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The main focus of this paper is on pole±zero cancellation in structures by
unit-rank modi®cations. The modi®cations may be achieved by passive
sti�nesses or by active control techniques. A review of the classical theory on
unit-rank modi®cation is included and new results are obtained to explain the
existence of coincident zeros in point and cross receptances. The necessary and
su�cient conditions are established for the production of a vibration node
by pole±zero cancellation. The classical theory is used to bring about the
cancellation of poles and zeros, and numerical examples are used to illustrate
the application of the technique.
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1. INTRODUCTION

Resonant vibrations caused by an excitation force at a frequency close to a
natural frequency is a common problem in machine design, and in existing
machinery which is made to operate at a different frequency (usually faster) than
was originally intended. Structural modi®cations are needed which will shift the
troublesome natural frequency away from the driving frequency or change the
spatial location of a vibration node.
A common approach is to use the sensitivity method. For example, Kajiwara

and Nagamatsu [1] used the sensitivities of the poles (natural frequencies) and
zeros (antiresonances) to optimise the design of an optical pick-up for a compact
disc player by using pole±zero cancellation. Mottershead [2] studied the
relationship between the sensitivity of the zeros and the sensitivities of the
natural frequencies and mode-shapes of structural systems. An important
drawback of the sensitivity approach is that it is based on a linear truncation of
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the Taylor series, and is therefore limited to small modi®cations. Another factor
that should be considered is that the scope for making structural modi®cations is
likely to be limited to a small number of parameters because of physical
constraints. Pomazal and Snyder [3] determined the natural frequencies and
mode-shapes of a system that had been modi®ed by the addition of a unit-rank
matrix. The method, which did not involve linearisation, was attributed to the
PhD thesis of Weissenburger [4]. Zhang and Lallement [5] used the same method
to separate close modes for model updating [6, 7].
Prescribed dynamical behaviour can be achieved by physical modi®cations to

the structure or by the application of active control techniques (e.g., reference
[8]). The Appendix gives a thorough review of the ``classical'' theory on unit-
rank adjustment of structural systems including the cases of modi®cation by a
passive spring and an active feedback gain. Further information can be obtained
from Lallement and Cogan [9] and Rade [10]. Ram and Blech [11] showed that
when a system is modi®ed by adding a stiffness, k*, and a mass, m*, at a single
co-ordinate then all of the natural frequencies above

������������������k�=m��p
will decrease

whilst all those below
������������������k�=m��p

will increase. This latter result can be
considered to be an extension of the monotonicity theorem [12]. Li et al. [13, 14]
considered local mass and stiffness modi®cations and obtained eigenvalue
equations for two parameters Dm and Dk based on the receptances of the so-
called ``virtual'' system to produce the cancellation of a pole with a zero.
In this paper new results are obtained to explain the existence of coincident

zeros in point and cross receptances, and the necessary and suf®cient conditions
are established for the mutual cancellation of a pole and a zero to form a
vibration node. The effects of various unit-rank modi®cations are investigated,
including the modi®cation of a substructure eigenvalue. It is explained how the
classical theory on unit-rank modi®cation may be applied to produce a pole±
zero cancellation. Numerical examples are given to demonstrate the application
of the technique.

2. POLE±ZERO CANCELLATION AND VIBRATION NODES

It is well known [2] that the zeros of the kth point receptance, hkk, of an n6n
system can be determined as the eigenvalues �li �K, M�k, i � 1, . . . , nÿ 1, where
the subscript k on (K, M) denotes that the kth row and column have been
deleted from the stiffness and mass matrices, K, M 2 <n6n, M=MT> 0,
K=KTe 0 (or> 0). Generally if a single-degree-of-freedom point mass or a
grounded spring is attached at the kth co-ordinate the poles will be changed and
the zeros will be unaffected. The study begins by partitioning the stiffness and
mass matrices, and without loss of generality the ®rst co-ordinate is separated so
that the poles and zeros of the ®rst point receptance are considered. Thus, the
system matrices can be written in the form,

K � k11 �k
T

�k �K

" #
, M � m11 �mT

�m �M

" #
, �1, 2�
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where

�k
T � �k12k13 � � � k1n� 2 <16�nÿ1�, �3�

�K � K1 �

k22 k23
k32 k33

. .
.

