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The effects of a rigid baffle on the seismic response of liquid in a rigid
cylindrical tank are presented. A baffle is an additional structural element
which supplies a kind of passive control on the effects of earthquake motion.
Fluid motion is assumed to be irrotational, incompressible and inviscid. The
method of superposition of modes has been implemented to compute the
seismic response. The boundary element method is used to evaluate the natural
modes of liquid in a cylindrical tank. Linearized free surface conditions have
been taken into consideration.
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1. INTRODUCTION

In recent years, the civil engineering community has been concerned with the
development and implementation of innovative design concepts for seismic
protection of structures, particularly for the control of earthquake effects on
buildings [1, 2].

Seismic response reduction systems need not be located only in the base of the
structure. Control systems have mainly two categories called active and passive
systems. The system is called an active control system if external forces are
applied with the base isolation system to the structure to control the earthquake
effects. In passive control systems external forces are not required [1].

Attempts have been made to install them in different parts of the structure,
either in the form of additional response reduction masses, or dampers, friction
devices, etc. One of the passive control systems is based on the known behavior
of a braced steel frame when using friction effects of friction dampers. During an
earthquake the friction damper mechanism develops additional energy-
dissipating sources which can protect the main members from structural damage.

In liquid containers, breaking of surface waves, while highly dependent on
vibration amplitude, is the main mechanism of energy dissipation. Liquid
dampers have been in use in space satellites and marine vessels. The value of
additional damping can increase with low viscosity of the liquid, with a smooth
bottom of the container, and with an adequate gap between the liquid and the
roof of the container. Another approach to the response reduction systems is the
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coupling of individual structural systems, one alongside another with different
stiffness, and intermediate energy absorbing systems.

Vondorn [3] reported the damping effect of the bottom boundary layer on
liquid motion. Miles [4] also studied the ring damping of free surface oscillations
in a cylindrical tank.

If stiffeners are required in the tank design for structural integrity, the baffles
and support rings may serve the dual purpose of slosh damper for passive
control of the tank and stiffener. Several rings can be supported around the tank
periphery and positioned slightly below the liquid surface.

The phenomenon of earthquake damage on the nuclear power plants and
petroleum tanks creates an important research area in the seismic analysis of
liquid storage tanks [5, 6]. The behavior of the liquid in rigid tanks has been
examined by some authors over a number of decades [7, 8]. Studies with flexible
tank assumptions are later than those with rigid tank assumptions [9—11]. There
are studies that compare different methods of seismic analysis for partially liquid
filled or empty containers [12—14].

Some authors make use of a mass—spring model of the liquid [15-19], while
others tend to solve the potential problems [20-22]. Perturbation expansions also
have been used for calculation of the water waves [23]. A semi-analytical method
uses Fourier series and FEM [24]. Numerical inversion of transformation
methods [25], the panel method based on the boundary integral technique [26],
the finite element method [27] and Galerkin’s approach [14] have been used to
solve the liquid sloshing problem in cylindrical tanks that are elastic or rigid with
linear or non-linear free surface conditions. Compressibility of the liquid has
been considered for the analysis of dams [28, 29].

The boundary element method can be used to evaluate the natural frequencies
and the natural modes of the liquid. The technique of superposition of the
modes has then been used for the seismic analyses [8, 20].

Passive systems can be configured with additional structural elements, such as
mass—damper—spring systems or baffles in liquid storage tanks [30, 31].

In this study, to examine the effectiveness of baffle for liquid oscillations as
passive control systems, the forces acting on the foundation of the baffle—tank
system, caused by the hydrodynamic pressure of the fluid, is determined by using
the boundary element method.

By choosing the suitable geometry for the baffle—tank system, the magnitudes
of the forces mentioned above can be minimized for a kind of passive control
system.

1.1. ASSUMPTIONS

The following are assumed for the liquid: (1) either the velocity or the
displacement of a particle on the free surface is so small that the kinematic and
the dynamic conditions can be linearized; (2) the fluid is incompressible and
inviscid; (3) the fluid motion is irrotational.

The following are assumed for the baffle-tank system: (4) the baffle-tank
system is a rigid structure and fixed on a rigid foundation; (5) the baffle-tank
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system moves only in the horizontal direction under the effect of the recorded
earthquake acceleration.

