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This paper presents linear and non-linear phenomenological models of
interfacial forces between a rotating disc and a rigid pin in contact with the
disc. The models are developed based on experimental results which revealed
that both normal and frictional forces were essentially random non-Gaussian
processes. The characteristics of these forces are di�erent when the disc reverses
its rotation. When the disc rotates clockwise, the sprag-slip phenomenon occurs
due to so-called kinematic constraint instability. Furthermore, in view of the
time variations of contact forces, the boundary conditions of the pin become
time varying and its natural frequency becomes time-dependent. The interfacial
forces appear in the pin's equation of motion as multiplicative and non-
homogeneous terms. In the non-linear model, the normal force appears as
multiplicative of velocity terms up to cubic order. The pin's dynamic behavior
was studied using the method of stochastic averaging. For the non-linear
model, the problem of noise-induced transition was examined for clockwise and
counter-clockwise cases. The pin amplitude extrema were found to be more
complex for the case of clockwise rotation than those for the counter-clockwise
case. For the linear model, the complete probabilistic description of the pin's
dynamic behavior is derived in a closed form in terms of disc speed and friction
power spectral density level.
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1. INTRODUCTION

Friction-induced noise is usually encountered in power control components such
as vehicle braking systems, friction clutches, and friction belts. Other occurrences
include machine tool vibration, stern-tube water-lubricated bearing vibration in
submarines, and wheel/rail squeal in mass transit systems. When the kinetic
friction coef®cient depends strongly on the sliding velocity and possesses a
negative slope with respect to the velocity, the friction gives rise to negative
damping. In this case the friction may develop different types of instability such
as stick-slip, quasi-harmonic oscillation (or limit cycle) [1±3], chaos [4, 5],
chatter, and squeal [6, 7]. Stick-slip oscillation is characterized by a saw-tooth
displacement curve. Stick-slip motion is governed by static and kinetic friction
forces. The quasi-harmonic motion has a near-sinusoidal displacement±time
curve and the motion is initiated and maintained by kinetic friction force.
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Friction phenomena of an audible nature, including chatter and squeal, can
occur in systems with sliding parts, and each occurs within a certain frequency
band. (For example, high-frequency noise is termed squeal, and low-frequency
noise is called chatter.) This is mainly due to the inherent non-linearities of
contact forces, which are important factors in generating these types of noises. It
appears that audible noises are generated intermittently and without any
apparent order or combination. However, when their frequencies are analyzed
and studied in detail, one may ®nd that such noises are generated in
combination. In some cases parametric resonances can take place, as reported by
Mottershead et al. [8].
Contact forces between sliding surfaces arise due to complex mechanisms, and

lead to mathematical models which are strongly non-linear, discontinuous, and
non-smooth. The inclusion of such non-linearities in the equations of motion of
a dynamical system can have interesting effects on the dynamic response
characteristics. This non-linearity leads to differential inclusions in the
mathematical model [9], adding further dif®culty to the problem. Differential
inclusions can be regarded as differential equations that consist of set-valued or
multi-valued terms. Accordingly, the existence and uniqueness of solutions are
no longer guaranteed, except in a few cases [10].
Experimental tests on a pin-on-disc type sliding system [11] have indicated that

the friction force depends on the normal load for a constant sliding speed.
Depending on the value of the normal load, four different friction regimes have
been observed. These are (1) the steady-state friction region where the frictional
force increases linearly with the normal load; (2) the non-linear friction region in
which the friction force increases non-linearly with the normal load and the
coef®cient of friction is no longer constant but increases with the normal load;
(3) the transient region characterized by intermittent variation of the friction
force. When the mean friction force reaches a suf®ciently high value, a
temporary burst of self-excited vibrations occurs and the friction force falls to a
low value; (4) the self-excited vibration region where the mean friction force
drops to a very low value and is accompanied by high amplitude periodic self-
excited oscillations. The ®rst two regimes are characterized by small amplitude
random vibrations of the slider in the tangential, normal, and torsional degrees
of freedom. In the self-excited vibration regime, the normal load results in an
unstable limit cycle. The source of such limit cycles is the non-linearity due to
non-linear contact forces, and to coupling between the degrees of freedom.
These experimental results did not address the effect of the sprag-slip

phenomenon. This phenomenon was de®ned by Spurr [12] to explain the contact
behavior of internal and external drum and disc brakes. It takes the form of
locking a body in contact with a sliding surface, followed by a slip due to a
displacement of the ®xed end of the body. This is known as geometrically-
induced or kinematic constraint instability, which occurs even though the
coef®cient of friction is constant. Sprag-slip results in squeals which occur at
numerous frequencies, implying non-linearity. Sudden jumps in frequency during
a single squeal are accompanied by simultaneous changes in the friction
coef®cient. Very often, squeal depends on the magnitude of the friction
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coef®cient, not on the friction force, and is associated with rapid oscillations in
the friction coef®cient. This phenomenon motivated the authors to conduct a
series of experiments on a pin±disc model to characterize the interfacial forces
between the pin and the rotating disc. The measured normal and friction forces
were essentially random processes, but with different features when the disc
reverses rotation [13]. The dependence of the root mean square of the friction
force on the relative velocity for clockwise rotation was different from that
obtained for counter-clockwise rotation.
Based on the experimental results of Ibrahim et al. [13], an analytical

stochastic model is presented emulating the experimental model. This paper
presents a stochastic analysis of two different friction models. In the non-linear
model, the friction force appears as a multiplicative term to non-linear velocity
terms up to cubic-order. The method of stochastic averaging is used to examine
the problem of noise-induced transition. The other model is essentially piecewise
linear, and the method of stochastic averaging yields a complete description of
the probabilistic behavior of the friction element.