knn

26664
37775 2 <�nÿ1�6�nÿ1�, �4�

�mT � �m12m13 � � �m1n� 2 <16�nÿ1�, �5�
and

�M �M1 �

m22 m23

m32 m33

. .
.

mnn

26664
37775 2 <�nÿ1�6�nÿ1�: �6�

The matrices, �K and �M, may be rotated into the system of principal co-ordinates,

CCCT �KCCC � diag�ki�, �7�

CCCT �MCCC � diag�mi�, i � 1, . . . , nÿ 1, �8�
where CCC 2 <�nÿ1�6�nÿ1� is the matrix of eigenvector columns, and a congruent
transformation,

A � RTKR, B � RTMR, �9, 10�

R �
I
ÿ ÿ ÿ ÿ

CCC

24 35 , �11�

leads to

A �
k11 aT

ÿ ÿ ÿ ÿ ÿ ÿ
a diag�ki�

24 35 , �12�

B �
m11 bT

ÿ ÿ ÿ ÿ ÿ ÿ
b diag�mi�

24 35, �13�

where,

aT � �k
TCCC, bT � �mTCCC, �14, 15�

and

�li ��K, �M� � ki
mi
: �16�
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Since the columns of R are independent it is clear that Bÿ1A is similar to
Mÿ1K . The matrices A and B are known as bordered diagonal matrices [15]. The
eigenvalues, �li, are the zeros of the point receptance at the chosen ®rst co-
ordinate, and the rth pole, lr, satis®es the expression,

det �Aÿ lrB� � 0, �17�
which leads to

�k11 ÿ lrm11�
Ynÿ1
i�1
�ki ÿ lrmi� ÿ

Xnÿ1
j�1
�aj ÿ lrbj�2

Ynÿ1
i�1
i 6�j

�ki ÿ lrmi� � 0: �18�

One might wonder under what conditions equation (18) can be satis®ed and
lr � �ls. If such a state of affairs can exist then it is clear that the (theoretically)
unbounded resonant vibrations at the ®rst co-ordinate will be quelled by the
coincidence of the zero �ls. This is what happens at a vibration node. By
expanding equation (18) and using equations (14) and (15) it is found that if �ls is
distinct then a pole±zero cancellation can only occur when the conditions,

��kÿ �ls �m�Tcccs � 0, �ls � lr, �19, 20�
are both satis®ed.
If a pole±zero cancellation in h11 is to produce a vibration node then the same

cancellation must occur in every cross-receptance that involves the ®rst co-
ordinate. To see that this is indeed true consider without loss of generality the
cross receptance h21. The zeros are given by �li (K, M)21, corresponding to
elimination of the second row and ®rst column of (K, M). Thus,

K21 �

k12 k13 k14 � � � k1, n
ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ
k32 k33 k34 � � � k3, n
k42 k43 k44 � � � k4, n

..

. ..
. ..

. ..
.

kn, 2 kn, 3 kn, 4 � � � kn, n

2666666664

3777777775
, �21�

and

M21 �

m12 m13 m14 � � � m1, n

ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ
m32 m33 m34 � � � m3, n

m42 m43 m44 � � � m4, n

..

. ..
. ..

. ..
.

mn, 2 mn, 3 mn, 4 � � � mn, n

2666666664

3777777775
, �22�

The matrices K21 and M21 differ from K1and M1 only in the terms above the
partition in equations (21) and (22). Thus, if cccs is an eigenvector of �K1 ÿ �lsM1�,
and equation (19) holds, then it must also be an eigenvector of �K21 ÿ �lsM21�.
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Clearly �ls must be an eigenvalue of both (K, M)1 and (K, M)21. This means that
�ls will be a zero of the point receptance h11 and of the cross receptance
h21 (=h12). Thus, the desired common zero in the point and cross receptances of
the ®rst co-ordinate is assured, but it does not necessarily follow that the zero �ls
will cancel with the pole lr unless their frequences coincide. So, one can conclude
that equation (19) is a suf®cient condition and equation (20) is a necessary one.
It follows that a vibration node will result from a pole-zero cancellation if and
only if both equations (19) and (20) are satis®ed.
Separately from the poles there will generally be other zeros ls 6� lr, which

do not give rise to cancellations yet ��kÿ �ls �m�Tcccs � 0. It follows that every
eigenvalue of (K, M)p that satis®es equation (19) (whether or not equation (20) is
satis®ed) is also an eigenvalue of (K, M)pq, q=1, . . . , n, (q 6� p), and when such
an eigenvalue (zero) appears in the point receptance it must also appear in all
cross receptances of the same co-ordinate.
For the case of a common zero �ls in h11 and h21 it is seen that,

