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The basis of a new boundary element method adapted to wide frequency
range applications is proposed in this paper. The formulation employs the
frequency domain dynamic fundamental solutions of the problems. Random
geometrical parameters are introduced in the integral equations. These
equations are then modi®ed to exhibit the products of the di�erent kinematic
variables. The expectations of the new equations with respect to the latter
random variables are considered, and the new variables of the formulation are
the di�erent stochastic moments force±displacement variables. This formulation
is applied to di�erent structures, such as beams, rods and assembled one-
dimensional systems.
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1. INTRODUCTION

It is generally impossible to compute analytical solutions of complex structural
problems such as assembled beams, rods, membranes or plates. Numerical
solutions like the ®nite element method FEM [1], and classical direct and
indirect boundary element methods BEM [2], can deal with this kind of problem
as long as the frequency of the studied phenomenon does not reach the ``high
frequency domain'', for which the huge number of degrees of freedom is
inappropriate considering the computing time that is required. In the early
sixties, new solutions were developed in order to characterize the high frequency
dynamic behaviour of mechanical structures. The most famous theory is the
Statistical Energy Analysis (SEA) developed by Lyon [3]. The aim of the SEA is
to evaluate the spread of the energy through complex systems divided into
coupled subsystems. The relationships between the different subsystems are
obtained using the concept of ``coupling loss factors'', while the energy
dissipation of each subsystem is connected to the vibrational energy lost through
``internal loss factors''. From the early beginnings of SEA different extensions of
the method have arisen. Langley [4] proposed an improvement of the classical
SEA by getting rid of the diffuse ®eld assumption. Indeed, this hypothesis is very
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restricting, especially for particular structures such as curved shells for which the
wave group speeds depend greatly on the direction. This new energy formulation
is called Wave Intensity Analysis (WIA). Another SEA improvement is the
Simpli®ed Energy Method (SEM), which is a power ¯ow formulation developed
on the original works by Belov et al. [5] who ®rst derived a differential equation
of the heat conduction type to characterize the spread of the energy throughout
an absorbing structure. Nefske and Sung [6] applied the SEM to evaluate the
power ¯ow of a ¯exural beam. Wohlever and Bernhard [7] and Bouthier [8] gave
further results concerning one-dimensional systems as well as membranes and
Kirchhoff±Love plates. Lase et al. [9] also developed the General Energy
Method (GEM) for rods and beams which gives an exact energy description of
the structures using the Lagrangian density, the total energy density and the
active and reactive energy ¯ows. The SEM is given as a simpli®cation of the
GEM by removing the modal characteristics. Ichchou et al. [10] proposed some
results concerning the use of the SEM applied to curved rods and beams. Lately,
Moron et al. [11] showed appreciable accuracy improvements when imple-
menting the SEM for assembled plates, compared to the results of the SEA and
the WIA, especially for strongly damped structures.
Even if the different energy methods previously mentioned brought much

progress in structural high frequency predictions in the last twenty years, these
formulations involve many de®ciencies. According to Fahy [12], one of the most
penalizing facts is the lack of con®dence in the predictions given by these
methods. The comparative results of Moron et al. [11] for coupled plates were
particularly revealing of this default.
In this paper, an alternative approach is proposed to deal with high frequency

phenomena. The basic idea of this work relies on the fact that the high
frequency structural behaviour is dictated by an intrinsic law of uncertainty. This
fact has been developed by Keane and Manohar [13, 14] who showed that the
introduction of a random variable on the mass density of the structures was
creating a ``statistical overlap factor'' whose in¯uence increases with the
frequency.
The formulation presented in the following sections is based on a boundary

element formulation. The classical integral equations are multiplied by well
chosen variables in order to obtain a formulation over the product of the
classical displacement variables. Gaussian random variables are then
introduced on the geometrical parameters of the structures and the stochastic
expectations of the new integral equations are taken into account. Some
assumptions are introduced to limit the number of high order moment
unknowns. The unknowns of the new formulations are the second order
stochastic moments of the boundary force displacement variables. The
formulation highlights a transition range from the low frequency deterministic
behaviour to a smooth high frequency evolution. The ef®ciency of the theory
is demonstrated on simple beams and rods, loaded by point harmonic forces.
Several cases of junctions are also treated, such as rod/dashpop, rod/rod,
beam/beam. The results are compared with those available from deterministic
methods.
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2. THE CLASSICAL BOUNDARY INTEGRAL EQUATIONS FOR SIMPLE
ONE-DIMENSIONAL STRUCTURES

The boundary integral representations of the simple rod and beam are
formulated in this section. Different ways are proposed in the literature to obtain
these integral equations. One of the possible formulations is derived from the
dynamic reciprocal theorem [15]. It is simply stated: if two distinct elastic
equilibrium states exist in a bounded region, then the work done by the forces
and moments of the ®rst system on the displacement and slope of the second is
equal to the work done by the forces and moments of the second system on the
displacement and slope of the ®rst one. The ®rst system is the actual state of
displacements, slopes, body and boundary forces and moments, and the second
one corresponds to a unit force system in an in®nite solid [16].

