Journal of Sound and Vibration (1999) 223(1), 2348
Article No. jsvi.1998.2135, available online at http://www.idealibrary.com on IDExL"

®

RESPONSES OF BLAST LOADING BY
COMPLEX TIME STEP METHOD

T. C. Fung AND S. K. CHOwW

School of Civil and Structural Engineering, Nanyang Technological University,
Nanyang Avenue, Singapore 639798

(Received 7 July 1998, and in final form 30 November 1998)

Blast loading is often described by means of high order functions, and step-
by-step time integration algorithms are commonly used to evaluate the
numerical solutions. The time step size for the Newmark method has to be very
small in order to integrate the high order loading accurately. Recently, a
complex time step formulation has been proposed to construct unconditionally
stable higher order accurate time step integration algorithms with controllable
numerical dissipation where loading with high order variation can be tackled
without difficulties. The responses at the end of a time step are obtained by
linearly combining the responses at various complex sub-step locations with
different weighting factors. In this paper, the complex time step method is
extended to evaluate the responses within a time step. The required weighting
factors anywhere within a time step can be worked out systematically. Besides,
there are some locations within a time step with one order higher in accuracy.
A procedure is also proposed to evaluate the modified excitation at various
complex sub-step locations. To verify the complex time step method, a single-
degree-of freedom system subject to blast loading described by a fourth order
polynomial is considered in detail. A multi-degree-of-freedom system is also
analyzed. Excellent performance over the Newmark method is noted. It is
possible to evaluate the responses due to blast loading by using just one time
step.

© 1999 Academic Press

1. INTRODUCTION

Blast loading is the result of an explosion that comes in the form of a shock
wave consisting of a high-pressure shock front from the centre of detonation. A
typical pressure—time history for a blast wave in free air is shown in Figure 1.
The shock front arrives at time ¢, and reaches its peak value. The pressure then
decays to the ambient value which defines the positive phase duration 7. This is
followed by a negative phase duration where a reversal of the air particles results
in suction. The Friedlander equation

p(0)=p1 - Jexn{ -1 )
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Figure 1. A typical pressure versus time curve for blast wave.

is often used to describe the decay of the pressure intensity using the exponential
function [1].

In some situations, the actual blast loading is approximated by assuming
linear decay for the positive phase and with the negative phase being
neglected. Such approximations neglect possible effects on the response by
the suction phase [2]. Bakri and Watson [3] made a comparative study on
the response of a slab subject to four different types of blast loading shown
in Figure 2. Each type of loading tries to approximate the actual pressure—
time history obtained in an experiment. Both Lines I and II assume linear
decay of the loading and ignore the negative phase. Line I uses the same
peak overpressure and positive time duration as the actual loading. On the
other hand, Line II uses the same peak overpressure but preserves the
impulse by adjusting the positive phase duration. Line III considers only the
actual positive phase of the loading and Line IV uses the full blast load in

p(t)

Figure 2. Idealisation of pressure—time profile.
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both the positive and negative phases. The results showed that Line I over
predicted the slab response while Lines II and III, both having the same
impulse, gave similar responses lower than that of Line I. Line IV gave the
best prediction for the deflection—time history. These observations suggest
that the negative phase of blast pressure is important in order to predict
accurately the responses of blast loading on structures.

Overestimating the loading, such as considering only the positive phase of
the blast load, may be appropriate for defensive or design purposes since
uncertainties are already present in the loading parameters. This, however,
may not be the case for offensive purposes such as military target-analysis
[4]. In view of the need to obtain accurate prediction of response—time
history, it is of much interest to seek solution techniques suitable for blast
loading

Singhal and Larson [5] used a fourth order polynomial to describe the blast
wave and calculated the dynamic reduction factors of flexible panels. Both the
positive and negative phases of the blast load were considered and an analytical
closed form solution was obtained by Duhamel integrals. The results were then
compared with different time step integration schemes. In this paper, the
complex time step method is used to evaluate the responses. It is found that the
present method is particularly suitable for systems subject to loading with higher
order variation, such as blast loading. It is possible to evaluate the responses
accurately by using just one large time step.

1.1. ALGORITHMS FOR TIME-STEP INTEGRATION

In the analysis of structural response to dynamic loading (such as blast
loading), the structure is commonly modelled using the finite element method.
The resulting equations are then solved by time step integration methods to
obtain numerical solutions at discrete time points [6]. For a multi-degree-of-
freedom system, the equations of motion after spatial discretization using the
finite element method can be written as

MJ{i(2)} + [Cl{u(n)} + [K{u(1)} = {F(1)} (2)

where [M], [C] and [K] are the mass, damping and stiffness matrices respectively,
{F(?)} is the applied load vector, {u(¢)} is the unknown displacement vector and
dots denote differentiation with respect to time ¢. The initial conditions at =0
are {u(0)} = {up)}, {u(0)} = {vo}.

To solve equation (2) numerically using time step integration algorithms, it is
desirable for the algorithms (i) to possess numerical dissipation so as to damp
out the spurious high-frequency responses and (ii) to be unconditionally stable
so that time steps of any size can be used without introducing numerical
instability. The commonly used algorithms are the linear mutli-step algorithms
such as the central difference method, Trapezoidal rule, Newmark method,
Wilson-0 method, HHT-« method, Houbolt method, Park method, WBZ-«,
method, Bossak method and Bazzi—Anderheggen method [7-9]. These
algorithms are unconditionally stable but only second-order accurate. Third and
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higher order accurate linear multi-step algorithms give more accurate numerical
results but they are conditionally stable only.