2. FUNDAMENTAL EQUATIONS

The cylindrical co-ordinate system (r, 0, z) for the baffle—tank system is fixed
as shown in Figure 1. A Cartesian co-ordinate system is fixed at the bottom of
the tank to make easy the definition of shear force and the overturning moment
acting on the foundation. The relation between these two co-ordinate systems is

x=rcosf and y=rsinb. (1)

A way to analyze the behavior of the liquid is the use of velocity potential as in
references [20-22].

A non-dimensional form will be chosen because the results then become more
understandable. The radius of the tank R, the gravitational acceleration g and
the density of the liquid p, are used in the procedure for establishment of the
non-dimensional forms [20]. Thus, one has

@« @+/gR? (velocity potenial), p<«—p/p;gR (hydrodynamic pressure),

a<—a/g (recorded earthquake acceleration in x-direction),
r«r/R (radial component of cylindrical co-ordinate system),
z+—z/R (vertical component of cylindrical co-ordinate system),

t—1\/g/R (time), w<—w+/R/g (angular frequency),
n<—n/R (vertical displacement of a particle on the free surface),

F.—F,/ Py gR’ (shear force at the bottom of the tank),

M, «—M,/p, gR* (overturning moment around axis of ). (2)

Liquid's free surface

Cylindrical rigid tank

Rigid baffle

Rigid foundation

Figure 1. Rigid cylindrical tank with a baffle and co-ordinate systems.
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Here the arrows indicate the non-dimensional terms. Shear force and
overturning moment are respectively

F. = J pnydS and M, = [ (zny — xn.)p dS, (3)
S, Sy

where n, and n. are the components of the outward normal of the surface in the
x and z directions, respectively. A harmonic boundary value problem can be
represented by using the velocity potential as follows:

V2® = 0 in the region of the liquid Ry, (4)

@, = 0 on the rigid surface S, (5)

@ . = i kinematic condition on the free surface Sy, (6)
1 = @ + ax dynamic condition on the free surface S (7)

Here a(?) is the recorded earthquake acceleration and a superposed dot implies
time differentiation. A comma followed by a subscript indicates partial
differentiation with respect to the corresponding spatial variable. Initial
conditions are as follows: at t = 0

®=0in R, ®=0inR, (8,9)
The hydrodynamic pressure of the liquid can be written as
p=—®—ax in R/ +S,. (10)

The meaning of the kinematic condition is that a particle on the free surface will
always stay on the free surface and that of the dynamic condition is that
pressure on the free surface is zero. A linear dynamic condition can be obtained
by the use of Bernoulli’s equation in the case of low velocities. Substituting
equation (6) into equation yields (7) a linear free surface condition as

®.=0+ax on Sj. (11)

2.1. SUPERPOSITION OF MODES

The velocity potential field of the liquid in the cylindrical tank can be written
in the form

o(r, 0, z, 1) Zcosk@qu 7y 20 (1) (12)

where ¢, is the value of the velocity potential on the plane of =0 and y,, is the
weighting factor. k and n are the numbers for the modes in the circumferential
and radial directions, respectively. Cases k = 0 and k = 1 correspond to axially



LIQUID STORAGE TANK WITH A BAFFLE 145

symmetric and asymmetric mode shapes, respectively. In this paper, for the sake
of simplicity and sufficiency, only the term k = 1 has been used, so omitting
index k from equation (12) one has

&0, z, t) = cos b i o, (r, 2)Y,(1). (13)

For the modes of natural vibration, by taking () = sin w,? and a(¢) = 0 then
substituting equation (13) into equation (11), the following condition for the nth
mode is obtained:

(bn,z = _wglqbn (14)

Here w,, is the natural frequency of the nth mode. The velocity potential field
for the liquid under the effect of the recorded earthquake acceleration can be
evaluated by the use of mode shapes and natural frequencies of natural
vibration. Substituting equations (13) and (14) into equation (11) yields the
following form for the function ,,:

o0

> (W +op,)$, =—ar on S (15)

n=1

By the use of the orthogonality of the mode shapes of the velocity potential [20],
the following form can be obtained from equation(15):

V(1) + o, (1) = —La. (16)