2. BRIEF REVIEW OF EXPERIMENTAL RESULTS

A series of experimental tests was conducted on a disc±pin apparatus system
shown schematically in Figure 1, together with signal transducers and other
equipment. One important requirement of friction-induced vibration is to
conduct tests at relatively low speeds. However, when operating at a relatively
low rpm, it was observed that the rotor speed experienced substantial
¯uctuations even under no loading. This type of motor achieves steady speeds
only at a relatively high speed. Accordingly, a 10:1 rpm ratio between the motor
and the rotor was introduced through a velocity reduction pulley set. The
application of velocity reduction yields large torque output by the motor at high
speed, and minimizes speed ¯uctuations. There was also some inevitable
misalignment, which resulted in a 0�05-mm level difference of the ring surface at
a radius of 0�065 m.
The vibration of the friction element assembly was measured using a one-

dimensional accelerometer. The measured acceleration was integrated once to
give the velocity of the friction element. The relative velocity of the friction
element with respect to the disc speed was estimated as Vrel=VRÿVf , where VR

is the average angular velocity times disc radius, and Vf is the velocity of the
friction element. The normal and tangential components of the contact force
between the friction element and the disc were measured using a three-
dimensional Kistler 9251 force transducer. The signals from the transducers were
processed through a D/A converter Data Translation EZ 8-channel D/A board.
The sampling rate was 500 Hz over 60 s time duration for each test. DT VEE
3.0 software was used for data processing and statistical parameter estimates.
The ideal design of two sliding surfaces requires perfect mating of the surfaces

and orthogonality with the rotational axis. However, there is inevitable
misalignment resulting from imperfect machining and assembly of the system
components. There are three sources of misalignment and surface irregularities:
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(1) the friction element's horizontal axis is not perfectly horizontal and may have
a non-zero angle. (2) The disc surface is not exactly orthogonal to the rotational
axis, which results in an angle different from 90�. The resultant of the two angles
will create an angle of attack y. (3) The disc surface is not perfectly ¯at, but
contains irregularities in the form of hills and valleys due to the regenerative
effect of machining. This effect may result in loss of contact in some spots and
contact in other regions, resulting in periodic variations of the normal force and
time variations superimposed on y. When the disc rotates clockwise, the angle of
attack between the friction element and the disc surface is usually less than 90�.
On the other hand, if the rotation is counter-clockwise the angle of attack
becomes greater than 90�. It is clear that if y is less than 90� the mechanism of
sprag-slip is created due to the generation of a strong restraining force between
the disc and the friction element. The friction element may experience severe
friction-induced vibrations at an attack angle less than 90�. The surface
asperities only lead to an additive small random component to the normal load.
The measured results include time history records of normal and friction

forces, the acceleration of the friction element, and the coef®cient of friction of a
friction element sliding on a rotating disc. These results were obtained for
clockwise and counter-clockwise disc rotations and are completely reported in
reference [13]. This section presents one sample of the results for clockwise and
counter-clockwise disc rotations.
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Figure 1. Schematic diagram of the experimental model and equipment: A: friction disc, B:
rotor, C: bearings, D: V groove pulley, E: optical encoder, F: speed reduction pulley set, G: V
belt, H: friction element, I: 1/4 0 0 dowel pin, J: accelerometer, K: 3-dimensional force transducer,
L: slider set, M: micrometer, N: laser transducer, O: signal ampli®er, P: A/D converter, Q: com-
pumotor, R: noise ®lter, S: motor controller, T: PC computer.
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Figure 2(a) shows time history records of normal and friction forces, the

coef®cient of friction, and the acceleration of the friction element for disc speed

3 rpm clockwise. Due to misalignment, the kinematic constraint takes place with

clockwise rotation. The normal force was initially set at 55 N. However, the

normal force time history records reveal irregular ¯uctuations, with occasional

non-contact zones when the friction element loses contact with the disc surface.

As the constraint force increases due to hills on the disc surface, the normal

force increases and the friction force increases as well. The plotted friction

coef®cient is estimated as the ratio of friction force to the normal force. One

might expect this ratio to be constant over the duration of the test. However, the

friction coef®cient records display random ¯uctuations, and do not remain

constant. These ¯uctuations may be attributed to the fact that the relative

velocity is always ¯uctuating, and thus results in a corresponding variation in the

friction coef®cient. There is a switch in the friction force, associated with a

corresponding change in the relative velocity direction. The power spectral

density function of the friction element acceleration is shown in Figure 2(b).