�k
T

ÿ ÿ
K1

24 35ÿ �ls
mT

ÿ ÿ
M1

24 350@ 1Acccs � 0: �23�

If �ls= lr, then from the eigen-equation of the poles, (Kÿ lrM)jjjr=0, and
equation (23) it is found that,

k11
ÿ ÿ

�k

8<:
9=;ÿ lr

m11

ÿ ÿ
�m

8<:
9=;

0@ 1Aj1r � 0: �24�

Since

k11
ÿ ÿ

�k

8<:
9=;ÿ lr

m11

ÿ ÿ
�m

8<:
9=;

0@ 1A 6� 0

it follows that j1r=0 and cccs=(j2r j3r� � �jnr)
T. This result con®rms that the

displacement j1r at a vibration node (the ®rst co-ordinate) of the rth mode is
zero.
In the following two sections, the effect of modi®cation by a single-degree-of-

freedom point mass or a grounded spring is considered ®rst, and afterwards the
attention is turned to more general unit-rank modi®cation problems. The
application of the classical unit-rank modi®cation theory to the problem of pole±
zero cancellation is considered in section 6.

3. MODIFICATION BY A SINGLE-DEGREE-OF-FREEDOM POINT MASS OR
A GROUNDED SPRING

The case of a single-degree-of-freedom point mass, m*, and a grounded spring,
k*, attached at a single co-ordinate within a multi-degree-of-freedom system will
be studied. To adjust the rth natural frequency whilst maintaining the
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antiresonances of the ®rst point receptance it is necessary to ®nd the roots of,

det�A� ÿ �lr � Dl�B�� � 0, �25�
whereDl is the desired change in the rth eigenvalue, and

A� � A�
k�

ÿ ÿ ÿ ÿ
0

24 35, B� � B�
m�

ÿ ÿ ÿ ÿ
0

24 35 p: �26, 27�

Equation (25) leads to the expression,

�k11 � k� ÿ �lr � Dl��m11 �m���
Ynÿ1
i�1
�ki ÿ �lr � Dl�mi�

ÿ
Xnÿ1
j�1
�aj ÿ �lr � Dl�bj�2

Ynÿ1
i�1
i 6�j

�ki ÿ �lr � Dl�mi� � 0, �28�

which can be further simpli®ed to give,

�k11 � k� ÿ �lr � Dl��m11 �m��� �
Xnÿ1
j�1

�aj ÿ �lr � Dl�bj�2
�kj ÿ �lr � Dl�mj�

: �29�

The dominant right-hand side terms are those where lr+Dl is closest to �lj. This
seems to indicate that a reasonable estimate to the modi®cation (k*, m*) can be
obtained by truncating the sum on the right-hand side of equation (29). For
example, it might be useful to determine the stiffness and mass modi®cations
necessary to produce a 10% change to lr. It does not however provide a unique
solution since there may be two unknowns (k* and m*) to be determined from
a single linear equation. First-order sensitivity analysis involves linearisation
whereas the use of equation (29) does not.
When lr � Dl � �ls it can be seen that equation (28) is satis®ed regardless of

the values taken by k* and m*. The physical meaning of this is that natural
frequencies are unchanged by the application of a single-degree-of-freedom point
mass or a grounded spring at a vibration node. Thus, it is not possible to
determine any solution for k* or m* from equation (29) when lr � Dl � �ls.

4. MODIFICATION BY A SPRING CONNECTING TWO CO-ORDINATES

Here the effect of joining two co-ordinates with a uniaxial spring k* is
considered. The ®rst two co-ordinates may be chosen without any loss of
generality, so that the modi®ed stiffness matrix can be written as,

K� � K� k�
1 ÿ1
ÿ1 1 0

0 0

264
375

:
�30�
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A transformation can be chosen so that the modi®cation k* applies to a single
co-ordinate as was previously discussed in section 3.
Thus,

x1
x2
x3

..