Fast and accurate algorithms are useful for dynamical design, analysis and
control of mechanical and structural systems. Higher-order accurate
algorithms give very accurate numerical results and are good for long-term
prediction of system responses and preservation of system invariant (such as
energy and momentum). With the higher order algorithms, larger steps in
time marching can be taken without compromising accuracy. As an
alternative to the h-type refinement (decreasing time step), the higher-order
algorithms can be regarded as the p-type refinement (increasing the order of
approximating polynomials). Peters and Izadpanah [10] pointed out that p-
version finite elements in time can be made competitive with conventional
time-marching algorithms, particularly if high accuracy is needed. More
discussions on the higher order accurate time step integration algorithms can
be found in references [11, 12].

Nowadays, the Newmark method is still very commonly used. However, it is
non-dissipative when second order accurate. Recently, Fung [13—15] proposed
the complex time step method based on the Newmark method to construct
unconditionally stable higher order accurate time step integration algorithms
with controllable numerical dissipation. The complex time step sub-stepping
procedure in Figure 3(a) is different from the linear multi-step procedure in
Figure 3(b). In the complex time step method, the numerical results at different
sub-step locations are evaluated independently and then combined linearly to
give higher order accurate results at the end of a time step. The sub-step
locations may be complex. The order of accuracy of an algorithm determines the
number of sub-steps in order to advance one time step. In general, (2n—1 )-th
order accurate algorithms can be obtained by using n sub-steps. Furthermore,
independent evaluation of the results at each sub-step location also enable the
algorithm to be implemented on parallel computers easily so as to speed up the
computation time.

There are three types of algorithmic parameters in the complex time step
method: the sub-step locations f;, the weighting factors o; for combining the
results at the sub-step locations and the desirable ultimate spectral radius pu.
Here the ultimate spectral radius controls the stability property and the
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Figure 3. Time-stepping procedures: (a) complex time step method, (b) Newmark method.
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numerical dissipation. It has been shown that if —1<u <1, the resultant
algorithms are unconditionally stable for all » [14, 15]. The algorithms with
—1<u<0 are seldom used since they are not as accurate as those with
0 < u < 1. By varying u, the algorithms can be damped in a controllable way. A
special case is when u =1, the algorithms for various n are non-dissipative with
an order of accuracy increased from 2n — 1 to 2n. It has also been shown that in
order to maintain higher order accurate solutions, the excitation may need some
modifications.

Since the complex time step algorithms are higher order accurate and can
handle higher order excitation, it is particularly suitable for systems subject to
blast loading. A large time step can be used to integrate the blast loading
responses accurately. In particular, the responses at the end of the loading
duration can be computed with a single time step using a sufficiently high order
accurate algorithm. On the other hand, for the unconditionally stable second
order accurate Newmark method, the time step size has to be kept very small in
order to integrate the blast loading responses accurately. Many time steps are
generally required.

The complex time step method gives accurate results at the end of a time step.
Very often, it is of interest to know the responses within a time step as well.
However, the evaluation of the responses within the time step by the present
complex time step method has not been discussed previously.

1.2. OUTLINE

In this paper, the complex time step method is refined to give responses
anywhere within a time step. The order of accuracy is shown to be only 7 in
general, rather than 27— 1 as at the end of the time step. A similar observation
has been reported by Fung and Leung [16] for the higher order accurate time
discontinuous Galerkin method and the bi-discontinuous Galerkin method. The
procedure to evaluate the corresponding weighting factors o for any particular
location within a time step is given. It is also found that there are some locations
within a time step having an order of accuracy n+1 (one order higher than
other locations in general).

In order to obtain accurate particular solutions, the excitation may need some
modifications [14, 15]. When the excitation is expressed as a power series in time
explicitly, the modification can be done easily by scaling up the coefficients.
However, most of the time the explicit form is not known and a reconstruction
of the polynomial may be required. The reconstruction and modification are
investigated in this paper. A procedure is proposed so that the required
excitations at the complex sub-step locations can be evaluated from the
magnitudes of the excitation sampled at various locations within a time step
interval.

In section 5, the complex time step method is used to evaluate the responses
due to a high order blast loading described by a fourth order polynomial. This
blast load approximation has been adopted by Singhal and Larson [5] and
Singhal et al. [17] in evaluating flexible panel responses. In their paper, closed
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form solutions were used to compute the responses and to compare with the
Newmark method which was considered as the representative of time-stepping
schemes. In this paper, it is shown that a sixth order accurate complex time step
algorithm could predict the responses at the end of the blast loading duration
accurately by using just one time step. The results are even better than those
given by the Newmark method with 20 time steps. The responses within the
time-step are also constructed by using the present method. A seventh order
accurate algorithm which is fourth order accurate within a time step gives
accurate responses within the time-step.

2. NEWMARK METHOD

The modal decomposition method can be used to uncouple (2). It is well
known that the integration of the resulting system of uncoupled equations is
equivalent to that for the original system. In the following, a single-degree-of-
freedom system is considered. The governing equations are given by

u(t) + 2Ewu(t) + w?u(t) = f(1), (3)

where &, w and f{¢) are the damping ratio, undamped natural frequency of the
system and the forcing excitation, respectively.

