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In this work a novel third-order direct boundary element method for the
Helmholtz equation is presented. The methodology is best understood within
the context of the so-called ``®ctitious eigenvalues di�culty'', introduced by the
typical direct boundary integral approach; this problem consists of the existence
of ®ctitious resonance frequencies (i.e., frequencies of the adjoint interior
problem) and is overcome by the CONDOR technique by Burton and Miller
(i.e., a suitable linear combination of the Kirchho�±Helmholtz integral
equation with that obtained by taking its normal derivative). This in turn yields
the presence of a hypersingular kernel (arising in the integral expression for the
normal derivative of the Kirchho�±Helmholtz integral equation), which is
regularized by introducing a novel integral relationship (closely related to the
equivalence between doublet layers and vortex layers in incompressible
potential ¯ows). This requires the evaluation of the tangential Laplacian of the
unknown, and hence the use of a high-order discretization. A piecewise bicubic
discretization of the boundary integral equation is used in this paper. The
resulting equation contains only the nodal values of the unknown. Numerical
applications to particularly taxing problems (such as high-frequency radiation
and scattering problems of rigid and elastic shells) are included, and validated
through comparison with analytical solutions. Numerical results show that the
convergence rate is of order h3 (h being the typical element size), even for high-
frequency analysis, indicating that this is a true third-order method.

# 1999 Academic Press

1. INTRODUCTION

This paper presents a third-order boundary element methodology for the
analysis of exterior acoustics. Applications include particularly taxing problems,
such as scattering of rigid shells, as well as vibration and scattering of elastic
shells, for a frequency range (up to ka=30) which is unusually high for
boundary element methods.
The pressure ®eld, governed by the Helmholtz equation, is here determined by

a boundary-element solution of the Kirchhoff±Kelmholtz boundary integral
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equation. A drawback in using a boundary integral method in this type of
analysis arises from the so-called ``®ctitious eigenvalue dif®culty'', since the
Kirchhoff±Helmholtz boundary integral equation is affected by spurious
(characteristic) frequencies (solution is not unique at those frequencies). These
correspond to the adjoint interior problem eigenvalues (see reference [1]); indeed,
when using a Neumann exterior integral operator of the second kind, the
resonant frequencies of the corresponding Dirichlet interior problem (®rst kind)
would appear in its spectrum, whereas in the spectrum of the exterior Neumann
integral operator of the ®rst kind, the resonant frequencies of the corresponding
Neumann interior problem would appear. This ®ctitious eigenvalue dif®culty is
one of the primary issues in the current research on boundary integral equations
as applied to acoustics (this non-physical resonances can completely destroy the
solution of the numerical method used to solve the Kirchhoff±Helmholtz
equation).
A review of the most signi®cant work in the ®eld of acoustic wave scattering is

beyond the scope of the present paper. An excellent introduction to the ®eld is
the book by Colton and Kress [1]. Some of the work closely related to the
argument of the present paper include that of Schenck [2], Jones [3], Ursell [4],
and Amini [5], where the regularization of the boundary integral equation for
the exterior Helmholtz problem is examined, that of Amini and Kirkup [6],
where the behavior of elementary boundary integral equations and of their
discrete boundary element counterparts close to spurious frequencies is studied,
and that of Gallman et al. [7], where the scattering of rigid bodies is analyzed by
different frequency-domain boundary integral approaches. Extensive reviews on
the problem of acoustic wave scattering, including the issue of regularization of
the boundary integral equation, have been written by Gaunaurd [8], Amini and
Harris [9], and Amini et al. [10].
In this work, we adopt a classical method of regularization for the integral

equation, known as CONDOR (Composite Outward Normal Derivative Overlap
Relation) technique, suggested by Burton and Miller [11]. This consists of
solving a suitable linear combination of the Kirchhoff±Helmholtz equation for
the unknown function with that obtained by taking its normal derivative. In
fact, although the Kirchhoff±Helmholtz integral operator and the integral
equation for the normal derivative are both affected by the spurious resonances
at the characteristic frequencies of the cavity (for the Dirichlet and Neumann
problem, respectively), it was proved that the combination of the two equations
circumvents this problem (see references, [1, 11]). This formulation gives rise to a
hypersingular kernel in the resulting boundary integral equation. The problem of
solving the hypersingular integral equation in three-dimensional external
acoustics has been investigated by several authors; among them, Meyer et al. [12]
circumvent the hypersingularity by considering tangential operators (constant
values of variables over ¯at elements of discretization are required in this
technique), Terai [13] introduces a closed-form evaluation of the hypersingular
integral, under the assumption of ¯at triangular elements of discretization,
whereas Chien et al. [14] obtain the regularization by employing some identities
arising in the integral equation for the Laplace equation in the interior domain.
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Here, the problem is circumvented by applying a regularization technique based
on the integral equivalence discussed in Appendix A. This requires the
evaluation of the tangential Laplacian of the unknown. Thus, the discretization
of the resulting integral equation is performed by using a high-order algorithm
introduced in references [15, 16] for the potential problem, which consists of a
bicubic distribution over each boundary element for all the variables involved in
the problem under consideration, i.e., geometry, velocity potential, j, and
normal derivative, @j/@n. Such an algorithm has the following characteristics:
(1) it yields a smooth solution; (2) it requires a topological structure for the
discretization that (in contrast with typical high-order schemes) is user friendly
(speci®cally, as simple as a ®rst-order discretization); (3) the unknown is
described in terms of a limited number of parameters (speci®cally, only the nodal
values of the unknown and not its tangential derivatives); (4) the scheme has a
high rate of convergence (quite useful, in particular, for high-frequency
problems; indeed, the convergence rate is of the order of h3, as for a true third-
order numerical algorithm).
The boundary integral approach used here, including the regularization