.

xn

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

1=
���
2
p

1=
���
2
p

ÿ1= ���
2
p

1=
���
2
p

I�nÿ2�6�nÿ2�

2666664

3777775
�x1 ÿ x2�=

���
2
p

�x1 � x2�=
���
2
p

x3

..

.

xn

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
, �31�

leads to

TTK�T � TTKT� k�
2

0

" #
, �32�

where

T �

1���
2
p 1���

2
p

ÿ 1���
2
p 1���

2
p

I�nÿ2�6�nÿ2�

26666664

37777775, �33�

and k* is applied at the ®rst co-ordinate. The same transformation can be
applied to the mass matrix.
It is clear from the analysis in section 3 that the shift in the rth eigenvalue due

to the modi®cation k* is bounded by the eigenvalues �lrÿ1��K, �M� and �lr��K, �M)
where,

�K �

1
2�k11 � 2k12 � k22� k23

k32 k33

. .
.

knn

266664
377775, �34�

�M �

1
2�m11 � 2m12 �m22� m23

m32 m33

. .
.

mnn

266664
377775: �35�
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5. UNIT-RANK MODIFICATION OF A SUBSTRUCTURE

A substructure stiffness matrix, k 2 <m6m, k= kT, rank(k)=mÿ s, which
might be a single ®nite element or a group of elements, can be decomposed into
its own eigenvalues and eigenvectors,

k � P
0

Q

� �
PT, �36�

where

Q � diag�q1, . . . , qmÿs� �37�
is the matrix of non-zero eigenvalues,

P � �Pr, Ps� 2 <m6m, �38�

Pr 2 <m6s, Ps 2 <m6�mÿs�, �39, 40�
is the orthogonal matrix of eigenvectors (PPT= I) and the subscripts r and s
denote rigid-body and strain modes respectively. The adjustment of a single non-
zero eigenvalue is considered so that k*= qj. The idea of adjusting the
eigenvalues (and eigenvectors) of a substructure was introduced by Gladwell and
Ahmadian [16] with the purpose of updating a ®nite element model to match
measured vibration data. This can be one reason for carrying out a unit rank
modi®cation to a ®nite element model.
The modi®ed stiffness matrix can be written as,

K� � K� k�
psjp

T
sj

ÿ ÿ ÿ ÿ
0

24 35: �41�

If P is rearranged so that psj occupies the ®rst column, then (since P is
orthogonal) it is clear that the transformation,

T �
P
ÿ ÿ ÿ ÿ ÿ ÿ ÿ

I�nÿm�6�nÿm�

24 35 �42�

will lead to an equation of the same form as equation (32). Then the
determination of the zeros which bound the eigenvalues lr+Dl of the modi®ed
system exactly follows the procedures of the previous analysis.

6. APPLICATION OF THE CLASSICAL THEORY

Consider the eigenvalues li(K, M) and eigenvectors jjji of the unmodi®ed
system and arrange them as,

LLL � diag�li�, l1El2E � � �Eln, �43�
and

FFF � �jjj1, . . . , jjjn� 2 <n6n, �44�



MODIFICATIONS TO STRUCTURES 841

where

FFFTMFFF � In6n: �45�
If a passive spring k* connects the co-ordinates f and g, then the eigenproblem of
the modi®ed structure can be written as,

�L� k�zzT�FFFTMjjj�r � �lr � Dl�FFFTMjjj�r , �46�
where

z �

jf1 ÿ jg1

jf2 ÿ jg2

..

.

jf, n ÿ jg, n

8>>>><>>>>:

9>>>>=>>>>;: �47�

It can be seen that if the hth element of z is zero, then at the hth mode a spring
connecting f and g will be unstretched and lh will remain unchanged by the
modi®cation.
For the more general case of a modi®cation to the jth non-zero eigenvalue of

a substructure stiffness matrix it is found that,

zh � ~jjjT
h psj, �48�

where ~jjjh contains selected terms from jjjh at each of the substructure co-
ordinates. If zh=0 then ~jjjh ? psj so that (as with the simple two-co-ordinate
spring) the eigenvalue lh remains unaltered.
In their book Matrix Computations (pp. 461±464), Golub and Van Loan [17]

consider the problem of diagonalising a matrix of the form diagonal+rank-one,
which is exactly the form of the matrix. �LLL� k�zzT� in equation (46). It is shown
in reference [17] that the modi®ed eigenvalues are given by the zeros of the
function,

f �l� Dl� � 1� k�zT�LLLÿ �l� Dl�I�ÿ1z, �49�
when z contains no zero terms. Pomazal and Snyder [3] and Zhang and
Lallement [5] obtain an equivalent expression, which is derived in Case (c) of the
Appendix, and can be written in the form,