Given initial conditions u(0) =uq, #(0)=v, at t=0 for (3), the approximate
numerical solutions u,; and v, at t=t,,; can be obtained from u, and v, at
t =1, by using the following recurrence equations for the Newmark method

Uit = Uy + Vudt + a, A (1 = 2B) /2 + a, AP,
Vil = Vn + ayAt(1 — ) + a1 Aty,

an + 266011,1 + wzun :f<tn)a
st + 2E0Vni1 + O Uy =f(tasr1),

where At=t,,.,—1, is the time step size. The parameters f and y define the
variation of acceleration over a time step and determine the stability and
accuracy characteristics of the method. A satisfactory selection of these
parameters is 2f=7>0-5. Two well-known selections give the constant average
acceleration method (f=1/4, y=1/2) and the linear acceleration method (f =
1/6, y=1/2).

For comparison with the analytical solutions, the Newmark algorithm is cast
in the equivalent single-step two-stage form for the single-degree-of freedom

system as
{oed = isaatan{) + wtan{ [ 1 )

Vn+1 n f(tn-i-l)

where [Anm(41)] is the numerical amplification matrix given by
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2028 — 9)éP A + (28 — Dw* A2 + dpéw At + 2 22(2/3 —NE?AP + (2y — 1)éw A + At
2+ déwdt + 20 Ar 2 + 4yl At + 2P A2
—(28 =)0t A48 — 202 At ) —(2B = )EP AL + (B — ) A +2(y — 1)éwdt + 1
2+ 4yéwAt + 2Pw? A 2 + dyéwAt + 2B A2
and
(1 =2B) A% + 2E(y — 2B)w AL 2B4¢
2 + dylwAt + 2pw* At 2+ dylwAt + 2w Ar?
[Lam(40)] =
2(1 — ) At — (y = 2B)w*A¢ 2pAt
24+ 4yEAt + 2Pw* A2 2+ dypéwAt + 2pw* At

Using the constant average acceleration method so that f=1/4 and y=1/2,
the Taylor series expansions of the entries in [Anm(47)] about At are

1 1 1 1
Anm(l, D) =1— szAtz +§£w3At3 — g(452 — Dottt +Z§(2§2 — D48 + ...,
1 1
Axm(1, 2) = At — Ew AP +Z(4§2 — w?48 — E(:(252 — Dw’art
1
+E(16é4 — 128 + No*ar + ...,

1 1
Anm(2, 1) = =0 At + E* AP — Z(452 — Do*4r + 5(23;2 — Déa’ At

1
— —(16&* — 128 4+ )® 46 + ...,

16
Anm(2,2) = 1 = 2¢wdt + % (48 — D’ 4> — (28 — 1)éa’ AP
+%(16é4 — 128 + Da'*4r* —5(1654 — 168> 4+ 3)éw’ AP + ... (6)

The analytical amplification matrix for (3) is

1
cos(mgt) + i_a) sin(wgt) o sin(wgt)
¢ d d
[A(1)] = e ) . (D
w—sin(a) 1) cos(wgt) — é—wsin(w )
Py d d Py d

where wy=wy/1 — & is the damped vibration frequency. The Taylor series
expansions of the entries in [A(¢)] about ¢ are
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1 1 1 1
AL, 1) =1 — -’ + ggaﬁﬁ —— (48 - Dot + =28 - 1)’ + ...,

2 24 30

A(1,2) =t — ot +é(4§2 — o’ _ég(zgz S

1 4 2 4.5
33 (168" =128+ Do 4,

1 1
A2, 1) = -0’1+ (0’ — 8(452 — Do'*? +6(252 — Déw’r

1
— m(mg“ - 128 + Do’ + ...,

A(2,2) = 1 — 2wt + % (48 — Dare — % (28 — D)éw’

1 1
+ﬁ(1654 — 128 + Do'*t - @(165“ —168% +3)¢0’P + ... (8)

Equations (6) and (8) are useful in establishing the required conditions for
higher order accurate algorithms.

3. COMPLEX TIME STEP METHOD
Fung [13—15] proposed the complex time step method by constructing a
(2n — 1)-th order accurate numerical amplification matrix [A,,_;(47)] by

n

(A1 (40)] =) o[ Anm(Bi41)], 9)

J=0

where «; and f; are the weighting factors and sub-step locations, respectively.
Comparing equations (6) and (8), the parameters 5, and o, are chosen to be

1 n
Bo =0, 06025(14‘(_1) )u (10)
and oy, o, ..., o, and Sy, fo, ..., f, are required to satisfy the following
equations
o =di  fork=1,...2n-1, (11)
=1
where d, =2~ 1/k! and u is the desirable ultimate spectral radius.
It can be shown that f;, ..., f, are the roots of the following nth degree
polynomial

X+ DX e T 4 S, x+ 2, =0, (12)
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where
o 2n—=1=k)l(n+ (n—-kp n!
5 = (—1f 2k d C=—"-. (I3
e T VT an oo 1Y
oy, O, ...,0, can be determined from the first » equations in (11) after
Pi, ..., P, are determined. The resultant algorithms are unconditionally stable if

—1l<pu < 1. The order of accuracy is improved from 2n—1 to 2n if u=1.
However, this higher order accuracy is achieved at the end of the time step only.

In actual computation, the numerical amplification matrices are not com-
puted. Instead, the complex responses U; and V; are computed and combined
as follows:

w=y U and  wv=) o4V, (14)
=0 =0

where U; and V; are responses at the sub-step locations f;4t computed using the
Newmark method in equations (4) and (5).