2.1. CASE OF THE ROD

At ®rst, the frequency domain governing equation of the rod is recalled. The
mechanical system is considered to be homogeneous, isotropic, linear, elastic,
and the hypothesis of small displacement is taken into account. The longitudinal
loading as well as the displacements is assumed to be harmonic. The equation of
motion for the rod in the frequency domain, can be written [17]:

@2w=@x2 � k2w � ÿq�x�=ES, �1�
where w(x) is the longitudinal de¯ection, E=E0(1+ iZ) is the complex modulus
of elasticity, Z is the loss damping factor, rS is the mass density per unit length,
S is the cross-sectional area, and q(x) is the longitudinal loading. k represents the
wave number, and may be written:

k2 � o2r=E0�1� iZ�1k20�1ÿ iZ�, �2�
where o denotes the circular frequency of vibration. The fundamental solution
of the unit force system for the in®nite rod is the Green Kernel G, whose
expression is:

G�x, x� � �1=2ik� eÿikjxÿxj: �3�
The variable x is the loading location while x denotes the spatial position. The
integral formulation may ®nally be written for x matching successively with the
two boundary locations x1 and x2.
Equation for the rod:

w�x� �
�x2
x1

G�xÿ x� q�x�
ES

dx� @w�x2�
@x

G�xÿ x2� ÿ @w�x1�
@x

G�xÿ x1�

ÿ w�x2� @G�xÿ x2�
@x

� w�x1� @G�xÿ x1�
@x

: �4�

Finally, one must give boundary conditions in order to be able to solve the
boundary integral equations. If a clamped/clamped rod is considered, the
boundary conditions are, w(x1)=w(x2)=0.
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2.2. CASE OF THE BEAM

Considering an homogeneous, isotropic, linear, elastic beam transversally
loaded by a harmonic force, and assuming small displacements, one can write its
equation of motion in the frequency domain:

@4w=@x4 ÿ k4w � q�x�=EI, �5�
where I denotes the moment of inertia. The parameter k represents the wave
number and may be written:

k4 � o2rS=E0I�1� iZ�1k40�1ÿ iZ�: �6�
For the beam, G has the following expression:

G�x, x� � ÿ�1=4k3�fieÿikjxÿxj � eÿkjxÿxjg: �7�
In relation to the beam, two equations are required in order to solve the entire
set of boundary unknowns.
Equations for the beam:

w�x� �
�x2
x1

q�x�
EI

G�x, x� dxÿ @3w�x�
@x3

G�x, x�
� �x2

x1

� @2w�x�
@x2

@G�x, x�
@x

� �x2
x1

ÿ @w�x�
@x

@2G�x, x�
@x2

� �x2
x1

� w�x� @
3G�x, x�
@x3

� �x2
x1

,

@w�x�
@x

�
�x2
x1

q�x�
EI

@G�x, x�
@x

dxÿ @3w�x�
@x3

@G�x, x�
@x

� �x2
x1

� @2w�x�
@x2

@2G�x, x�
@x@x

� �x2
x1

ÿ @w�x�
@x

@3G�x, x�
@x2@x

� �x2
x1

� w�x� @
4G�x, x�
@x3@x

� �x2
x1

: �8�

For a clamped/clamped beam, the boundary conditions become: w(x1)=
w(x2)=0 and @w(x1)/@x=w(x2)/@x=0.

3. THE RANDOM FORMULATION

3.1. A GENERAL OVERVIEW OF THE METHOD

Using the boundary equations developed in the previous section to predict the
behaviour of structures in the high frequency ®eld is numerically possible but
physically unrealistic. The reason is that the deterministic response of any
mechanical system is more and more sensitive to small perturbations of the
geometrical and mechanical parameters of the structures, when the frequency
increases. This phenomenon has been illustrated by Keane and Manohar [13, 14]
who calculated the successive probability density functions of the eigen-
frequencies of a beam, for which a random parameter is introduced in the
de®nition of its mass density. Within this context, the aim of the authors is to
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introduce a relevant random description of the intrinsic structural parameters, in
the boundary equations.
There are numerous possibilities with regards to the choice of structural

parameters on which can be applied the random variables. Actually, the
randomness of the structure studied in the high frequency ®eld is resulting from
small errors occurring on the global description of the system. In the following
analytical formulations, the random parameters are introduced on the
geometrical description of the structures. Each of the boundary equations is then
multiplied by one kinematic variable, and the expectation of the equations is
considered. A set of equations containing the different statistical moments of the
variables of the formulation, is obtained. Some assumptions concerning the
statistical independence of the different force±displacement variables must then
be introduced to obtain a consistent number of equations. The unknowns of the
formulation are the statistical moments of the force±displacement variables of
®rst and second order. The ®rst order moments do not give interesting
information in the high frequency ®eld, because their values vanish to zero. On
the other hand, the second order moments may be connected to an energy
description of the vibrational behaviour, whose expectation does not converge to
zero since the energy is always positive.

