 00�2 dx� r0�1ÿ �2�
Eh

ÿ _w0�F0�b �
1

2
�F0�2s �

1

2
�F0�2b

� �
, �78a�

�F1�bb � �F1�ss ÿ
1

c20
�F1�tt � ÿ

2

c20
_w0�F0�bt ÿ

1

c20
�w0�F0�b � �w0�ss�F0�b � 2w0�F0�bs ,

ÿ �F1�b � �w1�t � ÿ�w0�s�F0�s : �78b�
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One can now search for a solution of the problem (78) as F1=F11+F12+F13.
Then equations (78) are split into a set of three problems:

�F11�bb � �F11�ss ÿ
1

c20
�F11�tt � 0, �F11�b � ÿw0�F0�s , �79a, b�

�F12�bb � �F12�ss ÿ
1

c20
�F12�tt � ÿ

2

c20
_w0�F0�bt ÿ

1

c20
�w0�F0�b

� �w0�ss�F0�b � 2w0�F0�bs �F12�b � 0, �80a, b�

�F13�bb � �F13�ss ÿ
1

c20
�F13�tt � 0, �F13�b � _w1: �81a, b�

A dependence of all functions herein upon the axial co-ordinate s is taken in a
simple approximation sin(ps/l ). Then the solution for a linear in w1, F1 problem
(78a), (81) should not contain secular terms generated by the inhomogeneous
part of equation (78b), so that it is necessary to ®nd relevant components of
potentials F11 and F12. Solutions of the problems (79) and (80) that produce
secular terms in equation (78a) are

F11 � ÿ 4p
3

iO
kk1

sin
ps
l
exp ÿ bk

l

� �
A2

q�exp�ÿ2iOt� ÿ exp�2iOt��, �82a�

F12 � 8iO
3p

k1
k
exp ÿ bk

l

� �
ÿ exp ÿ bk1

l

� �� �
sin

ps
l
A2

q�exp�ÿ2iOt� ÿ exp�2iOt��:

�82b�
As one substitutes velocity potentials (77) and (82) into equation (78a) of the
structural dynamics, performs orthogolalization to the selected trial function
sin(ps/l ) and collects secular terms, one arrives at the following modulation
equation (one puts s=0 and X= a exp(ij)):

a

l

� �3
�2 Aq

l

� �2a

l
� 16

3p4
r0
r

c0
c

� �2 Ol
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� �2 l

h
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� �2 2p
3kk1

� 1

p
ÿ 4k2
3pk
� p
6k21

� �
� 0,

�83�
This equation gives a control of the amplitude of vibrations at the resonance
frequency solely by the non-linearity in the acoustic medium. One should note
that, unlike the former case (section 3.2), the acoustic medium does not exhibit
its properties of compressibility and in effect behaves simply as an added mass.
However, from the standpoint of the structural dynamics the effect de®ned by
equation (83) is of practical importance.
In particular, for the set of parameters discussed in section 3.2, excitation by a

non-dimensional driving force of Q=1�06 10ÿ6 produces a forced response of
a/l=6�336 10ÿ4 at the resonance frequency. One may easily see, that for most
cases of practical relevance (say, steel plate in water, composite plate in air, etc.)
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the magnitude of vibration at the resonance frequency is much smaller than at
the driving frequency o0/2. However, as one neglects the non-linearity in the
structural±acoustic coupling there is no excitation of resonant vibrations at all. It
is assumed that in some speci®c exploitation conditions even minor disturbances
at a resonance frequency may be extremely dangerous and, hence, should be
avoided.

4. CONCLUSIONS

An investigation has been done of the non-linear formulation of a problem of
structural±acoustic interaction in the framework of the potential theory of
hydrodynamics of a compressible ¯uid. The motivation for re-examining of this
problem is a necessity for consistently describing structural non-linearities and
non-linearity of compatibility conditions for both the light ¯uid loading and the
heavy ¯uid loading of a structure.
A model has been suggested for a heavy ¯uid loading of a structure exhibiting

non-linear oscillations. It has been shown that at the surface of a structure one
has to take into account the quadratic (velocity head) term in the Bernoulli
integral for a pressure. However, this does not result in formation of shock
waves in a far ®eld zone because the velocity potential is governed by a linear
wave equation.
Two examples have been explored in detail by a use of multiple scales method.

Attention has been focused on qualitative effects that may be described by a
simple approximation. At the primary resonance acoustical non-linearity does
not control structural dynamics, but produces an acoustic wave of a doubled
frequency. In the case of linear structural dynamics the non-linearity of the
contact pressure is proved to be the only source of effects at subharmonic
resonance.
Two phenomena have been discovered in the framework of the suggested

theory for non-linear oscillations of an in®nite plate under heavy ¯uid loading
conditions. The ®rst one is generation of a sound wave at the weak excitation of
a heavily ¯uid-loaded plate at its primary resonance. A ®eld in the acoustic
medium at the resonance frequency is described by a decaying exponent; i.e., it is
not of a propagating nature. However, it has been shown that for a speci®c
range of parameters non-linearity in ¯uid±structure interaction produces a
propagating wave of doubled frequency. Another effect concerns structural
dynamics at the frequency of o/2. In these excitation conditions the ¯uid's
behaviour remains non-acoustical, but resonant oscillations of the plate are
controlled solely by the non-linearity of the structural±acoustic coupling.
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