3.1. WEIGHTING PARAMETERS FOR RESPONSES WITHIN A TIME STEP

u, and v, in equation (14) are responses at the end of a time step only. In the
following, the responses at any time n4¢ (0 < 5 < 1) within the time interval are
considered. Equivalently, a numerical amplification matrix [A(n4¢)] at nAt is to
be constructed from [Anm(f;41)]. In other words, it is required to construct

As(n41)] Zoc [Anm(B41)), (15)
where f;, ..., f, have been determined previously in equation (12) and
o, ..., o, would depend on 5 in general.

By comparing the Taylor series expansions of equation (15) and [A(n47?)], it
can be shown that the required conditions for an sth order accurate [A (y4¢)] are

n n
Sor=1, > ofi=dnt for k=1,... s (16, 17)
= =1
Since there are (n+ 1) undetermined parameters (o, of, ..., «), s can at least be

n. In other words, the responses within a time step can be nth order accurate in
general. In matrix notation, the weighting parameters o at any particular time
nAt within a time interval can be obtained from

By By oo By (% din
BB . B don?

= (18)
gropro gl d.n"

and o5=1—of —o; —...—o since f=0. Obviously, when n=1, «; would be
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equal to those o, in equation (11) and the order of accuracy would be at least
2n—1. It can be proved that o can be given explicitly as

< i i n—i—zk—1 ni
L 12_1:<k022kﬁj )F 19
2B B BB B (B By 1)

If the responses at n regular intervals are of interest (i.e., y=k/n for

k=1, ..., n), o corresponding to (k/n)At can be put into a matrix form as
] = (87" [D][0] (20)
where
(o0 o e O] [Br By oo BT
W Oy .. %, % % /’7;21
[o‘*] = > [ﬁ] = b
A R LA By o B
© 6 - )
_ _ n n n
d 0 ... 0
2 2 2
0 d ... 0 (l) <E> <”—1> |
D= | and [Q= |\ " "
0 0 ... d,] ' '
l n % n n— 1 n 1
L \n n n i

Some typical values of of o for n=2, 3 and 4 are shown in Tables 1-3.
Examining equations (18) and (19) reveals that o is at most an nth degree
polynomial of #. Hence, the responses at other locations can in fact be obtained

TABLE 1
Weighting parameters for interpolation: third order (n=2) 3y=0, oy =1— ] — o

n=1/2 n=1

u=0 Re(B). Re(f;) 0666666667 Re(x}), Re(x)  0-312500000  0-250000000
Im(B}), —Im(B;) 0-471405208 Im(x}), —Im(x5) —0-088388348 —0-707106781

u=1/2 Re(f?), Re(B;) 0-555555556 Re(a)), Re(x)  0-343750000  0-125000000
Im(B}), —Im(B5) 0-368513866 Im(x}), —Im(x;) —0-160177902 —1-168356460

p=1 Re(p}), Re(fs) 0-500000000 Re(o), Re(x3)  0-375000000  0-000000000
Im(B;), —Im(B;) 0288675135 Im(x}), —Im{aj) —0-216506351 —1-732050808




TABLE 2

Weighting parameters for interpolation: fifth order (n=3) Bo=0, of =1—aj — o —

n=1/3 n=2/3 n=1
p=0 By 0-549777659 o 0-323240754 0-681969268 2:514888929
Re(f5), Re(f5) 0-325111170 Re(a3), Re(e) 0-180972216 —0-100243893 —1:007444464
Im(3), —Im(B3) 0:369898649 Im(e5), —Im(or}) —0-051298661 —0-482451097 —0-368253778
p=172 B 0-480424464 o 0-329280683 0935797197 4-117654848
Re(f5), Re(B5) 0-293121101 Re(a3), Re(e) 0-182581881 —0-273454154 —1683827424
Im(f3), —Im(B3) 0-314804051 Im(e3), —Im(or3) —0-108165117 —0-599415993 —0-014149399
p=1 By 0430628846 o 0-318334440 1-164812864 6158265977
Re(f5), Re(5) 0-284685577 Re(e), Re(o3) 0-192684632 —0-434258284 —2:579132989
Im(f3), —Im(f?) 0:271599851 Im(e3), —Im(or3) —0159315753 —0-759055620 —0-337708298

AOHLAN dd1S dNIL XdTdIWOD Ad ONIAVOT LSVI1d 40 SHSNOdSHY
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TABLE 3
Weighting parameters for interpolation: seventh order (n=4) fy=0, oy=1—a] —of — o — o}
n=1/4 n=1/2 n=3/4 n=1
w=0 Re(f}), Re(f3) 0-377327607 Re(a}), Re(a3) 0-221415691 0-326316246 0-899463708 0-600688568
Im(p}), —Im(p3) 0-123548834 Im(o}), —Im(a;)  —0-031819636  —0-428147098  —1-598641414 —6:077528225
Re(f3), Re(B3) 0-194100965 Re(a3), Re(a}) 0-119404622  —0-123191246  —0-668018396 —0-350688568
Im(f3), —Im(p;) 0-288364942 Im(o), —Im(a;)  —0-049749168  —0-339452973 0-111801925 1-419933060
u=1/2  Re(f]), Re(f?) 0-341851489 Re(a}), Re(a3) 0-201472435 0-412942036 1-118352301 —0-253820656
Im(f}), —Im(p3) 0-109060021 Im(o}), —Im(a) —0-071811480  —0-546018650  —2-394986060  —10-049013892
Re(f3), Re(f2) 0-181958034 Re(«3), Re(ay) 0-130070533  —0-233254536  —0-841496833 0-378820656
Im(B3), —Im(B}) 0-255958435 Im(e), —Im(a;) —0-096215652  —0-358374129 0-450817416 2:258593898
u=1 Re(f}), Re(f3) 0-316867519 Re(a}), Re(a3) 0-164719866 1-485193026 0-435050896 1-143874647

Im(p7), —Im(f;)
Re(f3), Re(fy)
Im(f3), —Im(f3)

0-094882025
0-183132481
0-231325226

Im(ay), —Im(o)
Re(a3), Re(o})
Im(s3), —Im(2)

—0-127757184

0-157545759

—0-137607209

—0:660494516
—0-328943026
—0-405615877

—3-247492038
—1-112785271

0795687159

—15-298158259
1-143874647
3-:452040791

14
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by interpolating the initial conditions and the n determined responses. The order
of accuracy of the interpolated responses is of order at least » in general.

