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The free vibration of thin orthotropic rectangular plates, which may be
continuous over a number of intermediate line supports in one or two
directions, is analyzed by the Rayleigh±Ritz method. A new set of admissible
functions which are the static solutions of a point supported beam under a
series of sine loads is developed. The eigenfrequency equation for the plate is
derived by minimizing the potential energy. A very simple and general
computer programme has been compiled. The basic concept to form the set of
static beam functions is very clear and requires no complicated mathematical
knowledge. Some numerical results presented are compared with those obtained
by other numerical methods in the literature. It is shown that this set of static
beam functions has some advantages in terms of computational cost,
application versatility and numerical accuracy, especially for the plate problem
with a large number of intermediate line supports and/or when higher vibrating
modes need to be calculated.

# 1999 Academic Press

1. INTRODUCTION

Vibration characteristics of rectangular plates with intermediate line supports in
one or two directions (such plates are also called continuous plates) are of
practical interest, since many applications of such structures are found in civil,
naval, aerospace engineering and the like.
Much work has been devoted to the vibration of rectangular plates with

intermediate line supports in one direction. Early research mainly focused on
rectangular plates simply supported at two opposite edges and continuous over
line supports perpendicular to those edges. Veletsos and Newmark [1] used the
Holzer's method, Ungar [2] used a semi-graphical approach, Bolotin [3] and
Moskalenko and Chien [4] used the dynamic edge-effect method, Lin et al. [5]
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used the transfer matrix method, Elishakoff and Sternberg [6] used the modi®ed
Bolotin's method, and Azimi et al. [7] used the receptance method for such
plates. Furthermore, Cheung and Cheung [8] used the single-span vibrating
beam functions in the ®nite strip method and Mizusawa and Kajita [9] used the
B-spline functions in the Rayleigh±Ritz method to analyze the free vibration of
one-direction continuous plates with arbitrary boundary conditions.
In the last two decades, the vibration of line supported rectangular plates

which are continuous in two directions has received a lot of attention. Takahashi
and Chishaki [10] used a sine series analytical solution for the vibration of
rectangular plates with all edges simply supported and over a number of line
supports in two directions. Wu and Cheung [11] used the multi-span vibrating
beam functions to analyze the free vibration of continuous rectangular plates in
one or two directions by the ®nite strip method. Kim and Dickinson [12] used a
set of one-dimensional orthogonal polynomial functions to analyze the free
vibration of line supported plates and plate systems by the Rayleigh±Ritz
method. Furthermore, Liew and Lam [13] used a set of two-dimensional
orthogonal polynomial functions to determine the eigenfrequencies of multi-span
plates. Zhou [14] proposed a set of trial functions which are the single-span
vibrating beam functions plus augmented polynomials to study the vibration of
plates continuous in one or two directions, and Kong and Cheung [15] combined
this set of trial functions with the ®nite layer method to study the vibration of
shear-deformable plates with intermediate line supports. Recently, Cheung and
Kong [16] used the computed static beam functions under point loads to study
the vibration of rectangular plates of varying complexity by the ®nite strip
method.
In the present paper, a new set of admissible functions, which are the static

solutions of a point supported beam under a series of sine loads, are developed
for the vibration analysis of thin orthotropic rectangular plates continuous in
one or two directions. The boundary conditions and the number and locations
of point supports of the beam correspond to those of the plate in each direction.
Each static beam function is composed of two parts: the polynomial function
and a sine function. It should be mentioned that the order of the polynomials in
this set of admissible functions is always lower than 4, so stable numerical
computation can be achieved, especially for plates with a large number of
intermediate line supports and/or when higher vibrating modes need to be
known. Finally, some numerical results are given for rectangular plates with a
number of intermediate line supports in one or two directions and compared
with known values in the literature. It is shown that invariably a smaller number
of terms of the admissible functions need to be used, and this implies lower
computational cost.