3.2. THE RANDOM FORMULATION FOR ISOLATED STRUCTURES

In order to illustrate the method, the formulation is written for the simple
example of a clamped/clamped rod. The equations are completely developed,
and the approximations required to obtain a ®nite sequence of equations with a
consistent number of unknowns is justi®ed. The boundary equations for a
clamped/clamped rod established in section 2 are recalled, in the case of a point
loading F0:

w�x1� � F0

ES
G�x1 ÿ xf� � @w�x2�

@x
G�x1 ÿ x2� ÿ @w�x1�

@x
G�x1 ÿ x1�,

w�x2� � F0

ES
G�x2 ÿ xf� � @w�x2�

@x
G�x2 ÿ x2� ÿ @w�x1�

@x
G�x2 ÿ x1�: �9�

The geometrical parameters encountered in equations (9) are x1, x2 and xf,
corresponding to the position of the boundaries and the location of the loading.
These parameters are considered to be randomly known and are written:

~x1 � x1 � e1, ~x2 � x2 � e2, ~xf � xf � ef, �10�

where e1, e2 and ef are assumed to be independent zero mean random variables.
Even if the position of the boundaries are assumed to be random parameters, the
boundary conditions are deterministic; that is to say for the case of the clamped/
clamped rod: w�~x1� � w�~x2� � 0. Using the random notations, the integral
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formulation of the rod, equations (9) become:

0 � F0G�~x1 ÿ ~xf� � @w�~x2�
@x

G�~x1 ÿ ~x2� ÿ @w�~x1�
@x

G�~x1 ÿ ~x1�,

0 � F0G�~x2 ÿ ~xf� � @w�~x2�
@x

G�~x2 ÿ ~x2� ÿ @w�~x1�
@x

G�~x2 ÿ ~x1�: �11�

The random boundary formulation is obtained by multiplying each side of the
®rst equation (respectively the second equation) of (11), by the conjugate of the
unknown boundary kinematic variable, @w��~x1�=@x (respectively @w��~x2�=@x�.
The expectations with respect to ~x1, ~x2 and ~xf (represented by the symbol hÿi) of
the two sides of the equations are then taken into account. One obtains:

0 � F0G�~x1 ÿ ~xf� @w
��~x1�
@x

� �
� @w��~x1�

@x

@w�~x2�
@x

G�~x1 ÿ ~x2�
� �

ÿ @w�~x1�
@x

���� ����2G�~x1 ÿ ~x1�
* +

,

0 � F0G�~x2 ÿ ~xf� @w
��~x2�
@x

� �
� @w�~x2�

@x

���� ����2G�~x2 ÿ ~x2�
* +

ÿ @w�~x1�
@x

@w��~x2�
@x

G�~x2 ÿ ~x1�
� �

: �12�

Equations (12) represent the fundamental relations of the random boundary
integral formulation. In order to solve the problem, one has to propose some
speci®c rules to separate the different terms appearing between the bracket
symbols. This is the aim of the next section.

3.2.1. Limitation procedure of the number of high order moments

Before displaying different physical rules in order to limitate the number of
the statistical moments, some numerical simpli®cations can be carried out.
Indeed, the expression of the Green kernel G�~xi; ~xi�, (i, j=1, 2) may be written:

G�~xi ÿ ~xi� � 1=2ik: �13�

From the relationship (13), one can deduce that G�~xi ÿ ~xi� is a deterministic
parameter. In other respects, the value of F0 does not depend on the geometrical
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parameters. Therefore equations (12) can be expressed:

0 � F0 G�~x1 ÿ ~xf� @w
��~x1�
@x

� �
� @w��~x1�

@x

@w�~x2�
@x

G�~x1 ÿ ~x2�
� �

ÿ @w�~x1�
@x

���� ����2
* +

G�~x1 ÿ ~x1�,

0 � F0 G�~x2 ÿ ~xf� @w
��~x2�
@x

� �
� @w�~x2�

@x

���� ����2
* +

G�~x2 ÿ ~x2�

ÿ @w�~x1�
@x

@w��~x2�
@x

G�~x2 ÿ ~x1�
� �

: �14�

Obtaining a ®nite sequence of equations with a consistent number of unknowns
is necessary to solve the set of equations (14). In order to limitate the number of
unknowns, some random assumptions are carried out. These assumptions rely
on a physical interpretation of the different terms appearing in the different
integral representations. Indeed, when considering the integral equations (4, 8),
the left sides of these equations are interpreted as the sum of the contributions
of different sources located at the boundaries of amplitude, the boundary
unknowns (denoted in what follows A(xi), i=1, 2), and at the loading position
of amplitude F0. The expressions of these contributions are the different terms of
the right sides of the integral representations.
In this context, some random hypotheses are introduced governing the

stochastic behaviour of the different sources.
Assumption 1: the contribution of a source A(xi)G