technique, is presented in section 2. Section 3 describes the third-order numerical
algorithm used for the discretization of the boundary integral equation.
Numerical results concerning scattering of rigid and elastic shells are presented
in section 4, where thay are compared with analytical results. Appendices A and
B discuss the regularization of the hypersingular kernel arising from the
application of the CONDOR technique. Appendix C examines the order of
convergence.

2. EXTERIOR ACOUSTICS

This section addresses the analysis of the exterior pressure ®eld for a body,
immersed in an unbounded medium, that is vibrating and/or is impinged by an
acoustic wave of given frequency and amplitude.
First, note that in the frequency-domain, using linearized Bernoulli's theorem,

the perturbation pressure ®eld, p 0, can be expressed in terms of velocity
potential, j, as

p 0 � pÿ p0 � ÿior0j, �1�
where i � �������ÿ1p

, o is the angular frequency of the acoustic wave, and p0 and r0
are the pressure and the density of the undisturbed medium, respectively (note
that equation (1) is obtained setting p̂ 0�x, t� � p 0�x� exp�iot� and ĵ�x, t� �
j�x� exp�iot�. Assuming the ¯ow to be isentropic and combining the linearized
continuity equation with the linearized Bernoulli theorem, one obtains the
Helmholtz equation,

r2j� k2j � 0, �2�
where k=o/c is the wave number, with c denoting the speed of sound of the
undisturbed medium. Let
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j � jI � jS, �3�
where jI and jS denote, respectively, the incident and the scattered potential.
Since the incident-potential wave satis®es equation (2), this is true for jS as well.
The boundary integral representation for the scattered velocity potential is (see,
e.g., reference [1])

jS�x� �
�
S

@jS

@n
Gÿ jS @G

@n

� �
dS�y�, �4�

where G=ÿexp(ÿikr)/4pr is the fundamental solution of the Helmholtz
equation, with r �k yÿ x k, and S denotes the body surface.
The Neumann boundary condition on S is given by @j/@n=iow, where w

denotes the normal displacement of the shell surface (preservation of continuity
on S between surface velocity and normal ¯uid velocity); therefore,

@jS

@n
� ÿ @j

I

@n
� iow: �5�

Coupling this condition with the boundary integral representation in equation
(4), one obtains an exterior Neumann integral operator of the second kind
which, as stated in section 1, is non-uniquely solvable at the eigenvalues of the
corresponding interior Dirichlet problem [1]. Here, in order to avoid the
occurrence of ®ctitious resonant frequencies in the problem mentioned above,
the CONDOR approach by Burton and Miller [11] is used, in which the
regularization is obtained by combining equation (4) with the integral
representation of its derivative with respect to the normal of surface at the
observation point, x, for x 2 S, i.e.,

@jS

@n
�x� � lim

x 0!x
nx�x� �

�
S

@jS

@n
r0G�x 0, y� ÿ jSr0 @G

@n
�x 0, y�

� �
dS�y�, �6�

where nx(x) is the unit vector normal to the surface S at the point x 2 S, and r0
denotes the gradient with respect to the variable x 0. Note that, the kernel in the
second term in equation (6) is hypersingular: the evaluation of such contribution
is discussed in Appendix A. Hence, applying the CONDOR approach, the
distribution on the body surface of the scattered velocity potential is obtained
from the following linear combination of equations (4) and (6):

jS�x� � Z
@jS

@n
�x� � lim

x 0!x

�
S

@jS

@n
G�x 0, y� ÿ jS @G

@n
�x 0, y�

� �
dS�y�

� Z lim
x 0!x

nx�x� �
�
S

@jS

@n
r0G�x 0, y� ÿ jSr0 @G

@n
�x 0, y�

� �
dS�y�,

�7�
where Z= Z(k) is a function of the wave number. It has been shown that, in case
of scattering by bodies with regular surfaces, a good choice for the coef®cient of
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the linear combination in equation (7) is Z=i2 for kE 1/2 [9], whereas for
k> 1/2 a good choice is Z=i(1/k) [5, 17]; these values have been used for all the
results presented in this work.