3.2. LOCATIONS WITH ONE ORDER HIGHER IN ACCURACY
From equation (17), it can be seen that it may be possible to choose 1 so that
an additional equation with k=n+ 1 is satisfied, i.e.,
o
%

B B = e 1)

*

Oy

Using equation (18), equation (21) can be written as

1 1 ... 1 717" (dn
O . dan?
B B o B ) ) ] ) ) = n+1’7n+1- (22)
ot ot La
Since fy, ..., B, are roots of equation (12), equation (22) can be shown to be
equal to
din
o
[Zn Zn—l PN 21] ] = —dn_;,_li’]nJrl. (23)
dui"

Therefore, the locations with one order higher in accuracy are given by the roots
of the following polynomial

dporf" +d, 2" '+, +di 2, =0. (24)

The locations with one order higher in accuracy can therefore be found
systematically for given n. The accuracy of the responses at these locations is at
least n+1. The locations and the corresponding weighting factors for n=2, 3
and 4 are as shown in Tables 4—6.

4. EVALUATION OF EXCITATION AT COMPLEX SUB-STEP LOCATIONS

The excitation force f(¢) in equation (3) in general can be approximated by a
polynomial function or can be expanded into Taylor series at the beginning of a
time step At as
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TABLE 4

Locations and weighting factors with order of accuracy n+ 1 within a time
step, where n=2

n=2
—_— Re(a}) Im(a})
" n Re(%3) ~Im(23)
0 _ _ _
0-5 0-666666667 0-333333333 —0-402015126
10 0-500000000 0-375000000 —0-216506351

: _r ! 1 1! 1 111 1 (n) n
SO =) +f'(0)t+5/ (O)zz+§j (0)’3+“‘+Ef 0)" + ... os)

for 0<r<4r.

If the truncated Taylor series is used to represent the excitation, the terms
retained should conform to the required accuracy. It has been shown that to
maintain the accuracy of the numerical solutions for a given mth order accurate
algorithm, only excitation terms from #° to #”~! are required.

In the complex time step method, it has been shown [14] that the given
excitation in the form

@) =fo+ it + 18+ 0+ fal + 150+ [+ A0+ =fo+ > fil (26)
k=1

has to be modified to the form

- 3 15 45 315
Ay =fo+fit+ o +§f3z3 + 3fat? +7f515 +7f616 +Tf7t7 +...
P @7)
k .k
= foy + )
b
where d, are defined in equation (11).
TABLE 5
Locations and weighting factors with order of accuracy n+ 1 within a time step, where n=73
n=3

—_— o} Re(o3) Im(o})

I n Re(e3) —Im(a3)

0 0-400000000 0-346108927 0-166945536 —0-136747359
0-5 0-333333333 0-329280683 0-182581881 —0-108165117
0-5 0-800000000 1-770805424 —0-705402712 —0-576229233
10 0-276393202 0-326575082 0-198515858 —0-041847130

10 0-723606798 1-624084090 —0-673845444 —0-750916276
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TABLE 6

Locations and weighting factors with order of accuracy n+ 1 within a time step, where n =4

n=4

—_— Re(a}) Im(o}) Re(o3) Im(o%)

! " Re(#)) ~Im(e3) Re(#}) —Im(%})
0  0-226540920 0-230277199  —0-002447173 0-115553873  —0-012654284
0 0630601937 0-607145801  —0-832296999  —0-417991451 —0-223714146
0-5 0-198385342 0-118655703 0-001808796 0-230523905 0-006782061
0-5 0-553793169  —0-386516761  —0-292223635 0-564341262  —0-729033505
0-5 0-866869108  —0-693420760 1-225249906, 1-006822654  —4-850881672
1-0  0-172673165 0-243876683 0-033161340 0-113266174 0-036901802
1-0  0-500000000 0-485193026  —0-660494516  —0-328943026  —0-405615877
1-0  0-827326835 1-332821980  —5-463507482  —0-975679122 1-505995257

It is not convenient to express the forcing function as a power series as in
equation (26) and then modify the coefficients accordingly as in equation (27)
before evaluating the modified forcing excitation at the complex sub-step
location B;4t. In the following, a procedure is proposed to compute the forcing
excitation at the complex sub-step locations directly from the force magnitudes
sampled at discrete locations within the time step.