There is no unique peak in the spectra, indicating that the natural frequency of

the friction element is always changing with time. The time variation of the

natural frequency is attributed to the time variation of the boundary conditions

(contact forces). Figure 2(c) shows the probability density function (pdf) of the

friction force which is essentially non-Gaussian. The Gaussian distribution is

plotted in order to realize how the measured friction distribution is deviated

from normality.

When the disc rotation is reversed to counter-clockwise, the angle of attack

becomes greater than 90�. Accordingly, the constraint force is not signi®cant and

the interfacial forces experience high frequency ¯uctuations over those disc zones

with surface hills. In the absence of hills, the friction force is almost constant.

Figure 3(a) shows the time history records at 3 rpm of contact forces, friction

coef®cient and friction element acceleration. The contact forces exhibit slight

random ¯uctuations over almost half of the disc. The friction force is always

positive indicating that the relative speed does not change direction. Figure 3(b)

shows the power spectral density function of the friction element acceleration.

The spectrum of the friction element acceleration exhibits peaks at around 50

and 100 Hz, with surrounding spikes. This means that the contact forces have

signi®cant effects on changing the frequency content of the friction element.

Figure 3(c) shows the probability density function of the friction force, with long

tails to the right indicating asymmetry in the pdf.

Since the friction coef®cient and the relative velocity vary randomly with time,

the root mean square (rms) of each was estimated for six tests running at 1-

through 6 rpm. The friction coef®cient±velocity curves for clockwise and

counter-clockwise disc rotations are shown in Figure 4. The friction±velocity

curve for the clockwise case has a higher negative slope at low values of relative

speed than the counter-clockwise case. The stochastic analytical modelling based

on these experimental measurements is developed in the next section.
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3. ANALYTICAL MODELLING

The analytical modelling consists of a rigid bar with its free end facing the disc
while the other end is attached to a torsional spring of stiffness ky, replacing the
load cell, as shown schematically in Figure 5. The end of the bar in contact with
the disc is subjected to contact normal, N(t), and tangential, F(t), random forces.
For a small angle y, the governing equation of motion of the bar can be
obtained by summing moments about O as

�y� 2zo0
_y� �o2

0 ÿ a�t��y � ÿb�t�, �1�
where o0 �

�����������
ky=I0

p
, a(t)=LN(t)/I0, b(t)=LF(t)/I0, m is the mass of the bar, L

is the length of the bar, g is the acceleration due to gravity, i0 is the mass
moment of inertia of the bar about the point O, and y is the rotational angle of
the bar measured from the static equilibrium position y0. A linear viscous
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damping term has been introduced to account for energy dissipation. The
tangential force F(t) is not independent of the normal force. Furthermore, based
on the experimental results, one may approximate the contact forces by random
processes with wide band spectral density function. This approximation will
overcome the dif®culties encountered with the problem of differential inclusions
in the mathematical modelling. The dependence of the friction coef®cient on the
relative sliding velocity, shown in Figure 4, may be represented by the cubic
polynomial

m � a0 sgn�Vÿ _y� ÿ a�Vÿ _y� � a3�Vÿ _y�3, �2�

where V is the disc tangential velocity at the contact point and _y � L _y is the
velocity of the frictional element at the same point of contact. The coef®cients
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Figure 2. Contact forces characteristics for disc speed of 3 rpm clockwise. (a) Time history
records of normal and friction forces, coef®cient of friction, and friction element acceleration.
(b) Power spectral density of friction element acceleration. (c) Probability density function of the
friction force (ÐÐÐÐ, measured curve; ± ± ± , Gaussian curve).
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a0, a1 and a3 are determined from the experimental measurements shown in
Figure 4. These coef®cients are mainly governed by the conditions of the sliding
surfaces and their material properties. By applying the least-square curve ®tting
to the data measured, one obtains the particular form of relation (2) as follows:
(1) For counter-clockwise disc rotation (CCW) a0=0�52694, a1=14�1718,
a3=5569�68, and

m � 0�52694 sgn�Vÿ _y� ÿ 14�1718�Vÿ _y� � 5569�68�Vÿ _y�3: �3a�

(2) For clockwise disc rotation (CW) a0=1�88741, a1=79�087, a3=26212�4
and

m � 1�88741 sgn�Vÿ _y� ÿ 79�087�Vÿ _y� � 26212�4�Vÿ _y�3: �3b�
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This is shown in Figure 6. In this case, the relationship between friction, b(t),
and normal, a(t), forces can be written in the form

b�t� � �a0 sgn�Vÿ _y� ÿ a1�Vÿ _y� � a3�Vÿ _y�3�a�t�: �4�
Note that a0 can be regarded as a static friction coef®cient, in that m will reach
its maximum when �Vÿ _y� � 0. Furthermore, the friction±velocity curve
possesses negative slopes when �Vÿ _y� < ��������������

a1=3a3
p

, and positive slopes when
�Vÿ _y� > ��������������

a1=3a3
p

. This feature will have an important effect on the dynamic
behavior of the system. Under the condition V� _y one can set
sgn�Vÿ _y� � �1.
A simpli®ed model, referred to as piecewise linear, can be obtained by

removing the cubic term of the relative velocity from equation (2). This model is
obtained by curve-®tting with the result shown in Figure 7. The corresponding
analytical expressions are
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Figure 3. Contact forces characteristics for disc speed of 3 rpm counter-clockwise. (a) Time his-
tory records of normal and friction forces, coef®cient of friction, and friction element acceleration.
(b) Power spectral density of friction element acceleration. (c) Probability density function of the
friction force (ÐÐÐÐ, measured curve; ± ± ± , Gaussian curve).
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m �
�

0�42376ÿ 5�76246�Vÿ _y�, Vÿ _yE 0�0329 �m=s�,
ÿ0�08144� 10�0133�Vÿ _y�, Vÿ _y > 0�0329 �m=s�, for ``CCW''; �5a�

m �
�
2�21961ÿ 94�3401�Vÿ _y�, Vÿ _y < 0�0205 �m=s�,
0�28195� 2�78858�Vÿ _y�, Vÿ _ye 0�0205 �m=s�, for ``CW''; �5b�

Now the equation of motion according to the cubic non-linear model can be
written by substituting relation (4) into equation (1), after multiplying equation
(1) by L in the form

�y� �2zo0 � F1a�t�� _y� �o2
0 ÿ a�t��y� F2a�t� _y2 ÿ F3a�t� _y3 � ÿF0a�t�, �6a�

where F0 � L�a0 ÿ a1V� a3V
3�, F1 � L�a1 ÿ 3a3V

2�, F2 � 3La3V, F3 � La3.
For convenience of studying the effects of system parameters, the following

non-dimensional variables and parameters are introduced:

Y � y

L
, t � o0t, W�t� � F0

Lo2
0

a�t�:

In this case equation (6a) takes the form

Y 0 0 � �2z� C1W�t��Y 0 � �1ÿ C2W�t��Y� C3W�t�Y 02 ÿ C4W�t�Y 03 � ÿW�t�,
�6b�

where a prime denotes differentiation with respect to the non-dimensional time
parameter t, and
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C1 � F1

F0
Lo0, C2 � L

F0
, C3 � F2

F0
L2o2

0, C4 � F3

F0
L3o3

0:

It can be seen that C1 becomes zero when V � ����������������
a1=3za3

p
(m/s). For a tangential

velocity of the disc lower than
��������������
a1=3a3

p
(m/s), C1> 0. If it is greater than��������������

a1=3a3
p

(m/s) then C1< 0. Meanwhile, C2, C3 and C4 are always positive. Note
that equation (6b) is a non-linear stochastic differential equation. The non-
linearity appears as coef®cients to the random parametric excitation of the
normal force. This class of systems can be conveniently analyzed using the
stochastic averaging method.

F(t)

N(t)
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k

Figure 5. Analytical model of the friction element.
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speed and (b) clockwise disc speed: ^, test curves; ~, ®tted curves.
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4. STOCHASTIC AVERAGING ANALYSIS

4.1. NON-LINEAR FRICTION±VELOCITY MODELLING

The dynamic behavior of the friction element as described by equation (6b)
can be analyzed by means of the stochastic averaging method (SAM) established
by Stratonovich [14] and mathematically proven by Khasminiskii [15] by his
well-known limit theorem. The essence of the method is to replace the response,
which contains rapid oscillations due to system non-linearities, by a smooth
response described by slowly varying amplitude and phase shift. Usually, the
amplitude envelope of the response is uncoupled from the corresponding phase
process. When considering only the stationary response, high-frequency
oscillations have a localized effect (in time) and do not contribute signi®cantly to
the average behavior of the system over a long period of time. The stochastic
averaging takes into account the effect of a stochastic parametric process W(t)
with the multiplied displacement and velocity terms in equation (6b). Equation
(6b) involves non-linear terms multiplied by the random process W(t). In order
to apply the SAM to equation (6b), a standard transformation of variables is
introduced in terms of the full amplitude A(t) and the full phase angle W(t), as
follows:
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Figure 7. Piecewise linear models of friction coef®cient±velocity curves for (a) counter-clock-
wise disc speed and (b) clockwise disc speed: ^, test curves; ~, ®tted curves.
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Y�t� � A�t� cosj�t�, Y 0�t� � ÿA�t� sinj�t�, where j�t� � t� W�t� �7a�
subject to the condition

A 0 cosj�t� ÿ AW 0�t� sinj�t� � 0: �7b�
Substituting transformation (7a) into equation (6b), using equation (7b), one
obtains the following two ®rst-order differential equations:

A 0�t� � ÿ2zA sin2 j� �1ÿ C1A sinjÿ C2A cosj

� C3A
2 sin2 j� C4A

3 sin3 j� sinjW�t�,

y 0�t� � ÿ2zA sinj cosj�
�
1

A
ÿ C1 sinjÿ C2 cosj

� C3A sin2 j� C4A
2 sin3 j

�
cosjW�t�,

�8�

where W(t) is assumed to be stationary bounded random process whose
spectrum should be of order e2, which is a required condition for the limit
theorem. In this case, one can write W(t)= ex(t), where x(t) is also a stationary
bounded random process with a mean value m0 and correlation function Rx��t�, e
is a very small parameter. The damping factor is also very small and can be
written according to the small parameter e as z � e2~z. Equations (8) can be
written in the standard form