3. THIRD-ORDER FORMULATION

This section, discusses the third-order numerical algorithm and then applies it
to the speci®c problem under consideration.
For the sake of clarity, consider ®rst a two-dimensional problem. If u(x)

represents a variable of interest, and x 2 �ÿ1, 1� is the domain of integration for
each boundary element, one may use the Hermite polynomials,

h1, 2�x� � 1

4
�23 3x2x3� and h3,4�x� � 1

4
�21ÿ x3 x2 � x3�,

in order to obtain the following cubic interpolation formula

�u�x� � uÿh1�x� � u�h2�x� � uÿx h3�x� � u�x h4�x�,

where u2 represents values of function u in x �21, and u2
x represents values

of x-derivative of u in x �21 (i.e., an interpolation of class C1, a).
In the three-dimensional case, the surface is divided into quadrilateral

elements. The subdivision into elements is such that the nodes on the edge of one
element coincide with those on the edge of the adjacent element. For each
element, a local co-ordinate system �x, Z� 2 �ÿ1, 1�6�ÿ1, 1� is de®ned, and the
interpolation is obtained by combining Hermite's interpolation along each co-
ordinate line. Speci®cally, on each element, one has the following interpolation

�u�x, Z� �
X16
j�1

ûj fj�x, Z�, �8�

where

f�x, Z� �
f1�x, Z�
f2�x, Z�
� � �

f16�x, Z�

8>><>>:
9>>=>>; �

h2�x�h2�Z�
h2�x�h1�Z�
� � �

h3�x�h3�Z�

8>><>>:
9>>=>>;

and

û �
û1
û2
� � �
û16

8>><>>:
9>>=>>; �

u��

u�ÿ

� � �
uÿÿxZ

8>><>>:
9>>=>>;,

where the ûj � j � 1, 16� are the values of function u, of its x-derivative, of its Z-
derivative and of its xZ-second derivative, at the four corners of the element;
speci®cally,
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u�� � u�1, 1�,
u��x � ux�1, 1�,
u��Z � uZ�1, 1�,

u��xZ � uxZ�1, 1�,

u�ÿ � u�1, ÿ 1�,
u�ÿx � ux�1, ÿ 1�,
u�ÿZ � uZ�1, ÿ 1�,

u�ÿxZ � uxZ�1, ÿ 1�,

uÿ� � u�ÿ1, 1�,
uÿ�x � ux�ÿ1, 1�,
uÿ�Z � uZ�ÿ1, 1�,

uÿ�xZ � uxZ�ÿ1, 1�,

uÿÿ � u�ÿ1, ÿ 1�,
uÿÿx � ux�ÿ1, ÿ 1�,
uÿÿZ � uZ�ÿ1, ÿ 1�,

uÿÿxZ � uxZ�ÿ1, ÿ 1�:

Note that this assures that the function is continuous over the whole boundary
surface and that its ®rst derivatives are continuous at the nodes of the panel.*
Next, note that (key to the method) one wants to express the nodal values of the
derivatives of u in terms of the nodal values of u. Consider ®rst the ®rst-order
derivatives, ux and uZ. Note that these depend upon the co-ordinate system (i.e.,
for a given node, the values of ux and uZ depend upon the co-ordinate system of
the element under consideration). Note, however, that ux and uZ are the
covariant components of rtu (tangent gradient of u), and that rtu is
independent of the co-ordinate system (i.e., for a given node, rtu is independent
of the element; for instance, for u=j, rtj is the tangential portion of the
velocity vector). Thus, in order to obtain user friendliness (see below), the
tangent gradient is calculated at each node as the average over those on all the
elements that have the node as a corner. The derivatives within each element are
evaluated by appropriate non-centered (®rst-order) ®nite difference using the
values of the function at the corners of the same element.{ Thereafter, ux and uZ
for an element at the node under consideration are obtained by dotting rtu with
the appropriate covariant base vector of that element. Next, consider the uxZ
derivative. This is assumed to have a constant value on each element, and equal
to that evaluated by ®nite differences at the center of the element (obtained from
the values of the function at the corners of it).
As mentioned above, the resulting scheme is user friendly. Indeed, the

procedure outlined above allows one to use a very simple topological structure
for the description of the geometry. For, each panel is treated independently of
the others. Thus, the procedure is applicable also to those nodes where there
exists a discontinuity in the local co-ordinate directions, e.g., nodes on the plane
of symmetry of a swept wing (and in general, on the boundaries of the patches in
which the boundary surface is usually subdivided). The only information
required is the topological function that gives the global nodal number in terms
of the global element number and the number of the corner of the panel (which
the authors have used in the past for a ®rst-order discretization of the
geometry).{

*This is not necessarily true at the edge points, because uxZ depends upon the element co-
ordinates; however, if (x, Z) denotes a co-ordinate system that is continuous over a whole patch
(collection of elements), then the interpolation uÏ will be of class C1, a over the whole patch.
{Note that although the approximations of the derivatives are of ®rst order, as shown later, the

resulting overall scheme is still of third order.
{Note, however, that for all the results presented here, the base vectors, @x/@x and @x/@Z, are

evaluated analytically (and not by ®nite differences).
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Using the above mentioned procedure to relate the various derivatives to the
nodal values of u, one obtains a matrix T such that û