Figure 4 shows the magnitude of the forcing excitations f; at a particular time
t;=n,4t. 1f the forcing function is to be approximated by a polynomial of degree
p, the required polynomial can be written as

f(n) = fo+am+an’ + -+ apn’, (28)
where ay, ..., a, are unknown coefficients to be determined. If f;=f(1)
corresponds to the excitation at #,4¢, then

Force (f)

/

Figure 4. Forcing excitation.
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A fo mon (@
f Jo n 13 | | 1
= + or {a} = [n]" ({f} — {fo}).
S fo 0, 1wy | L
(29)
From equation (27), the modified excitation will then be in the form
fn) = il @ o 4 p
Sy =fo+ g+ 0 Tty (30)
As a result, the modified forcing excitation can be written as
f)=fo+In n* 7’)D] (1)~ ({f} — {fo}). (31)
The excitations at the complex time step locations f,41, ..., ,4t can be given
collectively as
- 1 -
) N7 0 ... 0
78y B B AL 1
f(B,) B, [ v |0 — 0
E 2 2 . e 2 d L
=)t : 7 ({8 — {fo)).
fB) B, B ... B !
0 0 —
L dy |

(32)

It is interesting to note that if p =n, and regular sampling intervals are used
(i.e., iy = k/n) then

7 =[] (33)

and equation (32) becomes

{f} = {fo} + [A]" D) '[Q) " {f}y = {fo} + [') " ({f} — {fo}) (34)

5. NUMERICAL EXAMPLE: FOURTH ORDER BLAST LOADING FUNCTION

Since the blast loading is generally described by higher order excitation

functions,

higher order accurate algorithms can be used to compute the

responses more accurately even if a large time step is used. In the following, the
complex time step method is used to evaluate the responses due to a high order
blast loading function described in Figure 1.
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5.1. BLAST LOADING FUNCTION

Fansler and Schmidt [18] and Heap et al. [19] showed that the free-field
overpressures from gun blast based on experiments and field tests can be
described by a fourth order blast loading function with a duration of T as

p-r{1- ) (5 (- (), o

where p, t, t, and t are defined in Figure 1. The positive phase duration 7
generally varies between 5 x 107% and 15 x 10~*s and the remaining parameters
are 0=02728 and Ty=r1/a=3-667t. Without loss of generality, p can be
assumed to be unity and 7,=0.

Since the blast loading function is a fourth degree polynomial in ¢, Taylor
series expansion or a polynomial function up to the fourth degree can be used to
represent the blast loading function in equation (35) exactly. In this case, p=4 in
equation (28) would be sufficient. Within a time interval, five forcing magnitudes
are evaluated at various locations and the excitations at the complex sub-step
locations are calculated from equation (32).

5.2. WEIGHTING PARAMETERS

Consider the equation of motion of a single-degree-of-freedom system in the
form

ii(t) + 2Ewi(t) + w*u(t) = p(1), (36)

where £ =0 and w=0-9 as in Singhal and Larson [5]. The blast loading p(¢) is
defined in equation (35) with =15 x 10~*s. Since the blast loading is a fourth
order function, a fifth or higher order accurate algorithm can be used to predict
the responses accurately.

In the present formulation, the first step is to evaluate the algorithmic
parameters o, and f;,. Consider a fifth order accurate complex time step
algorithm with n=3 and u=0. The sub-stepping procedure is shown in
Figure 5(a). The required algorithmic parameters are

ﬁO:07 «©=3 (37)
and f3;, > and f; are the roots of
5 6 , 3 2
p —gﬁ +§/3—E—0 (38)
and are given by
Br=103"7) —15(3*7) +3,
By =—(5(3"7) +53%%) +3) +i13V3E (') +15(3*7)), (39)
By =~ ) + 53+ —11VIE )+ (1))
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Im (t) Im (t)
B4t Baat
Byt B, At Byt F pat
Va
: Re (t) | Re (1)
t, \ LN} t, ¥/ ﬁzAt L)

B4t

Byt

(a) (b)

Figure 5. Sub-stepping schemes for higher order algorithms: (a) fifth and sixth order algor-
ithms, (b) seventh order algorithm.

Similarly, o, o, and o3 can be evaluated from

I 1 1 o

1
2
Bi Ba Ps =41 (40)
BB Bl !
and are given by
=1+ +3(%)
0 =1 _%(31/3) _%(32/3) + i(%(35/6) — 31/6), (41)

5.3. RESPONSES AT THE END OF THE FIRST TIME STEP

The evaluated algorithmic parameters o; and f; for the fifth order accurate
algorithm are now used to solve for the responses of the blast loading at the end
of a time step. Consider the first time step of size At (0 < At < T,). The
responses for the displacement U; and the velocity V; at each sub-step locations
p;At are evaluated independently using the Newmark method in equation (4) at
p;At. Note that since ff, and 5 are complex conjugates, the corresponding results
are also complex conjugates. Hence, only one of them has to be evaluated. If the
computational effort of complex number multiplication is assumed to be four
times that of real number multiplication, the computational effort of the present
fifth order algorithms would be five times that of the Newmark method (since
one real time step ff;4¢ and one complex time step 5,4t or 34t are evaluated).

By linearly combining the sub-step responses using the weighting factors o; in
equation (41), the responses at the end of a chosen time step At are given by

3
u Uk = =
{ : } = Zak{ g }, where U, =U; and V,=Vs. (42)
Vi =0 Vi
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Note that U, and V), correspond to the sub-step time at o471 =0. These are the
initial conditions and therefore need not be evaluated, ie., Uy=uy=0 and
Vo =Vo= 0.