A 0 � e2f1�A, j� � eg11�A, j�x�t�, W 0 � e2f2�A, j� � eg21�A, j�x�t�, �9a, b�
where

f1 � ÿ2ẑA sin2 j, f2 � ÿ2ẑA sinj cosj,

g11 � �1ÿ C1A sinjÿ C2A cosj� C3A
2 sin2 j� C4A

3 sin3 j� sinj,

g21 � 1

A
ÿ C1 sinjÿ C2 cosj� C3A sin2 j� C4A

2 sin3 j
� �

cosj:

�10�

Both fi and gij are periodic functions in t of period T. If the functions fi and gij
are suf®ciently smooth, the process x(t) will have a correlation function which
decreases as the shift time �t41. In this case, the solution of equations (9)
converges weakly to a diffusive Markov process described by the coupled ItoÃ
stochastic differential equations

dA

dW

� �
� e2

a1
a2

� �
dt� e

b11 b12
b21 b22

� �1=2
dB1�t�
dB2�t�
� �

, �11�

where Bi(t) (i=1, 2) are independent Brownian motion processes with unit
variance. The ®rst expression on the right-hand side (with elements ai) represents
the ``drift vector'' while the square matrix is the ``diffusion matrix''. The
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amplitude A(t) and phase W�t� will converge weakly to Markov processes as
e! 0. The elements of the drift and diffusion expressions of equation (11) are
given in Appendix A.
The amplitude equation in equation (11) constitutes a Markov process because

it is independent of the phase shift W and its behavior is characterized by a
transition probability density p(A, t). The time evolution of the response
probability density function p(A, t) is governed by the well-known Fokker±
Planck±Kolmogorov (FPK) equation [16, 17],

@p�A, t�
@t

� ÿe2 @

@A

bÿ1
A
� �b1 ÿ ẑ�A� b3A

3 � b5A
5

� �
p�A, t�

� �

� e2

2

@2

@A2
f�b0 � b2A

2 � b4A
4 � b6A

6�p�A, t�g, �12�

where bi (i=ÿ1, 0, 1, . . . , 6) are constants related to Ci and the spectra S( j) (see
Appendix B).
For stationary solution @p(A, t)/@t=0, one obtains

�a1�A�p�A, t�� ÿ 1

2

@b11�A�
@A

p�A, t� � @p�A, t�
@A

b11�A�
� �

� 0: �13�

The general stationary solution of equation (13) is

p�A� � k
e

�
2a1�A�
b11�A�dA

b11�A� , �14�

where k is the constant of integration which can be determined from satisfying
the normalization condition. This condition cannot be found in a closed form
due to the degree of non-linearity involved with multiplicative terms. Instead of
seeking the probability density of the amplitude A, we will examine the
qualitative structure of p(A).
The degree of friction random ¯uctuations can change the stability properties

of the friction element. It is important to establish the stability conditions of the
friction element. The interfacial forces can also create new states which never
exist under deterministic conditions. One may gain more physical insight to the
system dynamic characteristics by studying the friction noise-induced transitions.
A transition corresponds to a qualitative change in the state of the system. In
order to determine when the system undergoes a transition, one needs to
monitor the probability density function (pdf) for qualitative changes. Here, the
appropriate indicators of a transition are the extrema of the steady state pdf of
the system [16]. The extrema of the response pdf are determined from the system
FPK equation by setting @p(A, t)/@A to zero in equation (13). This yields the
algebraic equation

n6A
6
e � n4A

4
e � n2A

2
e � n0 � 0, �15�

where the roots Ae represent the extrema of the response probability density, and
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n0 � bÿ1, n2 � b1 ÿ b2 ÿ ẑ, n4 � b3 ÿ 2b4, n6 � b5 ÿ 3b6,

which can be expressed in terms of the system and excitation parameters and are
given in Appendix C. Equation (15) has only two real roots given by

Ae �2
1

21=632=3

���������������������������������������������������������������������������������
31=6nc
n6
ÿ 322=3

���
3
p

n2
nc

� 22=3
���
3
p

n24
n6nc

ÿ 61=3n4
n6

s
, �16�

where

nc � �9n6
��������������������������������������������������������������������������������������
27n26n

2
0 ÿ 18n6n2n0 � 4n34n0 � 4n6n

3
2 ÿ n24n

2
2

q
ÿ 27

���
3
p

n26n0 � 9
���
3
p

n6n4n2 ÿ 2
���
3
p

n34�1=3: �17�
In terms of the system and excitation parameters this parameter is given in
Appendix D.
Based on the experimental results of the friction spectra, one must select

typical values for the spectra at zero frequency, and at non-dimensional
frequencies 1 through 4. Since the natural frequency of the system does not
remain constant during the test due to time variations of boundary conditions,
typical values of the natural frequency were selected ranging from 100 to
150 Hz. The measured spectra were transferred to the non-dimensional one
developed in the analytical modelling. Using these typical values of the friction
spectra one can analyze the dependence of Ae on friction spectra and different
values of disc velocity for clockwise and counter-clockwise cases. The extrema of
the clockwise disc rotation are more complicated than those for the counter-
clockwise case.
For clockwise disc speed, Figure 8(a) shows the dependence of extrema