T � uTT, where û are the
parameters in equation (8), whereas u is the global vector of the nodal values of
u. Hence, the numerical algorithm described yields the following interpolation
for u on each boundary element

�u�x, Z� � uTTf�x, Z�: �9�
Finally, observe that equation (9) may be rewritten as

�u�x� � uTg�x� �
XNN

j�1
ujgj�x�, �10�

(where NN is the number of nodes) with

g�x�x, Z�� :� Tf�x, Z�, �11�
where g(x) is the vector of the NN global shape functions (de®ned piecewise),
which are such that gj (xi)= dji (with dji denoting the Kronecker delta).
By construction, the global functions gj (x) are continuous over the surface of

the boundary. Their ®rst derivatives are continuous in the interior of the
elements and at the nodes. They are not continuous at the edge points because
uxZ at a given node assumes a different value for each element connected with
that node. Nonetheless, the numerical results indicate that the resulting scheme
behaves like a true third order scheme (even if, as mentioned above, a ®rst-order
®nite difference has been used for the derivatives).

3.1. DISCRETIZATION OF INTEGRAL EQUATION

Combining equations (7) and (10), and using the collocation method, one
obtains the discretized expression of the integral equation for the scattered
potential

1

2
�jS

k � ZwSk � �
XNB

j�1
�Bkj wSj � Ckj jS

j � � Z
XNB

j�1
�B̂kj wSj � Ĉkj jS

j �, �12�

where NB is the number of nodes on the body surface, whereas wS= @jS/@n is
known from the boundary conditions, equation (5). The coef®cients of equation
(12) are given by

Bkj �
�
SB

G�xk, y�gj�y� dS�y�, Ckj �
�
SB

@G

@n
�xk, y�gj�y� dS�y�, �13�

B̂kj �
�
SB

@G

@nk
�xk, y�gj�y� dS�y�, Ĉkj �

�
SB

@2G

@nk@n
�xk, y�gj�y� dS�y�, �14�

where gj are those of equation (10), whereas Gk=ÿexp(ÿikrk)/4prk, with
rk �k yÿ xk k, where xk are the collocation points. Furthermore, @/@nk denotes
differentiation along the direction normal to the body surface at the kth
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collocation point. Note that the discretization used implies that the points of the
boundary surface are smooth. Note also that integrals in equations (13) and (14)
are weakly singular, except for the hypersingular integral Ĉkj; however, Ĉkj may
be expressed as the sum of weakly singular integrals after the application of
regularization technique described in Appendix A. For the numerical application
of the formulation, weakly singular integrals have been transformed into regular
ones by considering polar co-ordinates, and then the Gauss±Legendre
quadrature formula has been used to evaluate them (see, e.g., references [16, 18]).

4. NUMERICAL RESULTS

In this section, results obtained with the formulation presented above are
presented. First, the capability of the formulation to overcome the ®ctitious
eigenvalue dif®culty is shown; then, the sound scattered by a rigid sphere
impinged by a planar wave is analyzed; ®nally, the same problem is studied by
assuming the sphere to be an elastic shell; the results are validated through
comparisons with analytical solutions. Details about analytical solutions for the
problems examined in sections 4.1 and 4.2 are given in reference [19], whereas
the analytical solution for sound scattered by elastic shells is given in reference
[20].

4.1. FICTITIOUS EIGENVALUE DIFFICULTY

In order to discuss the issues related to the ®ctitious eigenvalue dif®culty,
consider a sphere of radius a, with a radially pulsating surface (Neumann
problem of the second kind for the Helmholtz equation). Figures 1 and 2 depict
amplitude and phase angle of the (spatially constant) potential on the surface of
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1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.00.0 11.0
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Figure 1. Amplitude of potential on the surface of a pulsating sphere as a function of the pul-
sation wave number. ÐÐ , Analytical solution; ± ± ± , BEM equation (4) with N=4; }, spurious
frequencies.



THIRD-ORDER BEM FOR SCATTERING 707

the sphere, as a function of the pulsation wave number, k (a unit-amplitude
potential normal derivative, w, has been considered). Speci®cally, the analytical
solution of potential on the body surface is compared with the numerical
solution obtained from equation (4) (usual BEM approach), showing a good
agreement except when k is equal to the spurious frequency values (eigenvalues
of internal Dirichlet problem for the sphere, obtained as zeroes of the spherical
Bessel functions [1]). The numerical solution is indeed regularized by the
CONDOR approach of Burton and Miller [11], as demonstrated in Figures 3
and 4, where it is shown that the numerical solution obtained from equation (7)
(regularized BEM approach, referred to as ``present formulation'' in all of the
captions of this work), is in good agreement with the analytical solution, even at
spurious frequency values (the numerical solution has been evaluated for N=4,
with N representing the number of elements along the meridians of the spherical
surface, and half of the number of elements along the parallels; see Figure 5 for
an illustration of the type of boundary element mesh used in this work).
The behavior of the numerical solution as a function of the number of

boundary elements is examined in Appendix C, and shows a third-order rate of
convergence to the analytical solution.