For comparisons with the analytical solutions, the Taylor series expansion of
u; about At is found to be

Lo Lot 1 0’ +20% — 20

= A —— £ - Art
M T 24 2
160 4 607 + a0’ + 0’7 A (43)
120 3
11 =240 4+ 202 w*? + ot — 200’0
+ A +
7200 4

Similarly, the Taylor series expansion of the analytical solution of equation (36)
is found to be

1 lo+1 1 o’ + 20 — 20
MexactzzAlz—g z At3—ﬂ 1_2 AZ4
1 6 3 6 2 2.2 2.2
o + 6a” + oaw T + wT AL (44)
120 3
1 =240 + 20%w?7? + wtt* — 200?t®
— A0 + ...
720 4

From the above, it can be verified that the algorithm is fifth order accurate for
the o; and f; values used and the truncation error is

1 =24 3 2 2,.2.2 4 4_2 2.2
Error(0(41)] = — v TT:F“’ 1) (45)

The absolute magnitude of the error of course depends on the actual time step
size At. Table 7 shows the relative differences between the numerical results and
the analytical results for the displacement at the end of the first time step for
various A4t. It can be seen that very good accuracy can be obtained when the
time step size is about half of the duration of the blast loading. The accuracy
starts to deteriorate when the time step size increases further. Therefore, to find
the responses at t=T,, two or more time steps should be used for the present
fifth order accurate algorithm. Alternatively, sixth or higher order accurate
algorithms could be used. The accuracy of the velocity response is not shown in
Table 7 since a very close agreement with the exact solutions is obtained
throughout the range of time steps under consideration. It can be seen from
Table 8 that for the velocity response, even if At= T, up to 4 significant figures
coincide with the exact solution when the fifth order complex time step method
is used.
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TABLE 7

Displacement for the first time step with various At using the fifth order
accurate algorithm (n=3, p=0)

AT Complex time step Exact Relative
(10-°m) (10-°m) difference
0 0 0 -
0-05 0-034921613 0-034921619 —1-72E-07
0-10 0-128481122 0-128481492 —2-88E-06
0-15 0-264837012 0-264841229 —1-59E-05
0-20 0-429587299 0-429610993 —5-52E-05
0-25 0-609919953 0-610010339 —1-48E-04
0-30 0-794717517 0-794987408 —3-39E-04
0-35 0-974615903 0-975296467 —6-98E-04
0-40 1-142017373 1-143533797 —1-33E-03
0-45 1-291057715 1:294131941 —2-38E-03
0-50 1417527591 1-423312287 —4-06E-03
0-55 1-518748082 1-528996019 —6-70E-03
0-60 1-593400409 1:610673400 —1-07E-02
0-65 1-641309847 1-669231421 —1-67E-02
0-70 1-:663183819 1-706739787 —2-55E-02
0-75 1-:660304182 1-726195264 —3-82E-02
0-80 1-634173691 1-731224370 —5-61E-02
0-85 1-586116659 1-725744417 —8-09E-02
0-90 1-:516833790 1-713582904 —1-15E-01
0-95 1-425911215 1-:698055262 —1-60E-01
1-00 1-311283698 1-681500944 —2-20E-01

5.4. RESPONSES AT =T,

The calculation of the responses at the end of the loading duration T is also
carried out by using 2, 3 and 4 time steps (4t=T,/2, At=T,/3 and At=T,/4,
respectively) using the present fifth order accurate algorithm. As shown in Table
8, the results approach to the analytical solutions.

The sixth and seventh order accurate algorithms are also used to evaluate the
responses with only one time step (4¢= T,). The sixth order accurate algorithm
is computed using #=3 and pu=1 while the seventh order accurate algorithm
uses n =4 and p=0. The sub-stepping procedure is illustrated in Figure 5. It can
be seen from Table 8 that the displacements calculated from the sixth and
seventh order accurate algorithms have 7 and 8 significant figures respectively.

On the other hand, the Newmark method using 20 time steps produces
solutions with 2 significant figures only. In order to achieve the same accuracy as
the sixth order accurate complex time step algorithm, about 1400 time steps are
required. For the velocity response, the higher order algorithms give good
predictions as well but not for the Newmark method with 20 time steps.

Table 8 also shows the computational effort relative to the Newmark method.
It can be seen that the computational efforts for the present algorithms are much
lower than the Newmark method for accurate solutions.



Reuls at t =T, by various methods and time steps

TABLE 8

No. of Effort relative to Displacement Relative Velocity Relative

Method n U time step Newmark method (10-°m) difference (1073 m/s) difference
Exact - - - - 1-681500944 - —6-047288192 -
Newmark method - - 20 20 1-:698308634 1-00E-02 —5-512455909 —8-84E-02
Newmark method - - 1400 1400 1-681504378 2-04E-06 —6:047179129 —1-80E-05
Present 5th order 3 0 1 5 1311283698 —2-20E-01 —6:047147435 —2-33E-05
Present 5th order 3 0 2 10 1:669931627 —6-88E-03 —6-047284254 —6-51E-07
Present 5th order 3 0 3 15 1:679977413 —9:06E-04 —6:047287590 —9-95E-08
Present 5th order 3 0 4 20 1-681 139403 —2-15E-04 —6:047288076 —1-92E-08
Present 6th order 3 1 | 5 1-:681501386 2:63E-07 —6-047276410 —1-95E-06
Present 7th order 4 0 1 8 1-681500898 —2-74E-08 —6-047288192 0-00E+-00

AOHLAN dd1S dNIL XdTdIWOD Ad ONIAVOT LSVI1d 40 SHSNOdSHY
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5.5. RESPONSES WITHIN A TIME STEP

The complex time step method can be used to calculate the responses within a
time step after the responses at the sub-step locations are computed. For the fifth
order accurate algorithm, the values of f; from equation (39) are substituted into