Here

I, = J rz(/ﬁn ds/J rqﬁﬁ ds, (17)
Iy I'g;

where I'j; is the intersection of S, and the 0 = 0 plane (see Figure 2). The
solution of equation (16) satisfying the initial conditions (8) and (9) is Duhamel’s
integral

v (1) = —if a(x) sinon(t — 7] dr. (18)

By partial integration of equation (18) with respect to time

t

W, (1) = —IHJ a(t) cos|wy(t — )] dr (19)

0

is obtained, where @(0) = 0. A numerical integration of equation (19) is easier
than that of equation (18). Duhamel’s integral (19) has been numerically
evaluated by using the trapezoidal integration rule.
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Figure 2. 0 = 0 plane. (a) Cylindrical tank; (b) cylindrical tank with a baffle.

3. BOUNDARY ELEMENT METHOD

The boundary integral equation form of equation (4) can be written for any
mode shape of the velocity potential, upon omitting index #n as [32]

~arp(p) = | {05~ 0 hras (20)

on on

Here G* is the free space Green function for the axially-asymmetric problem
(cos 0 type). ap is defined by the position of the source point P as

4n P e Ry
ap =< 2m PesSy . (21)
0 P¢R+Sr

The boundary element method with the constant elements is used for the
solution of the initial value problem. By evaluating the integrals in equation (20)
over constant boundary elements by using the shown source position in Figure 3,
the following linear system of equations is obtained [33]:

—app(P) = Hadby — Gy k=1,2,...N and i=1,2,...N.  (22)

Here the source point is near to the ith element and the boundary integral is
evaluated over the kth element (see Figure 3). ¢, is the value of the velocity
potential of the kth element. H; and G, are the boundary integrals given by

Hj = J G, (P, s)r(s) ds, Gy = J G (P, s)r(s) ds, (23, 24)
Iy Ty

where G (P, s) is called the free space Green function which is the potential on

the point s due to the unit source located on point P. For the axially-asymmetric

problem (cos 6 type), one has
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Figure 3. Constant boundary elements on the § = 0 plane and source point position.

G (P, ) :i{(z 1>K(K) —%E(K)} (25)

rps | \x?

and the outward normal component of the velocity of liquid particles on the
boundary for this potential field is [32]

4 2
Gj,in(P’ §) = ;{ [rp <; - 1> — rs] n,+ (zp — zs)nz}x

1 2 2 1
X {m (; - 1) E(x) — EK(K)} - EG;‘(P, $)Ny, (26)
where « =4rpr/rh, and 13 = (rp+r)* + (zp —2z,)*. n, and n. are the
components in the radial and vertical directions, respectively. K(x) and E(x) are
the first and secod kind complete elliptic integrals, respectively [32].

A logarithmic singularity in K(x) occurs when the source point P is located on
the ith element, i.e., k — 0. In order to avoid a singularity, the source point may
be located out of the liquid domain near to the boundary.

Let £, r and ¢ indices denote the parts of the liquid’s surface that are free, rigid
and the interface of the liquid domains, respectively. By using these indices and
equation (5), the system of equations (22) can be written as

Hy H; Hp ¢f Gﬁ‘ Gﬁ~ ch qr
H’f Hr r H” c (I)r = Gljf Grr Grc q, = 0 5 (27)
HCf HCV HC ¢ (I)c Gcf Gcr Gcc q.
or
Hé = Gq, (28)

where ¢ = {¢,..., op}" and q = {D1s---» Ona}'. The elements of matrices H
and G are respectively given by equations (23) and (24) with the constant o = 0.
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3.1. SUB-DOMAINS AND THE CONTINUITY EQUATIONS FOR THE INTERFACES

If a baffle separates a liquid domain into two sub-domains (see Figure 2(b)),
the system of equations (27) can be evaluated for each sub-domain as

[Hyr Hpr Hyp Kra
H;jfl H,.; H, (I)rl
Hcfl Hcrl Hccl ¢c[

Heer Hep by
Hrcll Hrrl[ i d)rll

[ Gy Gur Gy 1(
Gy Gur Gy q,=0
= |Gy Gor Gea q.; ) (29)
Geerr Gernr 7
i Gt Gonr] \q,=0)

where subscripts / and /I denote the domains. In order to get a coupled system
of equations, continuity conditions for the velocities and velocity potentials must
be satisfied.