4.2. SCATTERING BY A RIGID SPHERE

First, consider a near-®eld potential scattered by a sphere of radius a. For a
unit-amplitude impinging plane wave with wave number, k, such that ka=1,
Figure 6 depicts the comparison between the analytical solution and the present
numerical results in terms of the variation of scattered potential as a function of
the polar angle, at a distance d=5a from the center of the sphere (this result has
been obtained using N=48, and hence the distance between the parallels of
discretization equals Ds= lka/2N= l/96, with l denoting the wavelength). The

1.5

3.0

0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.00.0 11.0

ka

Figure 2. Phase angle of potential on the surface of a pulsating sphere as a function of the pul-
sation wave number. ÐÐ , Analytical solution; ± ± ± , BEM equation (4) with N=4; }, spurious
frequencies.
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numerical results shown are both those obtained by solving equation (4), and
those obtained by the regularized integral formulation given by equation (7). In
this case, these numerical results are identical since the frequency of the
impinging wave is not a spurious frequency for the sphere. Very different results
are obtained when the case of a unit-amplitude impinging plane wave with
ka=p is considered. Indeed, ka= p is the ®rst spurious frequency of the sphere

0.4

0.6

0.2

0.8

1.0

0.0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.00.0 11.0

ka

Figure 3. Amplitude of potential on the surface of a pulsating sphere as a function of the pul-
sation wave number. ÐÐ , Analytical solution; ~ÐÐ~, present formulation with N=3;
6- - - -6, present formulation with N=4.
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1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.00.0 11.0

ka

Figure 4. Phase angle of potential on the surface of a pulsating sphere as a function of the pul-
sation wave number. ÐÐ , Analytical solution; ~ÐÐ~, present formulation with N=3;
6- - - -6, present formulation with N=4.
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and, as shown in Figure 7, the numerical result from the usual BEM approach
(equation (4)) is completely different from the analytical solution, whereas the
numerical solution obtained by using the CONDOR approach is in excellent
agreement with it.
Next, the far-®eld scattered potential is analyzed. Figures 8±10 depict the

directivity patterns for the scattering of an impinging plane wave, comparing the
analytical solutions with the numerical ones, for ka=1, ka=3, and ka=5,

Impinging wave

Figure 5. Discretization of the sphere with N=12.
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0.0750.125 0.025 0.025
SC

S
C

Figure 6. Angular dependence of potential scattered by a rigid sphere impinged by a unit-
amplitude plane wave with ka=1, at a distance d=5a. ÐÐ , Analytical solution; & ± ± ±&,
BEM equation (4) with N=48; 6Ð Ð6, present formulation with N=48.
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respectively. The numerical solutions have been evaluated with N=48, and in
all of the cases presented they are in excellent agreement with the analytical
ones.

0.3

0.1

0.2

0.0

0.1

0.2

0.4 0.2 0.0 0.2 0.4
SC

S
C

Figure 7. Angular dependence of potential scattered by a rigid sphere impinged by a unit-
amplitude plane wave with ka= p, at a distance d=5a. ÐÐ , Analytical solution; & ± ± ±&,
BEM equation (4) with N=48; 6Ð Ð6, present formulation with N=48.

Figure 8. Directivity patterns for the scattering of a plane wave by a rigid sphere, when
ka=1. ÐÐ , Analytical solution: } ± ± ±}, present formulation with N=48.
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Next, consider the case of a high-frequency far-®eld scattered potential, for an
impinging plane wave, with ka=30. Figure 11 shows the analytical result, the
numerical results for N=24 and N=36, and the converged numerical solution
obtained by extrapolation (see Appendix C). In this case, due to the short
wavelength, only the extrapolated solution is in agreement with the analytical
one, whereas the solutions evaluated with N=24 and N=36 differ from it,
since they do not capture perfectly the steep spatial variations of potential on the
body surface (note that for N=24 one has Ds=0�625l, whereas for N=36 one
has Ds=0�416l). A zoom of Figure 11 is presented in Figure 12, which depicts
the same comparison as in Figure 11, but only for the region de®ned by
90�EcE 100� (where the polar angle, c, is such that c=0� along the direction

Figure 9. Directivity patterns for the scattering of a plane wave by a rigid sphere, when
ka=3. ÐÐ , Analytical solution: } ± ± ±}, present formulation with N=48.

Figure 10. Directivity patterns for the scattering of a plane wave by a rigid sphere, when
ka=5. ÐÐ , Analytical solution: } ± ± ±}, present formulation with N=48.
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Figure 11. Directivity patterns for the scattering of a plane wave by a rigid sphere, when
ka=30. ÐÐ , Analytical solution; *, present formulation with N=24; +, present formulation
with N=36; }, extrapolated solution.