(k)(xi, xj) with xi 6� xf and
A 6�F0, ((k) denotes the derivative order appearing in equations (4, 8)) is only
correlated with itself and is called the secondary source. On the other hand, if
A=F0 or xi=xf , the source is called a primary source and is assumed to be
strongly correlated with the force±displacement unknown A(xj).
Two main physical reasons lead to the assumption expressed above. First of

all, the spatial positions of the different sources as well as the location of the
points where the contributions of the sources are evaluated, are statistically
independent. In this context, two different contributions (in terms of source
location or target position) may be supposed statistically independent. The
second reason is that a speci®c boundary unknown is supposed to be only
correlated with the contribution of the loading. Any force±displacement variable
of the considered structure naturally depends on the contribution of the loading.
On the other hand, the amplitudes of the secondary sources contain the
information of the multiple wave re¯ections on the different boundaries, whose
spatial positions are not correlated with the location of the considered boundary
unknown. Therefore, the contributions of the secondary sources are not
correlated with this boundary unknown.
From this hypothesis one can deduce that F0hG�~x1 ÿ ~xf��@w��~x1�=@x�i may

not be written as the produce of the two expectations of G�~x1 ÿ ~xf� and
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�@w��~x1�=@x�. In other respects, one may state the following relationships:

@w��~x1�
@x

@w�~x2�
@x

G�~x1 ÿ ~x2�
� �

1 @w��~x1�
@x

� �
@w�~x2�
@x

G�~x1 ÿ ~x2�
� �

,

@w�~x1�
@x

@w��~x2�
@x

G�~x2 ÿ ~x1�
� �

1 @w��~x2�
@x

� �
@w�~x1�
@x

G�~x2 ÿ ~x1�
� �

: �15�

Assumption 2: the amplitude of a secondary source located at x and its
propagative part G(x, x) are not correlated if x 6� x. Consequently, one can write:

h�@w�~x2�=@x�G�~x1 ÿ ~x2�i1h�@w�~x2�=@x�ihG�~x1 ÿ ~x2�i,
h�@w�~x1�=@x�g�~x2 ÿ ~x1�i1h@w�~x1�=@xihG�~x2 ÿ ~x1�i: �16�

The physical reasoning behind this new assumption is on the same basis as for
the previous one. One can then rewrite equations (14) using the previous
hypotheses:

0 � F0hG�~x1 ÿ ~xf�@w��~x1�=@xi

� h@w��~x1�=@xih@w�~x2�=@xihG�~x1 ÿ ~x2�i ÿ hj@w�~x1�=@xj2iG�~x1 ÿ ~x1�,
0 � F0hG�~x2 ÿ ~xf�@w��~x2�=@xi

� hj@w�~x2�=@xj2iG�~x2 ÿ ~x2� ÿ h@w�~x1�=@xih@w��~x2�=@xihG�~x2 ÿ ~x1�i: �17�

The expression of G�~xi ÿ ~xj� for i 6� j and xie xj (it is assumed that ~xi e ~xj�
may be written:

G�~xi ÿ ~xj� � eÿik0�xiÿxj�eÿik0�eiÿej�eÿ�Z=2�k0�xiÿxj�eÿ�Z=2�k0�eiÿej�, �18�
Z/2(eiÿ ej) is assumed to be a second order term compared to Z/2(xiÿ xj) and is
neglected. To express the other terms, a Gaussian law has been chosen. The
random variables ei introduced in equations (10) are de®ned by their means
equal to zero, their standard deviation s, and their density function fei , i=1, 2
whose expression is:

fei�x� � �1=s
������
2p
p
� exp�ÿx2=2s2� �19�

One can also evaluate the joint density function of the random variables, whose
expression is in the case of n independent random variables:

fe1,..., en�y1, . . . , yn� �
Yn
i�1

fei�yi�: �20�

G�~xi ÿ ~xj� is a function of ~xi and ~xj. Therefore, the evaluation of the expectation
of G is only carried out with respect to ~xi and ~xj. The explicit expression of
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hG�~xi ÿ ~xj�i for i 6� j is:

hG�~xi ÿ ~xj�i �
�1
ÿ1

�1
ÿ1

G�~xi ÿ ~xj� fei, ej�ei, ej� dei dej

� �1=2ik�eÿikjxiÿxjjeÿk20s2 : �21�

Equations (17) contain six unknowns:

h@w�~x1�=@xi and h@w�~x2�=@xi; hj@w�~x1�=@xj2i and hj@w�~x2�=@xj2i,

hG�~x1 ÿ ~xf��@w��~x1�=@x�i and hG�~x2 ÿ ~xf��@w��~x2�=@x�i

Four more equations must be added to the formulation in order to estimate the
six unknowns. Two equations are obtained by considering the expectation of the
classical boundary integral equations (11). The same random assumptions are
applied to these two equations. The ®nal expression of the different equations
have the following form:

0 � F0hG�~x1 ÿ ~xf�i � @w�~x2�
@x

� �
hG�~x1 ÿ ~x2�i ÿ @w�~x1�

@x

� �
G�x1 ÿ x1�,

0 � F0hG�~x2 ÿ ~xf�i � @w�~x2�
@x

� �
G�x2 ÿ x2� ÿ @w�~x1�

@x

� �
hG�~x2 ÿ ~x1�i: �22�

The last two relationships are obtained by multiplying each side of the ®rst
equation (respectively the second equation) of (11) by G��~x1 ÿ ~xf� (respectively
by G��~x2 ÿ ~xf�).