amplitude Ae on the disc speed for friction element natural frequency
f0=100 Hz and for three levels of friction spectra pS�0�=ẑ � 15, 17 and 20. The
amplitude Ae has non-zero values for disc speed up to 0�0318 (m/s) above which
the friction slope becomes positive and the friction element experiences damped
oscillations. For f0=150 Hz and for each level, Figure 8(b) shows more
complicated characteristics, where the extrema are de®ned by two separate
curves for each friction spectral level. The two curves are separated by a region
of zero amplitude over a ®nite region of disc velocity where equation (17) does
not possess any real root. The ®rst curve corresponds to low disc velocity up to
0�032 m/s, above which the friction±velocity slope is almost zero, and the system
experiences stable equilibrium due to the system damping. This stable
equilibrium will be maintained within a small range of disc speed (0�032±
0�0358 m/s). There will be a bifurcation at disc speed 0�0358 m/s and the friction
element equilibrium position becomes unstable.
For the case of counter-clockwise disc rotation, Figure 9(a) shows the

dependence of the amplitude extrema Ae on the disc speed for f0=100 Hz and
for three levels of friction spectral density pS�0�=ẑ � 100, 130 and 150. The
extrema characteristics for this case are different from those studied for the
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clockwise case. For the present case the disc speed stabilizes the friction element
until a critical disc speed where the extrema amplitude reaches its minimum, then
the amplitude Ae increases with the disc speed. The destabilizing effect with the
disc speed is mainly attributed to the random ¯uctuations of the contact forces.
For pS�0�=ẑ � 100 there exists a small region of disc speed over which the
extrema amplitude vanishes. For f0=150 Hz the extrema amplitude is
continuous with the disc speed. However, it can be seen that the curve
corresponding to pS�0�=ẑ � 30 touches the disc speed axis, as shown in Figure
9(b), and if pS�0�=ẑ < 30 then the friction element will experience bifurcation.
The bifurcation here signi®es a qualitative variation in the system characteristics
as the control parameter pS�0�=ẑ varies. The friction element will experience
transition from a stable equilibrium state to fully developed random motion.
One should bear in mind that the curves presented in Figures 8 and 9 were
obtained for discrete values of friction element natural frequency and friction
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Figure 8. Dependence of the extrema amplitude on the disc speed (clockwise case): (a) friction
element natural frequency f0=100 Hz, Lo0=37�7 m/s, z=0�01 and S(0)=13S(1)=
85S(2)=170S(3)=170S(4); (b) friction element natural frequency f0=150 Hz, Lo0=56�6 m/s,
z=0�01 and S(0)=85S(1)=165S(2)=165S(3)=165S(4).
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spectral density levels pS�0�=ẑ. On the other hand, the pin boundary conditions
at the contact end are time varying. In this case its natural frequency ¯uctuated
during the experimental tests. Note that it was not possible to measure the pin
natural frequency during any test. Furthermore, the contact forces are non-
stationary random processes in nature, and bifurcation may not be exactly
de®ned by a ®xed statistical parameter. One may also conclude that the different
forms of brake noise in the form of moan, groan, or squeal may occur
simultaneously due to the fact of the non-stationary random ¯uctuations of
contact forces.

4.2. PIECEWISE LINEAR FRICTION±VELOCITY MODELLING

As a special case, by setting C3=C4=0 in equation (6b), one can obtain
modelling for the case of piecewise linear friction±velocity representation
described by relations (5). The resulting equation of motion becomes linear non-
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Figure 9. Dependence of the extrema amplitude on the disc speed (counter-clockwise case): (a)
friction element natural frequency f0=100 Hz, Lo0=37�7 m/s, z=0�01 and S(0)=120S(1)=
650S(2)=650S(3)=650S(4); (b) friction element natural frequency f0=150 Hz, Lo0=56�6 m/s,
z=0�01 and S(0)=60S(1)=60S(2)=60S(3)=60S(4).
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homogeneous with one parametric term. This form has been extensively analyzed
in the literature [17]. Following the same procedure of SAM, the drift and
diffusion coef®cients take the form

a1 � p
8
�3�C2

1 � C2
2�S�2� � 2C2

1S�0�� ÿ ẑ
n o

A� p
2A

S�1� � �A� n

2A
, �18a�

b11 � p
4
��C2

1 � C2
2�S�2� � 2C2

1S�0��A2 � pS�1�
n o

� mA2 � n: �18b�

and the stationary pdf can be obtained in the closed form

p�A� � kA

�mA2 � n��3=2ÿ�=m�
, �19a�

where k is the constant of integration which is determined from the
normalization condition

�1
0 p�A� dA � 1. This yields the result

k � mÿ 2�

n��=mÿ1=2�
�19b�

provided m> 2v, which is equivalent to the expression

ẑ >
p
4
�C2

1 � C2
2�S�2�, �20�

where

mÿ 2� � 2ẑÿ p
2
�C2

1 � C2
2�S�2�, n � pS�1�,

�=m � ��3p=8��C2
1 � C2

2�S�2� � �p=4�C2
1S�0� ÿ ẑ�
=��p=4��C2

1 � C2
2�S�2� � �p=2�C2

1S�0��:

Inequality (20) de®nes the condition of sample stability condition of the
amplitude response and also establishes the boundary of bounded solutions as
shown in Figures 10(a) and (b) for clockwise and counter-clockwise cases,
respectively, and for f0=100 Hz. The difference between the two cases is only
manifested at lower values of disc speed.
Figures 11(a) and (b) present two sets of the friction element amplitude pdf

for the clockwise disc speed case and for two different values of disc speed
V=0�03 and 0�04 (m/s). Each ®gure shows the pdf for different values of
friction spectral density at twice the system natural frequency pS�2�=ẑ. All the
curves follow the typical Raleigh distribution and the peak moves to the right as
the friction spectral density level increases. Figures 12(a) and (b) display another
two sets of pdf for the counter-clockwise disc speed for the same disc speed
values presented in Figures 11(a) and (b). In both cases the friction element
amplitude corresponding to the pdf peak moves to the right as the friction
spectral density increases.
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The nth moment of the amplitude is

E�Ai� �
�1
0

Aip�A� dA �
�1
0

Ai mÿ 2�

n��=mÿ1=2�

� �
A

�mA2 � n��3=2ÿ�=m�
dA

�
B

i� 2

2
,ÿ �

m
ÿ i� 2

2
� 3

2

� �
n�i�2�=2ÿ1�mÿ 2��

2m�i�2�=2
, �21�

where B�p, q� � � 10 xpÿ1�1ÿ x�qÿ1 dx is the Beta function with Re( p)> 0 and
Re(q)> 0.
The integral (21) converges if

�

m
<

3

2
ÿ i� 2

2
: �21a�

Thus, the stability conditions of the ®rst and second moments are, respectively,

(a)
12

2

4

6

8

10

0
0.02 0.030.01 0.04

V (m/s)

(b)
70

20

10

30

40

50

60

0
0.02 0.030.01 0.04

V (m/s)

Unstable

Unstable

Stable

StableS
(2

)/
  

 (
  

10
–6

) 
  

^
S

(2
)/

  
 (

  
10

–6
) 

  
^

Figure 10. Sample stability boundaries for f0=100 Hz: (a) counter-clockwise disc speed; (b)
clockwise disc speed.
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� < 0, i:e:, ẑ >
p
8
�3�C2

1 � C2
2�S�2� � 2C2

1S�0��, i � 1, �22a�

2� �m < 0, i:e:, ẑ >
p
2
��C2

1 � C2
2�S�2� � C2

1S�0��, i � 2: �22b�

From equation (21) the mean and mean square of the amplitude are,
respectively,

E�A� � B�3=2ÿ �=m� ���np �mÿ 2��
2m3=2

, E�A2� � n�2� ÿm�
2m2�1=4ÿ �2=m2� �23�

If C1=0, which means that the equation of motion (6b) only includes the time
variation of the stiffness term and the non-homogeneous term which is due to
static friction �V � _y�. The stability conditions expressed by equations (20) and
(22) are reduced to similar results as those obtained by Roberts [18] for the
problem of ship roll motion in random sea waves. These stability conditions
establish the levels of contact forces spectra below which the model will not
experience any oscillations. Note that the present analysis is based on the
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Figure 11. Stationary probability density curves of the friction element amplitude for the case
of clockwise disc speed: (a) V=0�03 m/s; (b) V= 0�04 m/s.
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assumption that the contact forces are random stationary processes. However,
the experimental results showed that these contact forces are non-stationary.

5. CONCLUSIONS

Linear and non-linear phenomenological models have been developed for
the interfacial forces between a rotating disc in contact with a rigid pin. In both
models the interfacial forces are random, non-stationary, and essentially non-
Gaussian. The resulting equation of motion of the non-linear model contains
non-linear parametric terms in the velocity terms due to the random ¯uctuations
of the normal force. Due to time variation of boundary conditions, the
friction element did not possess constant natural frequency. The analysis of both
models was carried out using the stochastic averaging method. The problem of
noise-induced transition was analyzed for clockwise and counter-clockwise disc
speeds. The amplitude extrema for both cases was plotted in terms of disc
velocity and friction spectral density level. The amplitude extrema for the
clockwise case was more complicated than the counter-clockwise case due to the
sprag-slip phenomenon. For the linear models, closed form solutions of the
pin response statistical parameters such as probability density function and
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Figure 12. Stationary probability density curves of the friction element amplitude for the case
of counter-clockwise disc speed: (a) V=0�03 m/s; (b) V=0�04 m/s.
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statistical moments were derived in a closed form. The friction statistical
parameters for the clockwise case are signi®cantly different from those of the
counter-clockwise case. The results of both cases approach each other as the disc
speed increases.
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APPENDIX A: ESTIMATION OF DRIFT AND
DIFFUSION COEFFICIENTS

