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Spinning disk±spindle systems consisting of an elastic disk mounted on an
elastic spindle by means of a three-dimensional, rigid clamp extend the rich
literature on spinning disks and spinning shafts that are decoupled from each
other. This work presents an exact, closed-form solution for the eigensolutions
of such systems. The complex eigenfunctions have the classical properties of
a gyroscopic system when the individual disk, spindle and clamp de¯ections
for a given eigenfunction are collected in terms of an extended eigenfunction.
Eigenvalue perturbations are calculated to determine the sensitivity of the zero
speed eigenvalues and the critical speeds to system parameters. Additionally,
critical speeds analogous to those of a rigidly supported (classical) spinning
disk are examined for the coupled system. Whereas the rigidly supported disk
does not experience critical speed instability in the one-nodal diameter
eigenfunctions, the coupled system does. The exact solution admits a closed-
form modal analysis for the forced response to disk, spindle and clamp
excitations. Response is calculated for two examples that demonstrate the
strong disk±spindle modal coupling that can exist and the potentially damaging
transmission of excitation energy between the disk and spindle.

# 1999 Academic Press

1. INTRODUCTION

An extensive literature on the vibration and stability of spinning spindles (shafts)
and spinning disks has been published in the last several decades. Much of the
spinning shaft work has been motivated by power generation and transmission
applications. Spinning disk analyses have been driven by circular saw, disk drive,
disk brake, and similar systems. Analyses that model continuous system elastic
vibration typically focus on either the spindle (with any attached disks modelled
as rigid) or the disk (supported by a rigid structure). Practical systems such as
disk drives, turbomachinery, and high-speed geared systems, however, exhibit
coupled disk±spindle response wherein dynamic excitation at either the disk or
spindle excites elastic vibration of both components. For example, the dominant
excitation in gears is at the tooth mesh, but unacceptable noise is radiated
primarily from the housing. The vibratory response is a coupled one involving
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the disk, spindle, bearings, and housing. The reverse path occurs in disk drives
where bearing forces and support structure motion drive disk vibration. While
focusing on decoupled models, the existing literature also emphasizes free
vibration and stability investigations with considerably less attention to
operating condition response.
This study examines a coupled disk±spindle system where both the disk and

spindle are elastic bodies; they are coupled by a rigid clamp (Figure 1). The
associated eigenvalue problem is analytically solved in closed-form for the
natural frequencies, vibration modes, and critical speeds. An examination of the
critical speeds reveals that critical speeds associated with both the spindle and
disk are present. These are analogous to the critical speeds of the individual,
decoupled spindle and disk systems. Critical speeds analogous to those for a
rigidly supported, spinning, elastic disk, termed disk critical speeds in this work,
have not been previously discussed. The exact eigensolutions admit a
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Figure 1. Disk±spindle system.
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perturbation analysis for eigenvalue sensitivity and a gyroscopic system modal
analysis to examine operating condition response. Response analyses for the
cases of support motion and direct spindle excitation are presented to
demonstrate the strongly coupled motions that can occur.
Flowers and Ryan [2] present a discussion of past literature [3±6] on coupled

disk±spindle vibration, most of which is motivated by turbomachinery
applications. This prior work generally uses transfer matrix methods and other
lumped models to examine natural frequencies and critical speeds. None of these
studies examine modal coupling and forced response. More recently, Lee et al.
[7] numerically and experimentally studied the natural frequencies of a coupled
disk±spindle system with application to disk drives. The present work builds on
that of Chivens and Nelson [4], Parker [1], and Parker and Sathe [8]. Chivens
and Nelson [4] analytically studied the natural frequencies of an elastic disk±
spindle system coupled by a thin clamp. They conclude that disk ¯exibility alters
the natural frequencies of an elastic spindle-rigid disk system but not the critical
speeds. Parker [1] derived the linearized equations of motion for the system of
Figure 1 with a three-dimensional clamp including certain practical asymmetries.
He cast these in terms of extended operators that possess the standard symmetry
and skew-symmetry properties of gyroscopic continua. This formulation admits
classical analytical methods and is crucial for the perturbation and response
analyses of the current work. Parker and Sathe [8] used the extended operator
formulation to discretize the disk±spindle system using a Galerkin projection.
They calculate natural frequencies over a broad range of parameters, identify the
modal coupling that occurs in speed regions of natural frequency veering, and
examine the character of the vibration modes. In contrast to the quantitative and
qualitative characterization of the system eigensolutions conducted by Parker
and Sathe [8], the present work presents few quantitative free vibration results
but focuses instead on the derivation of the exact eigensolutions and the forced
response. Discretization methods applied to gyroscopic systems may have poor
accuracy or convergence at high speeds particularly when stationary system
vibration modes are used as basis functions; the exact solution of this paper
provides a valuable benchmark to con®rm the accuracy of such approaches for
both free and forced response.