0 � F0hjG�~x1 ÿ ~xf�j2i � @w�~x2�
@x

G�~x1 ÿ ~x2�G��~x1 ÿ ~xf�
� �

ÿ @w�~x1�
@x

G��~x1 ÿ ~xf�
� �

G�~x1 ÿ ~x1�,

0 � F0hjG�~x2 ÿ ~xf�j2i � @w�~x2�
@x

G��~x2 ÿ ~x2�
� �

G�~x2 ÿ ~x2�

ÿ @w�~x1�
@x

G�~x2 ÿ ~x1�G��~x2 ÿ ~xf�
� �

: �23�

The ®rst and second assumptions are then utilized to simplify the two terms

h�@w�~x2�=@x�G�~x1 ÿ ~x2�G��~x1 ÿ ~xf�i
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and

h�@w�~x1�=@x�G�~x2 ÿ ~x1�G��~x2 ÿ ~xf�i:
One ®nally obtains:

0 � F0hjG�~x1 ÿ ~xf�j2i � @w�~x2�
@x

� �
hG�~x1 ÿ ~x2�ihG��~x1 ÿ ~xf�i

ÿ @w�~x1�
@x

G��~x1 ÿ ~xf�
� �

G�~x1 ÿ ~x1�,

0 � F0hjG�~x2 ÿ ~xf�j2i � @w�~x2�
@x

G��~x2 ÿ ~xf�
� �

G�~x2 ÿ ~x2�

ÿ @w�~x1�
@x

� �
hG�~x2 ÿ ~x1�ihG��~x2 ÿ ~xf�i: �24�

In order to completely solve the problem, one must ®nally consider six equations
given by the three sets of relationships (17, 22, 24). If a high frequency response
is required, the evaluation of the ®rst order moments of the boundary unknowns
is not compulsory and there values may be set to zero. Therefore, the two
equations (22) may be suppressed within this context.
After the evaluation of the boundary unknowns, it is possible to write an

equation giving the expectations of the square unknowns in the whole domain.
The spatial position x is considered random and the latter assumptions are used.
The random assumptions are utilized in the following equation. One obtains:

hjw�~x�j2i � F2
0hjG�~xÿ ~xf�j2i � @w�~x1�

@x

���� ����2
* +

hjG�~xÿ ~x1�j2i

� @w�~x2�
@x

���� ����2
* +

hjG�~xÿ ~x2�j2i

� 2F0 RefhG�~xÿ ~xf�ihG��~xÿ ~x2�ih@w��~x2�=@xig

ÿ 2F0 RefhG��~xÿ ~x1�ihG�~xÿ ~xf�ih@w��~x1�=@xig

ÿ 2F0 RefhG��~xÿ ~x1�ihG�~xÿ ~x2�ih@w�~x2�=@xih@w��~x1�=@xig: �25�

3.3. THE RANDOM FORMULATION FOR ASSEMBLED ONE-DIMENSIONAL STRUCTURES

The different random laws developed for the case of isolated systems are still
valid for assembled structures. However, a particular procedure must be carried
out to characterize the nature of the sources located at the boundaries. In other
terms, some boundary unknowns are identi®ed as primary sources, according to
the following statement:
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Assumption 3: the boundaries connecting two sub-structures, of which one
contains a primary source, become a primary source for the other sub-structure.
This assumption enables the correlation between an external loading located on
one sub-system and a force±displacement unknown of another sub-structure to
be expressed.
The relevance of the last assumption is described by a simple example of an

in®nite rod de®ned as two assembled semi-in®nite rods. The standard notations
are used for the mechanical characteristics. The geometrical parameters are
de®ned by Figure 1.
The displacements at the junction location xj and at the spatial position x1 are:

u�xj� � F0G�xf, xj�, u�x1� � F0G�xf, x1� � u�xj�G�xj, x1�: �26�
Using the relationships (26), one can deduce that the term u(x1) is highly
correlated with u(xj)G(xj, x1).
In the same way, a structure made of three assembled rods and loaded by a

point external loading placed on the ®rst rod is considered (see Figure 2).
According to assumption 3, the boundary x1 is a primary source for the

second sub-structure. On the other hand, this boundary is not a primary source
for the ®rst rod. x2 is a primary source for the third sub-structure, since the
second rod contains a primary source located at x1. The characterisation of the
nature of the different sources may be considered as an iterative process. The
initiator of this process is always a sub-structure on which an external loading is
applied.
When the different sources are well de®ned, the two assumptions proposed for

the isolated structures are applied to each sub-structure.

4. NUMERICAL APPLICATIONS TO DIFFERENT ONE-DIMENSIONAL
SYSTEMS

The theoretical results presented in the previous sections have been computed
for different one-dimensional structures. The frequency evolutions of the second
order moments of the boundary unknowns are given. For the ®rst examples, the
calculation of the ®rst order moments of the unknowns evaluated at the

Figure 1. Representation of an in®nite rod de®ned as two assembled semi in®nite rods.

Figure 2. Representation of three assembled rods.
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boundary as well as in the domain, are carried out. Table 1 gives the mechanical
characteristics shared by the different structures studied.