1

k�
� ÿ

Xn
i�1

z2i
li ÿ �lr � Dl� : �50�

The physical interpretation of a zero term in z has been explained above, and is
given further consideration in references [3, 5]. If a particular term zh=0 then lh
will not be changed by the modi®cation, and in that case the hth term may be
omitted from the right-hand side of equation (50), the roots of which will be the
remaining (nÿ 1) eigenvalues of the modi®ed system. The case of an active
feedback gain between co-ordinates f and g is considered in the Appendix (Case
(b)).
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A similar expression to equation (50) can be written for the modi®cation that
is required to assign the sth zero of the p, qth frequency response hpq, to �ls � D�l
and is derived in Case (d) of the Appendix. Thus, for the passive two-co-ordinate
spring,

1

k�
� ÿ

Xnÿ1
i�1

viwi

�li ÿ �ls � D�l� , �51�

where,

v �

xf1 ÿ xg1
xf2 ÿ xg2

..

.

xf, nÿ1 ÿ xg, nÿ1

8>>>><>>>>:

9>>>>=>>>>;, w �

cf1 ÿ cg1

cf2 ÿ cg2

..

.

cf, nÿ1 ÿ cg, nÿ1

8>>>><>>>>:

9>>>>=>>>>;, �52, 53�

and ccci and xxxi are the right- and left-eigenvectors for the ith eigenvalue, �li, of
the asymmetric system ��K, �M� � �K, M�pq. The simpli®cation for the point
receptance, p= q, is straightforward.
Our objective is to modify the system so that the rth pole is cancelled by the

sth zero. If a connection can be found whereby either vs=0 or ws=0 (or both)
then k* will not change the frequency of the zero �ls. The unwanted resonance lr
can then be shifted to coincide with the ®xed �ls by using equation (50).
Alternatively lr can be ®xed by selecting a connection for k* that gives zr=0
and the zero �ls can be shifted to cancel lr by invoking equation (51). There can
be a problem with the application of this latter approach when shifting the zeros
of a cross receptance since the interlacing property of the eigenvalues does not
extend to unsymmetric matrices the eigenvalues �li may become complex or
disappear to in®nity. Equation (51) fails in such cases.
When a connection cannot be found to give any zero terms in v or w, or

zr=0, then an iterative approach must be used. The procedure is to choose at
each step a connection that results in a small value of the product vsws whilst
maximizing z2r . This will result in a rapid convergence of lr on �ls because the
movement of the latter is restricted by the small vsws. The large value of z2r will
ensure that the convergence is achieved at the cost of a small modi®cation k*.

7. NUMERICAL EXAMPLES

Two example problems are studied.

7.1. SIX-DEGREE-OF-FREEDOM MASS±SPRING SYSTEM

The system is shown in Figure 1 where all the stiffness and mass values are
unity. The natural frequencies and the frequencies of the zeros for the h34 cross
receptance are given in Table 1. The point receptance h33 and the cross
receptance h34 are plotted in Figure 2. The point receptance is given by the full
line and the dashed line describes the cross receptance. It is noticeable
immediately that the 2nd and 4th zeros of the point receptance are also zeros on
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the curve of the cross receptance. They already satisfy the suf®cient condition
(�kÿ ls �m� ? cccs, so it only remains to adjust lr until the necessary condition
�ls � lr � Dl is met. The aim is to cancel the 4th natural frequency by shifting it
to coincide with the 4th zero. The vectors v and w have 4th terms which
conveniently disappear to zero when the connection ( f, g)= (4, 6) is chosen in
equations (52) and (53). Therefore, the preferred modi®cation is a spring k*

between m4 and m6. The 4th zero will not be affected by the introduction of k*

which can be determined in one application of equation (50) without iteration
(k*=1�118). The modi®ed natural frequencies and zero frequencies are given in
Table 2, and the modi®ed receptances are plotted in Figure 3. The modi®ed
point receptance now shows only ®ve peaks and four zeros because of the
cancellation and a vibration node appears at m3. The natural frequency at

m2

m4

m5

m3

m1 k2

k4

k5

k6

k1

k3

m6k8

k9

k7

Figure 1. Six-degree-of-freedom mass±spring system.