Figure 12. Directivity patterns for the scattering of a plane wave by a rigid sphere, when
ka=30, in the region de®ned by the polar angle, c, such that 90�EcE 100�. ÐÐ , Analytical
solution; *, present formulation with N=24; +, present formulation with N=36; }, extrapo-
lated solution.
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from which the plane wave impinges the sphere). From this ®gure it is apparent
that the extrapolated solution is still in excellent agreement with the analytical
one (see Appendix C).
Note that, as expected, for the problem examined in this subsection the

numerical solution has a third-order rate of convergence for low-frequency
impinging waves. However, such rate of convergence has been obtained also in
the more taxing problem of high-frequency impinging waves, as shown in
Appendix C.

4.3. SCATTERING BY AN ELASTIC SPHERICAL SHELL

For the analysis of scattering by an elastic spherical shell impinged by a unit-
amplitude plane wave, a shell of aluminium with thickness t=3 mm, density
R=2700 kg/m3, Young's modulus E=72 GPa, and Poisson's coef®cient n=0�3
has been considered. The elastic motion of the spherical shell has been evaluated
by applying the Lagrange equations of motion, where the Lagrangian variables
are the coef®cients in the expansion in terms of the modes of vibration of the
shell (given in reference [21]; note that for a plane impinging wave, the elastic
displacement of the spherical shell is axisymmetric).
First, consider the case of an impinging plane wave with ka=11�15, which

corresponds to the ®rst natural frequency of the elastic shell considered. The
polar plot of the induced elastic displacement is illustrated in Figure 13 and
shows a good agreement between the present numerical results and the analytical
solution (all the numerical results presented in this subsection have been
obtained by using the ®rst 11 axisymmetric modes of vibration for the shell
displacement, since with the addition of further modes the solution produces no
signi®cant changes). The potential scattered by the elastic sphere as a function of
the polar angle is plotted in Figures 14 and 15 for distances from the center of
the sphere d/a=3 and d/a=5, respectively. In both cases it is shown that, as
the grid resolution used in the numerical computation increases, the numerical
results get closer and closer to the analytical results.

Figure 13. Polar plot of the displacement induced on an elastic spherical shell by a unit-
amplitude impinging plane wave with ka=11�15. ÐÐ , Analytical solution; } ± ± ±}, present
formulation with N=48.
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Then, consider the capabilities of the method at higher frequencies. Figure 16
shows the elastic displacement of the sphere at the point of the sphere ®rst
impinged by the plane wave, as a function of the wave number. The comparison
between the analytical solution and our numerical results with N=24 indicates
a good agreement. The corresponding scattered potential (evaluated at a point
placed along the direction from which the plane wave impinges the sphere, and
at a distance d=5a from the center of it) is illustrated in Figure 17. In this
®gure, the analytical solution is compared with the present numerical results for
N=24 and N=48. For very high values of the wave number, the accuracy of
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Figure 14. Angular dependence of potential scattered by an elastic spherical shell impinged by
a unit-amplitude plane wave with ka=11�15, at a distance d=3a. ÐÐ , Analytical solution;
ÐÐÐ, present formulation with N=24; Ð±Ð , present formulation with N=36; - - - - ,
present formulation with N=48.
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Figure 15. Angular dependence of potential scattered by an elastic spherical shell impinged by
a unit-amplitude plane wave with ka=11�15, at a distance d=5a. ÐÐ , Analytical solution;
ÐÐÐ, present formulation with N=24; Ð±Ð , present formulation with N=36; - - - - ,
present formulation with N=48.
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the numerical result with N=24 has a dramatic decrease, whereas the solution
with N=48 maintains a satisfactory agreement with the analytical one, for
ka< 30.
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Figure 16. Amplitude of displacement on an elastic spherical shell impinged by a unit-ampli-
tude plane wave as a function of the wave number. ÐÐ , Analytical solution; +±± ±+, present
formulation with N=24.
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Figure 17. Amplitude of potential scattered by an elastic spherical shell impinged by a unit-
amplitude plane wave as a function of the wave number, for d=5a. ÐÐ , Analytical solution;
+± ± ±+, present formulation with N=24; 6ÐÐ6, present formulation with n=48.



716 M. GENNARETTI ET AL.

Finally, a convergence analysis of the numerical solution has been
accomplished also for the case of elastic shells. In Appendix C it is shown that,
as obtained for rigid shells, the convergence rate of the numerical solution is of
third-order and perfectly matches the analytical solution.