4.1. A CLAMPED/CLAMPED ROD

A clamped/clamped rod (represented in Figure 3) loaded by a point loading is
considered. Its speci®c geometrical and mechanical characteristics are given by
Table 2.
One can observe the frequency evolution of two ®rst order moment variables

in Figures 4 and 5.
The evaluation of these variables provides some information on the behaviour

of the structure, only in the low frequency ®eld range for which the random
parameters do not greatly disturb the unknowns. When the frequency increases,
the expectations with respect to the geometrical random parameters of the
variables vanish to zero, as expected. Therefore, a ®rst order moment stochastic
formulation may only be used to model a structural complexity (described by the
random parameter) in the low frequency range. In order to evaluate the high
frequency behaviour of the structures, it is necessary to deal with the second
order moments of the different variables. The interest of the second order
moment description is shown by Figures 6 and 7.
The expectations of the square displacement variables are in good agreement

with the modal description in the low frequency range (the size of the range
depends on the value of the standard deviation), and a smooth asymptotic
behaviour in the high frequency ®eld is obtained.

4.2. A SPECIFIC CASE: DEFINITION OF THE DOMAIN OF VALIDITY OF THE THEORY

The same clamped/clamped rod is considered, submitted to a point loading
located near to the boundary of co-ordinate x2. In this situation, the

TABLE 1

Mechanical parameters used for all the structures

r (kg/m) E (N/m2) F0 (N)

7800 2�16 1011 1

Figure 3. Representation of a clamped/clamped rod excited by a point harmonic loading F0.

TABLE 2

Parameters of the clamped/clamped rod

S (m2) l (m) |xfÿ x1| (m) Z (%)

10ÿ4 6 1�48 4
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relationships (15) are not valid any more. Indeed, one may observe the
behaviour of some terms such as h�@w��~x1�=@x��@w�~x2�=@x�G�~x1 ÿ ~x2�i. In this
example, one can write xf1 x2. Consequently, one can assume that

Figure 5. Frequency evolution of the acceleration of the clamped/clamped rod at the point
x=0�6 m. Key as for ®gure 4.

Figure 4. Frequency evolution of the traction at x2 for the clamped/clamped rod; . . . . . , mod-
ulus of the deterministic result; - - - -, modulus of the prediction with s=0�05; and ÐÐ,
s=0�2.
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Figure 6. Frequency evolution of the modulus of the square traction at x2 for the clamped/
clamped rod. Key as for Figure 4.

Figure 7. Frequency evolution of the modulus of the square acceleration at x=0�6 m for the
clamped/clamped rod. Key as for Figure 4.
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�@w�~x2�=@x�G�~x1 ÿ ~x2� becomes the contribution at the spatial location x1 of a
primary source located at x2. Using the rule de®ning the dependency of a
boundary unknown and the contribution of the primary sources (referring to
assumption 1), one ®nally states that: �@w�~x2�=@x�G�~x1 ÿ ~x2� and �@w��~x1�=@x�
are correlated.
The example of a clamped/clamped rod whose geometrical and mechanical

characteristics are given in Table 3 is chosen in order to illustrate the limitations
of the assumptions proposed before.
Figure 8 clearly shows that the high frequency asymptotic trend of the

deterministic result is not obtained any more, when using the previous
assumptions.
This example is of great interest since it de®nes the limit of the validity of the

random hypothesis. Indeed, the assumptions proposed in section 3.2.1 are valid
as far as the location of the secondary and primary sources are distinct.

4.3. THE FLEXURAL BEAM

The example of a clamped/clamped beam (represented in Figure 9), is treated.
The system is subjected to a point lateral loading.

TABLE 3

Parameters of the second clamped/clamped rod

S (m2) l (m) |xfÿ x1| (m) Z (%)

10ÿ3 6 5�95 4

Figure 8. Frequency evolution of the modulus of the square traction at x2 in the case of close
boundary and loading for the clamped/clamped rod. Key as for Figure 4.
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The boundary equations formulation on the expectations with respect to the
boundary and input loading locations of the square boundary variables is
obtained using equations (8) and following a similar procedure as for the rod.
The analytical calculations lead to the determination of sixteen unknowns, which
are:
the ®rst order moments:

h@3w�~x1�@x3i, h@2w�~x1�=@x2i, h@3w�~x2�=@x3i h@2w�~x2�=@x2i;
the second order moments:

hj@3w�~x1�=@x3j2i, hj@3w�~x2�=@x3j2i, hj@2w�~x1�=@x2j2i, hj@2w�~x2�=@x2j2i,

h�@3w�~x1�=@x3��@2w��~x1�=@x2�i, h�@2w�~x1�=@x2��@3w��~x1�=@x3�i,

h�@3w�~x2�=@x3��@2w��~x2�=@x2�i, h�@2w�~x2�=@x2��@3w��~x2�=@x3�i;
the other second order moments:

hG��~x1, ~xf��@3w�~x1�=@x3�i, hG��~x1, ~xf��@2w�~x1�=@x2�i,

hG��~x2, ~xf��@3w�~x2�=@x3�i, hG��~x2, ~xf��@2w�~x2�=@x2�i,

Figure 9. Representation of a clamped/clamped beam excited by a point harmonic loading
F0.