2. A NEW SET OF ADMISSIBLE FUNCTIONS

Consider a uniform beam with J intermediate point supports under an
arbitrary load q(x) as shown in Figure 1. The length of the beam is l and the co-
ordinates of the point supports of the beam are, respectively, xj, j� 1, 2, . . . , J.
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The de¯ection y(x) of the beam in the y direction should satisfy the differential
equation

EI
d4y

dx4
�
XJ
j�1

pjd�xÿ xj� � q�x�, 0 < x < 1, �1�

where EI is the ¯exural rigidity of the beam, pj are the reactions of the jth point
supports and d(xÿ xj) are the Dirac delta functions. Letting

x � x

l
, xj �

xj
l
, Pj � pjl

3

EI
, Q�x� � l4

EI
q�lx�, �2�

one has

d4y

dx4
�
Xl
j�1

Pjd�xÿ xj� �Q�x�; 0 < x < 1: �3�

The arbitrary load Q(x) can be expanded into a Fourier sine series as follows

Q�x� �
X1
i�1

Qi�ip�4 sin ipx, 0 < x < 1, �4�

where Qi are the unknown coef®cients which may be decided uniquely if Q(x) is
given.
Considering the linear problems here, the solution y(x) of equation (3) can

take the form of

y�x� �
X1
i�1

Qiyi�x�: �5�

Substituting equations (4) and (5) into equation (3), one obtains the total

solution of equation (3) as

yi�x� �
X3
k�0

Ci
kx

k �
XJ
j�1

Pi
j

�xÿ xj�3
6

U�xÿ xj� � sin ipx, �6�

where Ci
k(k� 0, 2, 3) and Pi

j( j� 1, 2, . . . , J) are unknown coef®cients, and
U(xÿ xj) are the Heaviside functions. It should be noted that the order of the

polynomials in the above equation is never higher than a cubic and is

q(x)

l
x

xJx2x1

y

0

Figure 1. Point supported beam under arbitrary load q(x).
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independent of the number of the intermediate point supports and the term
number of the Fourier series.
For convenience, the support conditions along the ends of the beam are

indicated by two capital letters. The letters C, S and F denote, respectively,
clamped, simply supported and free ends. For the CC, CS, CF, SS beams and
the SF beam with no less than one point support and the FF beam with no less
than two point supports, the coef®cients Ci

k(k� 0, 1, 2, 3) and
Pi
j( j� 1, 2, . . . , J) in equation (6) can be uniquely decided by the boundary

conditions and the zero de¯ection conditions at the internal point supports of
the beam and may be written in matrix form

A D
T G

� �
Ci

Pi

� �
� Ri

Si

� �
, �7�

where A is a J6 4 matrix, D is a J6 J matrix and Ri is a J6 1 matrix, and they
refer to the values of the ®rst series, the second series and the third term of
equation (6) at the intermediate point supports of the beam, respectively. T is a
46 4 matrix, G is a 46 J matrix and Si is a 46 1 matrix, and they refer to the
values of the ®rst series, the second series and the third term of equation (6) for
the boundary conditions of the beam, respectively. Ci and Pi are the unknown
coef®cient matrices as follows:

Ci � �Ci
0C

i
1C

i
2C

i
3�T; Pi � �Pi

1P
i
2, . . . ,Pi

J�T: �8�
Without losing generality and assuming that xj< xk if j< k, the matrices D, A
and Ri may be, respectively, written as

D �

0 0 0 . . . 0

�x2 ÿ x1�3
6

0 0 . . . 0

�x3 ÿ x1�3
6

�x3 ÿ x2�3
6

0 . . . 0

..

. ..
. . .

. ..
.

�xJ ÿ x1�3
6

�xJ ÿ x2�3
6

. . .
�xJ ÿ xJÿ1�3

6
0

26666666666664

37777777777775
,

A �

1 xi x21 x31
1 x2 x22 x32

..

. ..
. ..

. ..
.

1 xJ x2J x3J

2666664

3777775, Ri �

ÿ sin ipx1
ÿ sin ipx2

..

.