3.2. CONTINUITY CONDITIONS

Hydrodynamic pressures on each side of the interface of two separated
domains should be equal. When liquids in the separated domains are identical,
i.e., pg = ps, the following continuity condition can be written:

¢c1 = ¢cn . (30)

Here ¢; and ¢;; denote respectively the surfaces of the separated domains on the
interface (see Figure 2(b)). Continuity of the velocity is satisfied by

9Qer = —Yepr- (31)

The coupled system of equations can be obtained by applying the continuity
conditions on equation (29). After elimination of other unknowns, the following
eigenvalue problem can be evaluated by using equation (14):

H, ;= —0,Gr ;. (32)

where components of ¢, = {dy, ..., d)fN/}T are the velocity potentials on the
boundary elements of the free surface for the nth mode shape and the subscript
re denotes reduced form. N, is the number of boundary elements on the free
surface. Velocity potentials on the boundary elements on the rigid surfaces, ¢,;
and ¢,;, can be obtained by the back substitution of the evaluated velocity
potentials.
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4. NUMERICAL EXAMPLES

When the mode shapes and eigenfrequencies of equation (32) are calculated,
the shear force and the overturning moment at the bottom of the tank, which
are caused by the horizontal ground motion, can be determined. Duhamel’s
integral (19) is numerically evaluated by using the trapezoidal integration rule.
The first 10 s of earthquake acceleration records with 0-01 s intervals has been
used.

Only a few of the mode shapes corresponding to the smallest eigenfrequencies
are required. The most effective modes, in response to the ground motion,
correspond to the smallest eigenfrequencies, because of the fact that they always
include most of the total energy of the system. In this study numerical examples
were evaluated by using only the first two mode shapes. It has been checked
numerically that these two modes provide sufficient accuracy.

All of the boundary elements are constant elements with the same length. On
the free surface, for all examples, 10 constant boundary elements were used. On
the other surfaces (wetted boundaries), the number of elements used depends on
the ratios R;/R and H/R.

4.1. NATURAL VIBRATION ANALYSIS

4.1.1. Liquid in the cylindrical tank

The natural frequencies of the liquid in the cylindrical tank are given in Figure 4
for different ratios H/R and for different radial wave numbers n. From Figure 4, it
is seen that the natural frequency corresponding to the first mode reaches its limit
value at about H/R > 1, while the value for the second mode reaches its limit value
at about H/R > 0-3. Likewise, it is clear that the limits corresponding to the highest
modes will occur at smaller ratios H/R.

6
>
5 2 n=2
i
41— i
H i
I
s 3 4 1 -
fe——>
2 —
D)
1 5 n=1
)
0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0
H/R

Figure 4. Variation of natural frequencies (cos 0 type) versus H/R.



150 A. GEDIKLI AND M. E. ERGUVEN

5(%* n=2

—®
1@* n=1
| | | |
0.0 0.2 0.4 0.6 0.8 1.0

R{/R

Figure 5. Variation of natural frequencies (cos 0 type) versus R;/R. H/R = 1; h/H = 0-3.

When the internal radius of the baffle vanishes, the baffle separates the liquid
domain into two domains. In this case, the liquid under the baffle behaves like a
rigid solid and has no vibration, because it has no moving surfaces. Liquid in the
upper domain has natural vibrations, because it has a free surface. Therefore,
point 2 in Figure 5 for the cylindrical tank with a baffle (4/H = 0-3) corresponds
to point 2 in Figure 4 for the cylindrical tank without baffle (H/R = 0-3). Similar
situations are true for all of the points with the same numbers in the figures,
because they denote identical situations in physical meaning.

4.1.2. Liquid in the cylindrical tank with a baffle

The natural frequencies are given in Figure 5, for H/R = 1 and the tank with a
baffle. From Figures 5 and 6, upon taking the circles with 1 and 4 into account,
it is seen that the lower the depth of the baffle, the larger the effect of the baffle
on the frequency.

4.2. SEISMIC ANALYSIS

The record which is used in the numerical examples, with 0-01 s intervals,
belongs to the N-S component of the 1992 Erzincan Earthquake, Turkey; see
Figure 7. The acceleration values for the smaller intervals are obtained by using
the linear interpolation method. The first 10 s of records has been used for all of
the examples.