5. CONCLUDING REMARKS

A novel third-order boundary element method for the prediction of sound
scattered by rigid or elastic shells impinged by plane waves has been presented.
The occurrence of spurious frequencies, introduced by the boundary element
methodology has been overcome by the CONDOR approach. The hypersingular
kernel appearing in the resulting boundary integral equation has been
regularized by introducing an integral equivalence between doublet layers and
vortex layers for the Helmholtz equation.
From the analysis of the numerical results obtained, the following conclusions

may be taken: (1) both in the case of a pulsating sphere and in the case of wave
scattering by a rigid sphere, the application of the CONDOR approach
ef®ciently eliminates the spurious frequencies and yields potential-®eld solutions
in excellent agreement with the analytical ones; (2) the sound scattered by
spherical rigid and elastic shells is predicted with excellent accuracy, both for
low-frequency and high-frequency impinging plane waves; (3) the convergence
rate of the numerical solution has been shown to be of third order, for all of the
problems examined here (pulsating sphere, rigid/elastic spherical shell scattering,
low-frequency and high-frequency impinging waves).
Therefore, the methodology presented in this work seems to be an ef®cient

tool for the problem of sound scattering. However, the application to irregular
scattering surfaces and to cases with very-high-frequency impinging waves needs
additional work on the formulation presented.
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APPENDIX A: REGULARIZATION OF HYPERSINGULAR INTEGRAL

In the numerical implementation of the method described in this work, a
critical aspect is the evaluation of the second integral term in equation (6).
Indeed, the kernel r0�@G�x 0, y�=@n� becomes hypersingular when x 0 tends to
x 2 S (see section 1 for a list of references dealing with this subject).
Here, in order to regularize the hypersingular kernel appearing in equation (6),

the general integral formula discussed in Appendix B is used. Indeed, if in
equation (21) one sets g=G, where G=G(x 0, y) is the fundamental solution for
the Helmholtz equation (and hence r2G=ÿk2G, for x 0 6� y), and observes that
r0G=ÿrG, one obtains the following integral relation
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r0
�
S
f
@G

@n
dS�y� � ÿr06

�
@S

Gf dy

�r06
�
S
G�n6rt f � dS�y� � k2

�
S
f Gn dS�y�, �15�

where dy is de®ned in Appendix B (equation (15) may be considered as the
extension to the Helmholtz equation of the well-known incompressible-potential-
¯ow equivalence between doublet-layer velocity ®eld and vortex-layer velocity
®eld, see equation (29)).
Observing that

r06
�
S
G�n6rt f � dS�y� �

�
S
r0G6�n6rt f � dS�y�, �16�

and using the vector relationship a6(b6c)= b(a � c)ÿ c(a � b), one obtains

r06
�
S
G�n6rt f � dS�y� �

�
S

@G

@n
rt f dS�y� ÿ

�
S
�rtG � rt f �n dS�y�: �17�

The last term in equation (17) becomes Cauchy singular if x 0 tends to S.
However, using equation (26) and applying the divergence theorem for tensor
®elds, equation (27), one may write�

S
�rtG � rt f �n dS�y� �

�
@S

G�rt f � nnn�n d`�y�

ÿ
�
S
Gnr2

t f dS�y� ÿ
�
S
G�rtn�rt f dS�y�, �18�

since rt f � n=0. Next, combining equation (15) with equations (17) and (18),
one obtains

r0
�
S
f
@G

@n
dS�y� � ÿr06

�
@S

Gf dyÿ
�
@S

G�rt f � nnn�n d`�y� �
�
S

@G

@n
rt f dS�y�

�
�
S
Gnr2

t f dS�y� �
�
S
G�rtn�rt f dS�y� � k2

�
S
fGn dS�y�:

�19�

Finally, one can describe the regularization technique that has been used in this
work. It consists of dividing the closed surface S in equation (6) into two
portions: (1) an open surface S� with the point x in its interior, and (2) its
complement Sc� � SnS�. Over the surface Sc� all the integral terms in equation (6)
are regular, whereas over the surface S� equation (19) is applied with f=jS.
This yields the regularized form of equation (6), which has expression
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@jS

@n
�x� � lim

x 0!x
nx�x� �

�
ÿ
�
S

@jS

@n
rG dS�y� �

�
Sc�
jSr @G

@n
dS�y�

ÿ
�
@S�

jSrG6dy�
�
@S�

G�rtjS � nnn�n d`�y� ÿ
�
S�

@G

@n
rtjS dS�y�

ÿ
�
S�
Gnr2

tj
S dS�y� ÿ

�
S�
G�rtn�rtjS dS�y� ÿ k2

�
S�
jSGn dS�y�

�
,

�20�
where all integrals over the surface S� are weakly singular.

APPENDIX B: AN INTEGRAL FORMULA

In this appendix the following integral formula is proved�
S
f �r�rg��n dS � ÿ

�
@S

frg6 dy�
�
S
rg6�n6rt f � dS �

�
S
fr2gn dS,

�21�
where S is an arbitrary smooth open surface having n as unit normal, f and g
are two differentiable scalar ®elds ( f needs be de®ned only over S), and
rt( )=r( )ÿ n@( )/@n denotes the tangential gradient operator over the surface
S, applied to a scalar ®eld (note that the co-ordinate direction n normal to S has
been chosen such that @n/@n=0). Furthermore, dy= n6nnn d`, where nnn denotes
the outward unit vector orthogonal to @S and lying in the plane tangent to S,
whereas d` denotes the in®nitesimal portion of the line @S.
In order to accomplish this, consider the integral term