ÿ sin ipxJ

266664
377775:

�9�

We use tkl(k� 1, 2, 3, 4, l� 1, 2, 3, 4), gkj(k� 1, 2, 3, 4, j� 1, 2, . . . , J) and
sik(k� 1, 2, 3, 4) to represent the elements in matrices T, G and Si, respectively.
According to the boundary conditions of the beam, there are t11� 1, t22� 1,
si2�ÿip for the beam with the C left end, t11� 1, t23� 2 for the beam with the S
left end and t13� 2, t24� 6, si2� (ip)2 for the beam with the F left end. And
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t31� t32� t33� t34� 1, t42� 1, t43� 2, t44� 3, g3j� (1ÿ xj)3/6, g4j� (1ÿ xj)2/2,
si4�ÿip(ÿ1)i for the beam with the C right end, t31� t31� t33� t� 34� 1, t43� 2,
t44� 6, g3j� (1ÿ xj)3/6, g4j� 1ÿ xj for the beam with the S right end, t33� 2,
t34� 6, t44� 6, g3j� 1ÿ xj , g4j� 1, si4� (ip)3(ÿ1)i for the beam with the F right
end. The other elements are all equal to zero. It is clearly shown that the ®rst
two rows of matrix G are always equal to zero. Solving the linear equation
group (7) gives all the unknown coef®cients.
If there is only an intermediate point support for the FF beam, the rigid

rotation of the beam around the point support exists. In this case, the coef®cient
matrices Ci and Pi cannot be directly decided from equation (7). In this case, one
may assume that

y�x� �
X1
i�1

Qi�yi�x�,

and then add the rigid rotation mode of the beam to the static beam functions
by taking �y1(x)� xÿ x1 and �yi(x)� yiÿ1(i42) which are the static beam functions
of a SF beam with one corresponding intermediate point support. If there is no
intermediate point support for the SF beam or the FF beam, the handling
method is similar and has been described in the literature [17] in detail. It is
important to note that matrices A and D in equation (7) are uniquely decided by
the locations of the intermediate point supports of the beam, and matrices T and
G in equation (7) are uniquely decided by the boundary conditions and the co-
ordinates of the intermediate point supports of the beam. They are all
independent of the series variable i, so only one inverse calculation to the
coef®cient matrix of equation (7) is needed for all i, so that the computational
cost is greatly reduced.

3. THE EIGENFREQUENCY EQUATION

It is assumed that the plate under consideration lies in the x±y plane, is
bounded by edges x� 0, x� a and y� 0, y� b and is of uniform thickness. The
intermediate line supports are also assumed to lie orthogonal to the plate edges
and to prevent motion in the z direction but to offer no resistance to normal
rotation.
From the vibration theory of thin plates, the strain and kinetic energies of an

elastic thin orthotropic plate in Cartesian co-ordinates are as follows:

U � 1

2

�a
0

�b
0

Dx
@2w

@x2

� �2

�2H @2w

@x2
@2w

@y2
�Dy

@2w

@y2

� �2
(

ÿ4Dxy
@2w

@x2
@2w

@y2
ÿ @2w

@x@y

� �2
" #)

dy dx, T � 1

2

�a
0

�b
0

rh
@w

@t

� �2

dy dx, �10�

where w is the de¯ection of the plate in the z direction, r is the material density,
h is the plate thickness, Dx , Dy , H and Dxy are the ¯exural rigidities of the plate
and Dx�Dy�H�D, Dxy� (1ÿ �)D/2 for the isotropic case, where � is the
Poisson's ratio.
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For free vibration of the plate, the de¯ection w may be expressed as

w�x, y, t� �W�x, y�eiot �11�
where o is the radian eigenfrequency of vibration of the plate, t is the time and

i� �������ÿ1p
. Assuming that

x � x=a, Z � y=b �12�
and that the variables in W(x, y) are separable, the modal shape function

W(x, Z) may be expressed in terms of a series as

W�x, Z� �
X1
m�1

X1
n�1

Amnjm�x�cn�Z�, �13�

where jm(x) and cn(Z) are appropriate admissible functions which satisfy at

least the geometrical boundary conditions and if possible, all the boundary

conditions. Amn are the unknown coef®cients. Substituting equations (11), (12)