Consider a set of differential equations of standard form

dxi
dt
� e2f1�x, t� � e

Xm
k�1

gik�x, t�Zk�t�, i � 1, 2, . . . , n: �A1�

If the condition in the standard stochastic averaging method is satis®ed, the drift
coef®cients and diffusion coef®cients of the corresponding smooth ItoÃ equations
can be evaluated from the expressions

ai�x� �
�
fi�x, t� �

Xn
j�1

Xm
k�1

Xm
l�1

�0
ÿ1

@gik�x, j�
@xj

gij�x, j� �t�Rkl��t� d�t
�

t
, �A2�

bij�x� �
Xm
k�1

Xm
l�1

�1
ÿ1

gik�x, j�gjl�x, j� �t�Rkl��t� d�t

* +
t

: �A3�

The notation

h� � �it � lim
T41

1

T

�T
0

�� � �� dt

denotes a time-averaging operation which may be approximated (over a quasi-
period 2p) by

h� � �it �
1

2p

�2p
0

�� � �� dj:

In the present study, after substituting that n=2 and m=1 in equations (A2)
and (A3), the drift coef®cients and diffusion coef®cients are estimated as follows:

a1 � 1

T

�T
0

f1�A, j� dj� 1

T

�T
0

dj
�0
ÿ1

�
@g11�A, j�

@A
g11�A, j� �t�

� @g11�A, j�
@j

g21�A, j� �t�
�
R��t� d�t
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3S�3� ÿ 4C1C4S�2� � C2
3S�1��A2 � C2

4p
64
�S�4� � 4S�2��A4, �A7�

b12 � b21 � 0, �A8�
where

S� j� � 1

2p

�1
ÿ1

R��t� cos� j�t� d�t, R��t� � E�x�t�x�t� �t��, j � 0, 1 , 3, 4:

APPENDIX B: COEFFICIENTS OF EQUATION (12)

bÿ1 � p
2
S�1�, b0 � pS�1�, b1 � p

8
�3�C2

1 � C2
2�S�2� � 10C3S�1� � 2C2

1S�0��,

b2 � p
4
��C2

1 � C2
2�S�2� � 6C3S�1� � 2C2

1S�0��,

b3 � p
32
�5C2

3S�3� ÿ 28C1C4S�2� � 21C2
3S�1� ÿ 24C1C4S�0��,

b4 � p
16
�C2

3S�3� ÿ 8C1C4S�2� � 9C2
3S�1� ÿ 12C1C4S�0��,

b5 � C2
4p

128
�7S�4� � 64S�2� � 54S�0��, b6 � C2

4p
64
�S�4� � 16S�2� � 18S�0��:
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APPENDIX C: COEFFICIENTS OF EQUATION (15)

n6 � C2
4p

128
�S�4� ÿ 32S�2� ÿ 54S�0��,

n4 � p
32
�C2

3S�3� � 4C1C4S�2� ÿ 15C2
3S�1� � 24C1C4S�0��,

n2 � p
8
��C2

1 � C2
2�S�2� ÿ 2C3S�1� ÿ 2C2

1S�0�� ÿ ẑ, n0 � p
2
S�1�:

APPENDIX D: RELATION (17) IN TERMS OF SYSTEM AND EXCITATION
PARAMETERS

nc �
�
9pC2

4�S�4� ÿ 32S�2� ÿ 54S�0��
�
27p4C4

4S�1�2�S�4� ÿ 32S�2� ÿ 54S�0��2
65 536

ÿ 9p3C2
4S�1�

1

4096
�C2

3�S�3� ÿ 15S�1�� � 4C1C4�S�2� � 6S�0��
�

6
p
8
�C2

1 � C2
2�S�2� ÿ

p
4
C3S�1� ÿ p

4
C2

1S�0� ÿ ẑ
h i

�S�4� ÿ 32S�2� ÿ 54S�0��

� p4

16 384
S�1��C2

3�S�3� ÿ 15S�1�� � 4C1C4�S�2� � 6S�0���3

� pC2
4

1

32
�S�4� ÿ 32S�2� ÿ 54S�0��

6
p
8
�C2

1 � C2
2�S�2� ÿ

p
2
C3S�1� ÿ p

4
C2

1S�0� ÿ ẑ
h i3
ÿ p2

1

1024
�C2

3�S�3� ÿ 15S�1�� � 4C1C4�S�2� � 6S�0���2

6
p
8
�C2

1 � C2
2�S�2� ÿ

p
4
C3S�1� ÿ p

4
C2

1S�0� ÿ ẑ
h i2�1=2
ÿ 27

���
3
p

p3C4
4S�1��S�4� ÿ 32S�2� ÿ 54S�0��2

32 768

� 9
���
3
p

p2C2
4�S�4� ÿ 32S�2� ÿ 54S�0��

6

�C2
3�S�3� ÿ 15S�1�� � 4C1C4�S�2� � 6S�0���

p
8
�C2

1 � C2
2�S�2� ÿ

p
4
C3S�1� ÿ p

4
C2

1S�0� ÿ ẑ
h i

4096

ÿ
���
3
p

p3�C2
3�S�3� ÿ 15S�1�� � 4C1C4�S�2� � 6S�0���3

16 384

�1=3

:
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