4.2.1. Liquid in the cylindrical tank

The maximum shear force and the overturning moment at the bottom of the
tank without a baffle, for different values of H/R, are given in Figure 8. Some of
the liquid, near to the base of the tall tank, has a rigid character like a solid. The
rest has a behavior like a spring—mass system. A spring—mass system is the
mechanical model of the sloshing part of the liquid [12, 15].
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Figure 6. Variation of natural frequencies (cos 0 type) versus R;/R. H/R = 1; h/H = 0-1.

4.2.2. Liquid in the cylindrical tank with a baffle

Any of the foundation forces can then be described by two components that
are caused by the rigid part and the sloshing part. The liquid under the baffle
behaves as a rigid part.

The rigid part causes larger shear force than the sloshing part. If the ratio #/H
decreases, the shear force at the bottom of the tank will increase (see Figure 9)
and, in practice, the overturning moment will decrease (see Figure 10). If the
inner radius of the baffle vanishes, the liquid inside the volume surrounded by
the rigid surfaces behaves, of course, like a solid.

Points 7 and 8 in Figures 8-10 show the values for a cylindrical tank without
baffles. When the baffle is positioned as near as possible to the free surface of
the liquid, it slightly affects the shear force and overturning moment at the
bottom of the tank (see Figures 9 and 10).

03— /\
s

E i f\
G A
% 0.0 o MM“VMW } \ \H\ f\ //\41 [A L/VW"A M /\\ /—\,_,\ﬂ /\J
it } ﬂwx VAT T
-0.3 \ \ \ \
0 2 4 6 8 10

t(s)

Figure 7. Acceleration diagram: N-S component of 1992 Erzincan Earthquake, Turkey.
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Figure 8. Foundation forces at the bottom of the cylindrical tank versus H/R. (a) Shear force;
(b) overturning moment.

5. CONCLUSIONS

The effectiveness of a baffle for damping liquid oscillations has been examined
in an attempt to develop more efficient baffle configurations for seismic analysis
of the tank. The baffles usually consist of rigid annular rings or plates which are
fitted around the internal periphery of the tank.
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L 0.283 |
0.281
0.279
0.277
0.275
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Figure 9. Maximum shear force at the bottom of the tank, occurring in the first 10 s of the
earthquake, versus R;/R. H/R = 1.
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Figure 10. Maximum overturning moment at the bottom of the tank, occurring in the first 10 s
of the earthquake, versus R;/R. H/R = 1.

For an effective passive control system, configurations can be designed by
freely suspending baffles between limits along the tank wall and by positioning
them slightly below the liquid surface. If stiffeners are required in the tank
design for structural integrity, the baffles and support rings may serve the dual
purpose of slosh damper and stiffener.

A baffle can be successfully used as a passive control system. For an effective
passive control system, the inner radius should be greater than a half of the
outer radius and the baffle should be located as near as possible to the free
surface of the liquid. A baffle just on the free surface causes a non-linear
behavior because of the unknown free surface. In this paper it has been assumed
that the baffle is always surrounded by the liquid.

Although the baffle causes an increase in the value of the shear force (Table 1),
it should be used to get a smaller overturning moment. The decrease in the ratio

TABLE 1

The effects of the baffle on the foundation forces: (a) ratio of
shear forces; (b) ratio of overturning moments

h/H
R;/Rd 0-1 03
(a) F, with/F, without
0-5 1-06 1-03
0-8 1-02 1-01
(b) M, with/M, without
0-5 0-35 0-70

0-8 0-85 0-93
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of overturning moments is strictly larger than the increase in the ratio of shear
forces (see Table 1). This makes the usage of the baffle effective. As an example,
for the location of the baffle such as #/H = 0-1 and inner radius R;/Rd = 0-8,
shear force is increased 102% by the baffle. However the overturning moment is
decreased 85% by the baffle.

The overturning moment can cause an uplift problem in the liquid storage
tanks under the earthquake motion. Therefore, a baffle can be used to prevent
this problem.

Other types of baffles, i.e., baffles capable of deflecting, deforming, and/or
moving with respect to the tank wall will be the subject of the next study. In
addition, the damping provided by rigid baffles of comparable size will be
examined to determine the relative effectiveness between rigid and flexible
systems. Furthermore, the subject of preventing uplift problems in liquid storage
tanks under earthquake motion by using a baffle will also be a study in the
future.
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