and (13) into equation (10) and minimizing the total potential energy as follows

@

@Amn
�Umax ÿ Tmax� � 0 �14�

leads to the eigenfrequency equationX1
m�1

X1
n�1
�Cmnij ÿ l2E�0, 0�ml F

�0, 0�
nj �Amn � 0, i, j � 1, 2, . . . ,1, �15�

where

Cmnij � Dx

H
E
�2, 2�
mi F

�0, 0�
nj =g4 � 4

Dxy

H
E
�1, 1�
mi F

�1, 1�
nj =g2 �Dy

H
F
�0, 0�
mi F

�2, 2�
nj

� 1ÿ 2
Dxy

H

� �
�E�0, 2�mi F

�2, 0�
nj � E

�2, 0�
mi F

�0, 2�
nj �=g2, m, n, i, j � 1, 2, 3; . . . ,

g � a=b; l2 � rho2b4=H,

E
�r, s�
mi �

�1
0

�drjm=dx
r��dsji=dx

s� dx,

F
�r, s�
nj �

�1
0

�drcn=dZ
r��dscj=dZ

s� dZ: �16�

The solution of equation (14) yields the eigenfrequencies of the vibration of the

plate together with the coef®cients for the mode shapes (13). The above analysis

shows that the validity and accuracy of the solution depend entirely on the

choice of the admissible functions jm(x) and cn(Z). Several approaches have

been proposed for choosing jm(x) and cn(Z). However, it is not always easy to

satisfy the simplicity, convergence and accuracy requirements. Here a set of

static beam functions, which have been developed in the last section, are used as

the admissible functions of the line supported rectangular plates, i.e.,
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jm�x� � ym�x�, cn�Z� � yn�Z�, �17�
where ym(x) are the mth static beam functions which satisfy both the
corresponding geometrical boundary conditions and the zero de¯ection
conditions at the line supports of the plate in the x direction, and yn(Z) are the
nth static beam functions which satisfy those in the y direction. The integrated
form of the stiffness matrix and the mass matrix of equations (14) may be given
explicitly without any dif®culty, if required.

4. SOME NUMERICAL RESULTS

In order to illustrate the accuracy, convergency and usefulness of the approach
described above, some numerical results for free vibration of rectangular plates
with several intermediate line-supports in one or two directions are reported and
compared with the values available from other numerical methods. In all the
computations �� 0�3 is used. For brevity, four capital letters are used to
represent the type of edges of the plate. The ®rst two letters represent the
boundary conditions of the plate in the x direction and the other represent those
in the y direction. For uniformity of computation, the symmetry of structures is
not considered.
In Figure 2 is shown the three-span continuous rectangular plate in the x

direction. Both edges of the plate in the y direction are simply supported. The
two intermediate line supports in the x direction are, respectively, at x1� a/4 and
x2� 3a/4 and the side ratio of the plates is g� a/b� 4. Two static beam functions
in the y direction and seven static beam functions in the x direction are used.
The ®rst six eigenfrequency values obtained are listed in Table 1 for the plate
with various boundary conditions. The ®rst four mode shapes for the plate with
clamped edges at x� 0 and x� a are shown in Figure 3, which are very close to
the exact mode shapes presented in the literature [7]. It can be seen from Table 1
that in all the numerical methods listed, the present results are closest to the
exact values given by Azimi et al. [7], while the computational cost is the lowest
as can be seen by the considerably smaller number of eigenfrequency equations
used.
In Figure 4 is shown a two-direction, two-span continuous plate simply

supported at all edges. The intermediate line supports in the x and y directions

3a/4 a

b 

y

a/40 SS

SS

x

Figure 2. Three-span continuous rectangular plates in one direction.
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TABLE 1

Eigenfrequency parameters li�oib
2
p
rh=D (i� 1, 2, . . . , 6) of a three-span continuous rectangular plate in one direction

Size of Mode sequence number
frequency z�����������������������������������������������������������������������������}|�����������������������������������������������������������������������������{

Edges Source of results equation 1 2 3 4 5 6

SS Present 14 12�919 19�739 21�534 23�647 35�215 42�245
Azimi et al [7] exact 12�92 19�74 21�53 23�65 35�21 42�24
Mizusawa and Kajita 256 12�921 19�741 21�551 23�682 35�415
Wu and Cheung [11] 52 12�92 19�74 21�55
Kim and Dickinson [12]y 36 12�930 19�739 21�594 23�812 35�401 42�268
Liew and Lam [13] 80 12�924 19�739 21�531 23�653 35�283 42�254