Figure 10. Frequency evolution of (a) modulus of the square bending moment at x1; (b)
modulus of the square shear force at x1 for the clamped/clamped beam: key as for Figure 4.
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h�@G��~x1, ~xf�=@x��@3w�~x1�=@x3�i, h�@G��~x1, ~xf�=@x��@2w�~x1�=@x2�i,

h�@G��~x2, ~xf�=@x��@3w�~x2�=@x3�i, h�@G��~x2, ~xf�=@x��@2w�~x2�=@x2�i:
The square values at the spatial position ~x1 of the bending moment and the
shear force are given in Figures 10 and 11 for different values of the standard
deviation. The mechanical and geometrical characteristics of the beam are
summarised in Table 4.
The same observations as for the case of the rod can be made. The low

frequency response is reached accurately while a smooth behaviour cor-
responding to the general trend of the deterministic result is given in the high
frequency domain.

4.4. COUPLING BETWEEN A ROD AND A MASS/SPRING/DASHPOT SYSTEM

After the study of isolated structures, one must deal with assembled systems.
A simple case of this is a one-dimensional element coupled to an n-degrees-of-
freedom system. This type of coupling is of great industrial interest. Indeed,
complex assembled structures are often made of classical mechanical systems
such as stiffeners, plates and shells, to which small equipment is attached. It has
been shown that this small equipment may induce important perturbations of
the response of the whole system and may also be used to reduce vibration levels

Figure 11. Frequency evolution of (a) the modulus of the square of bending moment at x2; (b)
modulus of the square of shear force at x2 for the clamped/clamped beam. Key as for Figure 4.

TABLE 4

Parameters of the clamped/clamped beam

S (m2) l (m) |xfÿ x1| (m) I (m4) Z (%)

10ÿ4 3 1 10ÿ9 3
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[18]. Generally, this small equipment is de®ned using an n-degrees-of-freedom
system such as combinations of springs, point masses and dashpots.
Thus, a clamped/free rod is considered, on which is connected four-one-

degree-of-freedom systems composed each of a spring, a dashpot and a mass.
The whole structure is represented by Figure 12.
It is usual practice to consider an equivalent impedance describing the effect of

the four-degrees-of-freedom system. This impedance is denoted Z and can be
expressed as:

Z �
X4
n�1

o2MnKn�1ÿ icn�
o2Mn ÿ Kn�1ÿ icn� : �27�

The integral formulation for this speci®c junction case has the following

Figure 12. Representation of the clamped/free rod submitted to a point loading and a four-
degrees-of-freedom system.

Figure 13. Frequency evolution of the modulus of the square of the traction at x1 for the
clamped/free rod submitted to a point four-degrees-of-freedom system at x2. Key as for Figure 4.
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expression:

w�~x� � ÿw�~x2� Z

ES
G�~x, ~x2� � @G�

~x, ~x2�
@x

( )
ÿ @w�~x1�

@x
G�~x, ~x1� � F0

ES
G�~x, ~xf�:

�28�

From this equation, one can easily deduce the stochastic formulation using the
random assumptions. Figures 13 and 14 represent the expectation of the
modulus of the square traction at the clamped boundary and the expectation of
the modulus of the square acceleration at the location of the four-degrees-of-
freedom system. The characteristics of the rod and the point system are given in
Tables 5 and 6.
The observation of Figure 13 shows the same trends as for the previously

studied structures. The low frequency response is accurately described whilst the
high frequency evolution of the stochastic response gives a smooth trend of the
deterministic result. In other respects, the observation of Figure 14 highlights a
new phenomena which is of great interest. At ®rst, a global observation shows
that the random response has the same behaviour considering the boundary

Figure 14. Frequency evolution of the modulus of the square acceleration at x2 for the
clamped/free rod submitted to a point four-degrees-of-freedom system at x2. Key as for Figure 4.

TABLE 5

Parameters of the four-degrees-of-freedom spring/dashpot/mass system

K1

(N/m)
K2

(N/m)
K3

(N/m)
K4

(N/m)
M1, M2, M3, M4

(kg)
c1, c2, c3, c4

(%)

3�956 108 9�876 107 1�586 1010 9�876 1010 3�9 1
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point x1 (Figure 13) or the boundary point x2 (Figure 14). On the other hand,
the stochastic formulation detects accurately four eigenfrequencies each
corresponding to the eigenfrequency of a coupled one-degree-of-freedom system.
Indeed, the different spring/mass/dashpot systems are described as deterministic
systems. Therefore, their behaviour is obtained without any uncertainty.