2.00
(@)
1.80 - T
1.60 — /\
Locations of better
g 140 — accuracy for 7th order
© -
5 algorithm
2 1.20 —
- //
g 1.00 — /""" Locations of better
g accuracy for 6th order
3 0.80 — algorithm
a
2 %’
A 0.60 —
7,
0.40 [— P
b
L7
0.20 [~ L
,,/
,///
0.00 L= | | | | | | | | |
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Time/T,
7.00
6.00 N\
SN
AR NN
N\ N
5.00 N\
W\ N
— N \\
L N\
£ 4.00 Locations of better'\ ™,
5 accuracy for 6th N
— - N
X 300 order algorithm AN
> \
k= .
e | [/ Locations of better :
= 2.00 f
g /' accuracy for 7th
' order algorithm
1.00 H
0.00
~1.00 | | | | | |
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Time/T,
Figure 6. (a) Interpolation of displacement. (b) Interpolation of velocity. , Exact 6th

order (2 time steps);

, 6th order; — — —, 7th order.
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equation (18) or (19) to yield the required weighting factors for the response at
various nAt where 0 < 7 < 1.

Figures 6(a) and (b) show the interpolated displacement and velocity
respectively for the sixth and seventh order accurate algorithms. The sixth order
accurate solution does not follow the exact solutions very well since the order of
accuracy within a time step is 3 only. As a result, it cannot capture the fourth
order load accurately. By using a seventh order accurate algorithm, close
agreement is obtained. Alternatively, good agreement is also obtained by using
smaller time steps for the sixth order accurate algorithm. The results from the
sixth order accurate algorithm with 2 time steps almost coincide with the exact
solutions within the time step. In Figures 6(a) and (b), the locations with better
accuracy within the time step are also indicated.

5.6. FREE VIBRATION RESPONSES

After the loading duration Ty, the system is set into free vibration with initial
conditions given by the responses at the end of 7. The higher order accurate
algorithms have three advantages over the Newmark method. First, with more
accurate results obtained at the end of T,, more accurate solutions are obtained
for the free vibration responses. Second, a larger time step can be used to
evaluate the free vibration. Third, the interpolation within each time step can be
carried out to trace the free vibration responses.

For comparison, in the present study, the initial conditions for the free
vibration evaluation for both the complex time step algorithms and the
Newmark method are taken from the analytical results. The time step for the
Newmark method is approximately one-tenth of the natural period (0-7s) of the
system and the results are not very satisfactory as shown in Figure 7. If the time
step size is increased to approximately one-quarter of the natural period (1-755),
the Newmark method fails to give meaningful results. Since the present sixth
order accurate algorithm gives almost exact solutions at the end of the loading
period, it is chosen to compute the free vibration responses as well. It can be
seen from Figure 7 that using a time step of 1-75s and with interpolation within
each time step, the present sixth order accurate algorithm is able to trace the
exact solutions closely for both displacement and veloctiy responses. The
Newmark method will need to use a smaller time step (such as 0-35s) in order to
improve the solution’s accuracy.

5.7. MULTI-DEGREE-OF-FREEDOM SYSTEMS

Consider a simply supported flexible panel subject to blast loading as
described in reference [17]. The dimensions of the panel were 0-914m by 11219 m
and 0-032cm thick. The elastic modulus and Poisson’s ratio were assumed to be
68:95 x 10°kPa and 0-3, respectively. The panel was modelled as a simply
supported beam, 0:914m long and 25-4mm wide with uniformly distributed
blast loading on the beam. The beam was divided into 10 elements of equal
length. The displacement time history at the mid-span is shown in Figure 8.
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Figure 7. (a) Free vibration displacement. (b) Free vibration velocity. , Exact; A, Newmark
(4t=0-35s); x, Newmark (4¢=0-7s); *, Newmark (4¢=1-75s); +, 6th order (4¢=1-755s).

From Figure 8, it can be seen that the complex time step seventh order
algorithm can predict the blast loading responses accurately by using 3 time
steps for the loading duration. The interpolated displacements almost coincide
with the exact solutions. By applying the Newmark method, 20 time steps are
insufficient to give comparable results. To achieve comparable results,
approximately 300 time steps are required for the Newmark method. The
computational efficiency of the present complex time step method is clearly seen.
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Figure 8. Mid-span displacement.
<&, Newmark method (20 time steps).

, Exact x, 7th order (3 time steps with interpolation);

6. CONCLUSIONS

In this paper, the complex time step method is extended to evaluate responses
within a time step. The required weighting factors can be evaluated
systematically. It is also found that there are some locations within a time step
with one order higher in accuracy. To simplify the evaluation of excitation at the
complex sub-step locations, a procedure is established to compute the values
from the excitations sampled at discrete time locations within the time step.

The complex time step method is used to find the responses of a single-degree-
of-freedom system subject to a fourth order blast loading. The present fifth, sixth
and seventh order accurate algorithms are used to compute the results. It is
found that the use of a single time step is sufficient for the sixth and higher order
accurate algorithms to evaluate the responses at the end of the loading.
Comparisons with the Newmark method show that the complex time step
method is more attractive in evaluating responses due to high order loading.

The interpolation within a time step is also performed and the responses are
accurate if the algorithm has fourth or higher order accuracy within the time
step. As a result, seventh or higher order accurate algorithms are used to
evaluate the responses with just one time step over the loading duration. In the
free vibration phase, the present higher order algorithms are able to give
accurate responses at the end as well as within each time step even when large
time steps are used.
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