CS Present 14 12�938 20�097 22�643 26�506 35�605 42�247
Azimi et al. [7] exact 12�94 20�10 22�64 26�50 35�59 42�24
Wu and Cheung [11] 52 12�94 20�10 22�67
Kim and Dickinson [12]y 36 12�972 20�118 22�916 26�915 36�628 42�307
Liew and Lam [13] 80 12�961 20�114 22�866 26�514 36�164 42�286

CC Present 14 12�957 20�816 25�648 27�128 35�980 42�249
Azimi et al. [7] exact 12�96 20�81 25�64 27�12 35�97 42�25
Wu and Cheung [11] 52 12�96 20�83 25�69
Kim and Dickinson [12]y 36 12�967 20�828 25�684 27�262 36�170 42�296
Liew and Lam [13] 80 12�963 20�814 25�654 27�179 35�998 42�263

yThe symmetry is considered during computation.
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are at x1� aa and y1� bb, respectively. Two types of the plate are considered: (i)
a square plate (g� 1) with various values of a and b and (ii) a rectangular plate
(g� 1�5) with a� b� 1/

���
3
p

. Four static beam functions are used in each
direction. The ®rst six eigenfrequency values for the plates are listed in Table 2

 1 = 19.957

 2 = 20.816

 3 = 25.648

 4 = 27.128

Figure 3. The ®rst four mode shapes in the x direction for a rectangular plate with clamped
edges at x� 0 and x� a.

b

b

0 a a

y

x

Figure 4. Two-span continuous rectangular plates in two directions.
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TABLE 2

Eigenfrequency parameters li�oib
2
p
rh=D (i� 1, 2, . . . , 6) of a two-direction, two-span continuous rectangular plates simply supported at

all edges

Support
Side location Size of Mode sequence number
ratio z�����������}|�����������{ frequency z����������������������������������������������������������������}|����������������������������������������������������������������{
g a b Source of results equation 1 2 3 4 5 6

1 1/4 1/4 Present 16 42�605 96�762 96�878 151�18 176�91 176�91
Kim and Dickinson [12] 36 42�844 97�437 97�531 152�58 178�59 178�59
Liew and Lam [13] 80 42�731 96�682 96�899 151�60 176�00 176�00
Zhou [14] 25 42�709 97�070 97�173 151�86 177�06 177�06

1/4 1/2 Present 16 59�889 77�856 115�91 128�41 176�91 197�39
Kim and Dickinson [12] 36 79�040 116�48 130�58 178�91 198�70
Liew and Lam [13] 80 59�991 77�733 115�77 127�84 177�47 195�02x
Zhou [14] 25 59�964 78�578 116�17 129�76 177�06 197�39

1/2 1/2 Present 16 78�957 94�590 94�590 108�24 197�39 197�39
Wu and Cheung [11] 72 78�96 94�68 94�72 108�44 197�40 198�96
Kim and Dickinson [12] 36 78�958 95�911 95�911 110�81 199�02 199�02
Liew and Lam [13] 80 78�958 94�826 94�826 108�41 197�50 197�50
Zhou [14] 25 78�957 95�433 95�433 109�93 197�39 197�39
Leissa [18] exact 78�957 94�585 94�585 108�22 197�39 197�39

0 0 Presenty 16 27�057 60�551 60�797 92�886 114�62 114�76
Kim and Dickinson [12] 36 27�887 62�484 62�723 95�995 114�81 118�54
Liew and Lam [13] 80 27�055 60�543 60�791 92�854 114�49 114�64
Leissa [18]z 36 27�056 60�544 60�791 92�865 114�57 114�72

1�5 1/
���
3
p

1/
���
3
p

Present 16 49�031 62�910 83�895 91�303 96�307 123�42
Kim and Dickinson [12] 36 49�293 63�925 85�322 94�445 98�712 128�15
Takahashi et al. [10] 49�305 62�907 83�892 91�301 96�296 123�41

y a� b� 10ÿ6 is taken in computation. zVibrating beam functions are used. xThis value is obviously unreasonable; the exact value is 197�39, which can be obtained from
the exact solution of simply supported square plate.
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and compared with the results presented by Takahashi and Chishaki [10] using a