I �
�
S
rg6�n6rt f � dS, �22�

which, using the vector relationship a6(b6c)= b(a � c)ÿ c(a � b), becomes

I �
�
S
�rtg � rt f �n dS ÿ

�
S

@g

@n
rt f dS: �23�

Then, applying the following integral formula for a differentiable scalar ®eld h
(gradient theorem for a smooth surface)�

S
rth dS �

�
@S

hnnn d`�
�
S
Hhn dS, �24�

the second integral in equation (23) may be recast as�
S

@g

@n
rt f dS �

�
@S

f
@g

@n
nnn d`�

�
S
H f

@g

@n
n dS ÿ

�
S
frt

@g

@n

� �
dS, �25�

where H � r � n denotes the mean curvature of the surface S.
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Next, introduce the following tangential differential operators on any surface
with unit normal n: (1) for a differentiable tensor ®eld T, rt �T=r �Tÿ @(Tn)/
@n, (2) for a differentiable vector ®eld v, rtv � rvÿ �@v=@n� 
 n, and (3)
for a differentiable scalar ®eld h, the tangential Laplacian r2

t h � r2hÿ
@2h=@n2 ÿH@h=@n. From these de®nitions, it is easy to verify that,

�rtg � rt f �n � rt � � f n
rtg� ÿ f nr2
t gÿ f �rtn�rtg: �26�

Then, using the following integral formula for a differentiable tensor ®eld, T
(divergence theorem for a smooth surface)�

S
rt �T dS �

�
@S

Tnnn d`�
�
S
HTn dS, �27�

the ®rst term in equation (23) may be recast as�
S
�rtg � rt f �n dS �

�
@S

f nrtg � nnn d`ÿ
�
S
f nr2

t g dS ÿ
�
S
f �rtn�rtg dS: �28�

Finally, combining equation (22) and equation (23) with equations (25) and (28),
observing that r�@g=@n� � �rn�rg� �r�rg��n, and recalling that @n/@n=0,
one obtains the integral equivalence given in equation (21).
Note that, for incompressible potential ¯ow, if in equation (21) one sets

g=G, where G=G(x 0, y) is the fundamental solution for the Laplace equation
(and hence r2G=0, for x 0 6� y), and observes that r0G=ÿrG, one obtains the
well-known equivalence between the velocity ®eld induced by a doublet layer
with intensity f and that induced by a vortex layer with vorticity ggg= n6rt f
(see also references [22, 23]):

r0
�
S
f
@G

@n
dS�y� � ÿr06

�
@S

Gf dy�r06
�
S
Gggg dS�y�: �29�

APPENDIX C: CONVERGENCE ANALYSIS

In this appendix the convergence rate of the method presented in this work is
analyzed. Three cases have been examined: (1) the convergence of the solution
around the pulsating sphere considered in section 4.1, (2) the convergence of
potential scattered by rigid and elastic spherical shells impinged by a unit-
amplitude low-frequency plane wave (problems discussed in sections 4.2 and
4.3), and (3) the convergence of potential scattered by a rigid shell impinged by a
unit-amplitude high-frequency plane wave (problem discussed in section 4.2).
Figure A1 shows the convergence history of the solution (expressed in terms

of potential) around a pulsating sphere with ka=p (®rst spurious resonance
frequency of the exterior Neumann problem). It demonstrates that the rate of
convergence of the solution is of the third order (linear in 1/N3) and that the
(linear in 1/N3) extrapolation for N41 yields the analytical solution (as stated
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in section 4.1, N represents the number of elements along the meridians of the
spherical surface, and half of the number of elements along the parallels).
A similar behavior has also been observed in the convergence analysis of the

potential scattered by rigid and elastic spherical shells impinged by a plane wave.
Indeed, in Figure A2 the potential scattered at a point placed along the direction
from which the plane wave impinges the sphere, is plotted as a function of the
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Figure A1. Convergence analysis for the potential on the surface of a pulsating sphere with
pulsation wave number ka= p. *, Analytical solution; *, present formulation.
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Figure A2. Convergence analysis for the potential scattered both by a rigid and by an elastic
spherical shell impinged by a unit-amplitude plane wave with ka=11�15, for d=5a. *, Analyti-
cal solution for rigid shell; 6, analytical solution for elastic shell; *, present formulation for
rigid shell; &, present formulation for elastic shell.
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inverse of the third power of N (in this case ka=11�15 and d=5a). As shown in
the ®gure, also in the case of wave scattering by both rigid and elastic shells, the
rates of convergence are of third order and the extrapolations (linear in 1/N3) for
N!1 yield the analytical solutions.
Finally, consider the case of far-®eld scattered potential for a plane wave with

ka=30, impinging a rigid sphere. In particular, the convergence rate of the
solution is analyzed at one of the points included in Figure 12, where the polar
plot shows a highly wavy behavior of the scattered potential. Figure A3 shows
that, even in this critical region, the convergence rate is of third order and the
(linear in 1/N3) extrapolation for n!1 yields the analytical solution.
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Figure A3. Convergence analysis for the potential scattered by a rigid sphere impinged by a
unit-amplitude plane wave with ka=30. *, Analytical solution; *, present formulation.
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