TABLE 1

Frequencies of poles and zeros
before modification

Frequency
(rad/s)z�������������������}|�������������������{

Pole Zero

0�68 <0
0�91 0�77
1�29 1�18
1�64 1�85
1�97 1�90
2�12
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1�64 rad/s has disappeared and there is now a natural frequency at 1�90 rad/s to
cancel with the zero at the same frequency. There is a new zero at 1�88 rad/s
close to the frequency of the cancelled pole and zero.

7.2. TEN-DEGREE-OF-FREEDOM FINITE ELEMENT BEAM

The beam with hinged ends is shown in Figure 4. Its rigidity is 606103 Nm2

and its mass per unit length is 1200 kg/m. Each element is 1 m long. The natural
frequencies of the beam and the zeros of the frequency response h24 are given in

80

60

40

20

0

–20

–40

–60

–80
0.5 1.0 1.5 2.00.0 2.5

Frequency (rad/s)

R
ec

ep
ta

n
ce

 (
d

B
 d

is
p

/f
o

rc
e)

Figure 2. Receptances |h3| and |h34| before modi®cation (full line, |h33|; dashed line, |h34|).

TABLE 2

Frequencies of poles and zeros
after modifcation

Frequency
(rad/s)z�������������������}|�������������������{

Pole Zero

0�74 <0
1�05 1�18
1�39 1�30
1�90 1�88
1�98 1�90
2�27
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Figure 3. Receptances |h3| and |h34| after modi®cation (full line, |h33|, dashed line, |h34|).

2

31 10
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5

6

7
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9

Figure 4. Ten-degree-of-freedom ®nite element beam.

TABLE 3

Frequencies of poles and zeros before
modifcation

Frequency
(rad/s)z�������������������}|�������������������{

Pole Zero

2�74 8�03
10�48 25�61
21�89 46�51
35�29 48�99
48�99 68�23
61�51 84�85
71�76 86�35
79�13 1
84�85
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Table 3. The eigenvectors corresponding to the 6th natural frequency and the
5th zero are shown in Table 4.
The ®rst bending eigenvector of an individual element stiffness matrix can be

shown to be,

0
1���
2
p 0

ÿ1���
2
p

� �T

:

It can be seen from equation (48) that the selection of co-ordinates 7 and 9 for
the modi®cation k*= q1 will lead to strong shifts in l6 whilst �l5 will be
constrained by the small values of v5 and w5. The convergence of l6 on �l5 is

TABLE 4

Table of eigenvectors

j6 c5 x5

1 ÿ0�5256 ÿ0�3471 0�0707
2 0�0676 ÿ0�0337 ±
3 0�4252 0 ÿ0�0043
4 ÿ0�1093 ± 0�1409
5 ÿ0�1624 0�6983 0�3525
6 0�1093 ÿ1�3092 ÿ0�1086
7 ÿ0�1624 ÿ0�3023 ÿ0�3642
8 ÿ0�0676 1�2424 0�1145
9 0�4252 ÿ0�3512 ÿ0�3878
10 ÿ0�5256 0�3360 0�7368
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Figure 5. Convergence of l6 on �l5.
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shown in Figure 5 to be almost complete after four iterations of equation (50).
This results in a vibration node at the 4th degree of freedom. The natural
frequencies and zero frequencies upon completion of four iterations are given in
Table 5, whereupon the modi®cation is k*=3�416105 Nm.

8. CONCLUSIONS

1. Every zero of the point receptance hii that satis®es ��kÿ �ls �m� ? cccs must also
be a zero of the cross receptances hij � hji� j � 1, . . . , n, � j 6� i��. In general there
will be zeros of the point receptances which do not appear in the cross
receptances and vice versa.
2. The mutual cancellation of a pole, lr, and a zero, �ls will result in a

vibration node if and only if ��kÿ lr �m� ? cccs.
3. If �ls is distinct then a vibration node will be produced whenever lr=�ls.
4. The classical theory of unit-rank structural modi®cation can be applied to

shift either a pole or a zero, and to bring about a pole-zero cancellation.
5. It is not possible to produce a pole±zero cancellation by a point

modi®cation at the same co-ordinate.
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APPENDIXÐREVIEW OF THE CLASSICAL THEORY ON UNIT-RANK
MODIFICATION