sine series analytical solution, Wu and Cheung [11] using two-span vibrating

beam functions in the ®nite strip method, Kim and Dickinson [12] using one-

dimensional orthogonal polynomials, Liew and Lam [13] using two-dimensional

orthogonal polynomials, Zhou [14] using modi®ed vibrating beam functions in

the Rayleigh±Ritz method and the results presented by Leissa [18]. Good

agreement is observed for all cases, and invariably the present method always

uses the smallest number of eigenfrequency equations. One may also ®nd that

when a and b approach zero, the edges x� 0 and y� 0 tend to become clamped

supports, and such a rather severe limiting case can be reproduced nearly exactly

by the present method. This shows the reliability and applicability of the present

method and its superiority over other types of beam functions.

In Figure 5 is shown a two-direction, three-span continuous square plate

(a� b). The two line supports in the x direction and the two line supports in the

y direction are at x1� y1� 0�35b and x2� y2� 0�7b, respectively. Three types of

edge conditions are investigated: (i) all edges clamped (CC±CC); (ii) two

adjacent edges clamped, the other two simply supported (CS±CS) and (iii) two

opposite edges clamped, the other two simply supported (CC±SS). Four static

beam functions are used in each direction. The ®rst six eigenfrequency values of

the plate are listed in Table 3 and compared with the results presented by Kim

and Dickinson [12] using one-dimensional orthogonal polynomials and Zhou

[14] using modi®ed vibrating beam functions. Again good agreement is observed

for all cases. The convergency study for the CC±CC case shows that the

convergency rate of the present method is very rapid.

Next, a six-unequal-span continuous square plate (a� b) in two directions is

investigated. The intermediate line supports in the x direction are at x1� 0�2a,
x2� 0�35a, x3� 0�55a, x4� 0�7a and x5� 0�8a and those in the y direction are at

y1� 0�1b, y2� 0�25b, y3� 0�45b, y4� 0�7b and y5� 0�9b. It is clear that symmetry

does not exist for this plate. Nine types of boundary conditions are considered.

Seven static beam functions are used in each direction. The ®rst eight

eigenfrequency values are listed in Table 4.

b

b 

y

0.35b

0.35b

0.7b

0 0.7b
x

Figure 5. Three-span continuous square plate in two directions.
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TABLE 3

Eigenfrequency parameters li�oib
2
p
rh=H (i� 1, 2, . . . , 6) of two-direction, three-span continuous square orthotropic plates with various

boundary conditions

Material Size of Mode sequence number
property Source of frequency z�����������������������������������������������������������������}|�����������������������������������������������������������������{

Dx/H; Dy/H Edges results equation 1 2 3 4 5 6

1; 1 CC±CC Present 1 237�40
4 223�45 250�35 250�39 275�04
9 197�12 238�90 238�90 274�81 290�21 290�41
16 197�12 237�64 237�64 272�75 287�72 287�92

Kim and Dickinson [12] 36 198�55 243�27 243�32 282�31 297�20 297�20
Zhou [14] 25 198�04 240�01 240�03 276�61 291�09 291�15

CS±CS Present 16 189�56 223�77 224�01 247�93 248�18 254�89
Kim and Dickinson [12] 36 190�69 226�87 227�18 259�99 265�88 265�93
Zhou [14] 25 189�95 226�25 226�53 251�86 251�98 259�42

CC±SS Present 16 183�33 208�69 226�04 244�11 247�79 277�76
Kim and Dickinson [12] 36 184�34 212�77 231�39 256�24 262�44 286�99
Zhou [14] 25 184�05 210�74 228�25 248�46 251�37 280�80

1�543; 4�81 CC±CC Present 16 299�28 339�92 391�82 406�87 438�03 480�23
Kim and Dickinson [12] 36 301�03 345�36 401�76 414�92 449�04 494�99
Zhou [14] 25 300�30 342�08 394�16 409�21 441�42 484�22
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The last treated problem is a one-direction, ten-unequal-span continuous
rectangular plate with aspect ratio g� a/b� 10. The intermediate line supports
are all in the x direction at x1� 0�1a, x2� 0�2a, x3� 0�35, x4� 0�45a, x5� 0�5a,
x6� 0�6a, x7� 0�7a, x8� 0�8a and x9� 0�9a. Eight types of boundary conditions
are considered. In the computation, 15 static beam functions in the x direction
and ®ve static beam functions in the y direction are used. The ®rst ten
eigenfrequency values are listed in Table 5. It is shown that the present method
is also suitable for plates with a large number of intermediate line supports.
It is seen that the number of the static beam functions used in the analysis is

concerned mainly with the number of the line supports and is also concerned
with the locations of the line supports and the aspect ratio of the rectangular
plate, which can be determined by the convergent study for a practical problem.
Many examples show that only a small number of terms of the static beam
functions will give enough accuracy.