4.5. COUPLING BETWEEN ONE-DIMENSIONAL STRUCTURES

4.5.1. Coupling between rods

Two types of coupling concerning rods are proposed in order to validate the
random formulation for coupled one-dimensional structures. The ®rst example
is the coupling of two rods with different geometrical and mechanical
characteristics. The system is described in Figure 15.
The deterministic integral representation for two coupled rods may be written:

w�x1� � F0G1�xf, x1� � �@w�x2�=@x�G1�x2, x1�
ÿ �@w�x1�=@x�G1�x1, x1� � w�x1�@G1�x1, x1�=@x,

w�x2� �
@w�x2�
@x

G2�x2, x2� ÿ
@w�x3�
@x

G2�x3, x2� � w�x3� @G2�x3, x2�
@x

: �29�

G1 (respectively G2) represents the Green kernel of the rod bounded by x1 and x2
(respectively bounded by x1 and x3). x1 (respectively x2) represents the co-
ordinate of an inde®nite point of the rod between x1 and x2 (respectively de®ned
by x1 and x3). One can then easily obtain the equations corresponding to the
random formulation by multiplying equations (29) by the displacement±force
variables, in the same manner as for the simple clamped/clamped rod. Using the
random procedure de®ned previously, one obtains the following unknowns for
the stochastic formulation.

h�@w�x1�=@x�w��x2�G2�x1, x2�i, hw�x1�w��x2��@G2�x1, x2�=@x�i, hjw�x1�j2i,

hj@w�x1�=@xj2i, hw��x1�@w�x1�=@xi, hw�x1�@w��x1�=@xi, hj@w�x2�=@xj2i,

TABLE 6

Parameters of the clamped free rod coupled with a
four-degrees-of-freedom-system

S (m2) l |xfÿ x1| Z (%)

10ÿ4 10 3�37 0�5

Figure 15. Representation of two coupled rods submitted to a point loading.
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Figure 16. Representation of three coupled rods submitted to a point loading.

TABLE 7

Parameters of the two coupled rods

S1 (m
2) S2 (m

2) l1 (m) l2 (m) |xfÿ x2| (m) Z (%)

10ÿ4 10ÿ5 1�75 1�5 1 5

TABLE 8

Parameters of the three coupled rods

S1 (m
2) S2 (m

2) S3 (m
2) l1 (m) l2 (m) l3 (m) |xfÿ x2| (m) Z (%)

10ÿ4 10ÿ5 10ÿ4 1�89 1�5 1�25 1�12 5

Figure 17. Frequency evolution of two coupled rods: (a) the modulus of the square of accelera-
tion at x1; (b) the modulus of the square of traction at x1; (c) the modulus of the square traction
at x2; (d) the modulus of the square traction at x3. Key as for Figure 4.
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hj@w�x3�=@xj2i, h�@w��x1�=@x�G1�x1, xf�i, hw��x1��@G1�x1, xf�=@x�i,

h�@w��x2�=@x�G1�x2, xf�i:
The second example is concerned with the coupling between three rods (Figure
16), the results are given without any further developments.
For this case, one has to consider a total of twenty-®ve unknowns, composed

of six ®rst order moments and nineteen second order moments. The mechanical
and geometrical properties of two rods (respectively three rods) are given in
Table 7 (respectively 8).
The results for two and three rods are given in Figures 17 and 18. The random

formulation simulations describe the same behaviour as for the previous
examples. That is to say, the low frequency response is accurately approached
while the high frequency trend of the deterministic result is smoothly
approached.

4.5.2. Beam coupling

An example of coupling between two beams submitted to ¯exural loading
(shown in Figure 19) is proposed.
The formulations are not developed, the stochastic assumptions and the

formulation of the equations are quite similar to those developed in the previous
sections. Forty-six unknowns are required to solve the problem. The mechanical
and geometrical properties of the two beams are given in Table 9.
The frequency evolution of two boundary unknowns are illustrated by Figure

20.

Figure 18. Frequency evolution of the modulus of the square of acceleration of three coupled
rods at: (a) x2; (b) x3. Key as for Figure 4.



RANDOM HIGH FREQUENCY FORMULATION 295

5. CONCLUSION

A new boundary formulation is presented in this paper, in order to study the
behaviour of one-dimensional structures submitted to large frequency ®eld
excitations. These new developments have been applied to numerous examples of
beams, rods and coupled systems. The results highlight a smooth transition from
the exact low frequency modal description to the high frequency non-modal
domain. One of the main drawbacks of the formulation is the increasing number
of equations appearing to solve the problem, however this default is
counterbalanced by the very low frequency sampling required in the high
frequency range. This formulation gives local results and is still valid close to the
boundaries and singularities present in the structures, which is not the case for
energy methods such as the SEM. The lack of con®dence inherent in the SEA
highlighted by authors like Fahy [12], disappears with the boundary equation

Figure 19. Representation of two coupled beams submitted to a point loading.

TABLE 9

Parameters of the two coupled beams

S1 (m
2) S2 (m

2) l1 (m) l2 (m) |xfÿ x2| (m) I (m4) Z (%)

10ÿ4 10ÿ4 1 0�75 0�5 10ÿ7 3

Figure 20. Frequency evolution of two coupled beams: (a) the modulus of the square of
acceleration at x1; (b) the modulus of the square of the slope of acceleration at x1. Key as for
Figure 4.
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formulation. Indeed, the results obtained by this new formulation are rigorously
identi®ed in terms of the stochastic expectations with respect to the spatial
positions of the boundaries and input force of the square displacement variables,
described as functions of random variables.
The study of this new formulation is the beginning of a large research

program including developments concerning bi-dimensional systems. For these
types of structures the notion of random boundary must be extended. However,
these future results will be reported in a future article.
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