Case (a): Modification by a grounded passive spring

A passive spring, k*, connected at co-ordinate f is considered. The eigenvalue
equation for the modi®ed system can be written as,

�K� k�ef eTf ÿ l�rM�jjj�r � 0, r � 1, . . . , n, �A1�
where

l�r � lr � Dl, �A2�
and ef is the f th column of In6n. When equation (A1) is premultiplied by
H�l�r � � �Kÿ l�rM�ÿ1 it is found that,

�I� k�H�l�r �ef eTf �jjj�r � 0, �A3�
the f th term of which is given by,
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�1� eTf k
�H�l�r �ef�eTf jjj�r � 0: �A4�

Since eTf jjj
�
r 6� 0, it can be seen that,

ÿ 1

k�
� hff�l�r �, �A5�

so l�r ! �lr when k*!1. This leads to the classical interlacing condition,

lrEl�rElr�1: �A6�

Case(b): Modification by an active feedback gain between co-ordinates f
and g

Consider the active feedback gain k* as shown in Figure 6. The modi®ed
eigenvalue equation can be written as,

�K� k�egeTf ÿ l�rM�jjj�r � 0: �A7�
Premultiplication by H(l*) gives,

�I� k�H�l�r �egeTf �jjj�r � 0, �A8�
and from the f th term,

�1� eTf k
�H�l�r �eg�eTf jjj�r � 0: �A9�

Since eTf jjj
�
r 6� 0 it is found that,

–k*

f g

xf fg = –k*xf

Figure 6. Active feedback gain k* between co-ordinates f and g.
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ÿ 1

k�
� hfg�l�r �: �A10�

This result is best interpreted graphically from Figure 7, where it can be seen
that there may be 0, 1 or 2 eigenvalues l�r between successive eigenvalues of the
original (unmodifed) system.
Also, since

H�l�r � � FFF diag
1

li ÿ l�r

� �
FFFT, i � 1, . . . , n, �A11�

it is seen from equation (A10) that

ÿ l

k�
�
Xn
i�1

jfijgi

�li ÿ l�r �
: �A12�

Case(c): Modification by a passive spring between co-ordinates f and g

The eigenvalue equation for the modi®ed system can be written in the same
form as equation (A1) by using the transformation,

hfg

0

1—
k

–
*

4321

1
*

2
*

3
*

4
*

Figure 7. Cross receptance hfg for the interpretation of equation (A10).



MODIFICATIONS TO STRUCTURES 851

T � e1e2 � � � efÿ1 �ef ÿ eg����
2
p ef�1 � � � egÿ1 �ef � eg����

2
p eg�1 � � � en

� �
: �A13�

The resulting eigenvalue equation can be written as,

�TTKT� 2k�efeTf ÿ lrTTMT�TTjjj�r � 0, �A14�
and the f th point receptance in the rotated co-ordinates will be

�ef ÿ eTg ����
2
p H�l�r �

�ef ÿ eg����
2
p � 1

2

Xn
i�1

�jjjfi ÿ jjjgi�2
li ÿ l�r

: �A15�

So by comparison with equation (A5) it is seen that,

ÿ 1

k�
�
Xn
i�1

�jfi ÿ jgi�2
�li ÿ l�r �

: �A16�

Case(d): Modification of an asymmetric system by a passive spring between
co-ordinates f and g

The right and left eigenvectors of the asymmetric system ��K, �M� can be
assembled as CCC=[ccc1, ccc2, . . . , cccn] and Z=[xxx1, xxx2, . . . , xxxn] respectively so that
the frequency response �H��l�s � can be written in the form,

�H��l�s � � ��Kÿ �l�s �M�ÿ1 � CCC diag
1

�li ÿ �l�s

� �
ZT, i � 1, . . . , n, �A17�

where

�l�s � �ls � D�l: �A18�
If the transformation given in equation (A13) is applied and the same procedure
is followed as in Case (c) then it is found that,

ÿ 1

k�
�
Xnÿ1
i�1

�xfi ÿ xgi��cfi ÿ cgi�
�li ÿ �l�s

: �A19�
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