5. CONCLUSIONS

A new set of admissible functions which are the static solution of a point
supported beam under a series of sine loads has been described and applied to
study the free vibration of one-direction or two-direction continuous rectangular
plates with various classical bound conditions in the Rayleigh±Ritz method. The
vibration characteristics of the plates can be solved in an easy and uni®ed
manner. The basic concept to develop the set of static beam functions is
theoretically sound but relatively simple, and requires no complicated
mathematical functions. Several numerical examples have been analyzed. The
present results are compared with values obtained by other numerical methods
in the literature. It can be seen that rapid convergency and good accuracy are
achieved with a small number of terms of the static beam functions. Moreover,
because the order of the polynomials in this set of static beam functions is

TABLE 4

Eigenfrequency parameters li�oib
2
p
rh=D (i� 1, 2, . . . , 8) of a two-direction, six-

unequal-span continuous square plate with various boundary conditions

Mode sequence numberz���������������������������������������������������������������������������}|���������������������������������������������������������������������������{
Edges 1 2 3 4 5 6 7 8

SS±SS 479�93 495�62 531�41 608�35 620�50 643�44 651�79 654�97
CC±CC 519�58 596�93 612�60 645�07 680�21 711�31 723�97 743�14
SS±CC 480�18 495�87 531�64 610�66 622�77 647�89 653�93 659�34
FF±FF 250�95 253�53 288�12 291�26 306�12 309�01 433�73 435�14
SS±FF 472�79 488�67 501�04 510�21 515�93 524�79 525�29 551�58
CC±FF 513�21 540�47 549�36 591�71 607�44 616�42 624�55 631�31
CF±FF 253�13 290�42 308�24 434�90 506�87 513�44 540�67 549�55
CF±CF 253�42 298�77 429�34 506�23 513�50 541�59 592�32 617�61
SF±SF 253�45 298�85 428�24 472�95 502�32 506�05 524�86 552�12
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TABLE 5

Eigenfrequency parameters li�oib
2
p
rh=D (i� 1, 2, . . . , 10) of a one-direction, ten-unequal-span continuous rectangular plate with various

boundary conditions

Mode sequence numberz����������������������������������������������������������������������������������������������������������������������������}|����������������������������������������������������������������������������������������������������������������������������{
Edges 1 2 3 4 5 6 7 8 9 10

SS±SS 15�441 19�958 20�422 21�457 21�809 24�416 24�784 26�137 27�582 32�355
CC±CC 25�782 29�562 30�230 30�900 31�333 33�424 33�871 34�963 35�736 39�167
FF±CF 6�1674 6�1794 9�1453 14�023 15�027 16�831 17�593 20�476 21�923 25�006
FF±SS 12�230 12�236 15�454 20�749 21�562 23�150 23�567 25�976 27�138 32�327
FF±CS 17�238 17�244 19�856 24�519 25�226 26�638 26�987 29�141 30�185 35�146
CC±CF 9�1189 13�862 14�936 16�170 16�893 20�004 20�841 22�405 23�677 26�638
FF±CC 23�741 23�746 25�787 29�680 30�274 31�484 31�772 33�635 34�545 39�090
SS±CF 9�1003 13�044 13�639 14�946 15�431 18�487 18�985 20�745 22�470 26�483
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always lower than 4 and is independent of both the number of intermediate
supports and the term number of the Fourier series to be used, the numerical
instability of high order polynomials in the numerical computation is therefore
avoided. Therefore, the present method is especially suitable for the plate
problem with a large number of the intermediate line supports and/or when
higher vibrating modes need to be calculated.
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