2. EQUATIONS OF MOTION

Figure 1 shows the disk±spindle system in which an elastic, axisymmetric,
rotating, cantilever spindle carries an elastic, axisymmetric disk at its end. A
three-dimensional rigid clamp couples these components. The deformation is
described by seven dimensionless variables: w(r, y, t) is the transverse elastic
de¯ection of the disk; u(z, t) and v(z, t) are the elastic de¯ections of the spindle
in orthogonal planes; uc(t) and vc(t) are the displacements of the clamp center of
mass; and f(t) and c(t) are the clamp rotations in the planes of the elastic
de¯ections u and v, respectively. These seven variables are not independent
because the clamp motions are related to the spindle de¯ections by the geometric
compatibility conditions
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f � uzjz�1, c � vzjz�1, uc � ujz�1 � d1f, vc � vjz�1 � d1c: �1�

The parameters of the system are
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where �t is the time, �O is the rotation speed, D is the disk ¯exural rigidity, EI is
the spindle bending stiffness, rd is the disk mass per unit area, rs is the spindle
mass per unit length, m is the combined mass of the clamp and the disk, a and b
are the inner and outer radii of the disk, respectively, l is the length of the
spindle, �d1 is the clamp half-thickness (Figure 1), �Jcii and

�Jdii are the moments of
inertia of the clamp and the disk, �qd is the transverse disk force, �qu and �qv are
the transverse spindle forces, and �Fi and �Mi are the applied forces and moments
on the clamp. Parker [1] derived the linearized equations of motion of the system
in rotating co-ordinates including several asymmetries. The dimensionless
equations for the axisymmetric system are

Kr4wÿ O2x�w� � r�wtt ÿ r cos y�ftt � O2f� ÿ r sin y�ctt � O2c�� � qd�r, y, t�,
�3�

uzzzz � utt ÿ 2Ovt ÿ O2u � qu�z, t�, �4�

vzzzz � vtt � 2Out ÿ O2v � qv�z, t�, �5�

ÿuzzzjz�1 � auctt ÿ 2Oavct ÿ O2auc � F1�t�, �6�

ÿvzzzjz�1 � avctt � 2Oauct ÿ O2avc � F2�t�, �7�

uzzjz�1 � d1uzzzjz�1 � �Jc22 � Jd22�ftt ÿ
� �

rr cos ywtt dA

ÿ O�Jc11 � Jc22 ÿ Jc33�ct ÿ O2 �Jc11 ÿ Jc33 ÿ Jd22�f�
� �

rr cos yw dA

� �
�M2�t�,

�8�
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vzzjz�1 � d1vzzzjz�1 � �Jc11 � Jd11�ctt ÿ
� �

rr sin ywtt dA

� O�Jc11 � Jc22 ÿ Jc33�ft ÿ O2 �Jc22 ÿ Jc33 ÿ Jd11�c�
� �

rr sin yw dA

� �
� ÿM1�t�:

�9�
Here, r and y are polar co-ordinates in a frame ®xed to the rotating disk, and z
is the co-ordinate of a material point on the spindle. Equations (3)±(5) are the
governing equations over the continuous disk and spindle domains, equations (6)
and (7) are the linear momentum balances for the clamp, and equations (8) and
(9) are the angular momentum balances for the clamp. x(w) is the membrane
stress operator [9]:
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sr,y are the disk rotational stresses and � is Poisson's ratio. The spindle and disk
boundary conditions are

ujz�0 � vjz�0 � 0, uzjz�0 � vzjz�0 � 0,

wjr�g � 0, r2wÿ 1ÿ �
r

wr � wyy

r

� �� �
r�1
� 0,

wrjr�g � 0, �r2w�r ÿ
1ÿ �
r2

wyy

r
ÿ wryy

� �� �
r�1
� 0: �13�

Equations (3)±(9) can be written in a structured manner using the extended
operator formulation [1, 10]. De®ning the extended variable h as

h�r, y, z, t� � �w�r, y, t� u�z, t� v�z, t� uc�t� vc�t� f�t� c�t��T, �14�
equations (3)±(9) are written concisely as

Mhtt � OGht � �Lÿ O2~L�h � f, �15�
where M, G, L, and ~L are the extended operators operating on h and f is the
extended excitation vector. These operators are de®ned in Parker [1]. The inner
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product between two extended variables x and y is de®ned as

�x, y� �
� �

x1�y1 dA�
�1
0

x2�y2 dz�
�1
0

x3�y3 dz� x4�y4 � x5�y5 � x6�y6 � x7�y7, �16�

where xi and yi are the elements of the extended variables x and y, the double
integral is over the area of the disk, the single integrals are over the length of the
spindle, and the overbar denotes complex conjugate. With this inner product and
the constraints (1), the operators M, L and ~L are symmetric and G is skew-
symmetric. Moreover, M and L are positive de®nite. Thus, equations (15) and
(16) cast the disk±spindle system in the canonical form of a gyroscopic
continuum. The importance of this structured formulation will be evident in the
perturbation analysis and the forced response discussed later.

3. EXACT SOLUTION OF THE EIGENVALUE PROBLEM

An exact analytical solution of the gyroscopic system eigenvalue problem is
presented here. Use of the separable solutions u(z, t)= z(z)elt and v(z, t)=
Z(z)elt in the spindle equations (4) and (5) gives

zzzzz � l2zÿ 2OlZÿ O2z � 0, Zzzzz � l2Z� 2Olzÿ O2Z � 0: �17, 18�
Decoupling these equations yields

d8z
dz8
� 2�l2 ÿ O2�d

4z
dz4
� �l2 � O2�2z � 0 �19�

and an identical equation for Z. The general solution of equation (19) is

z�z� � A1 cos az� A2 sin az� A3 cosh az� A4 sinh az

� A5 cos bz� A6 sin bz� A7 coshbz� A8 sinhbz, �20�
where Ai are complex constants, a � �ÿl2 � O2 � 2ilO�1=4 and b � �ÿl2�
O2 ÿ 2ilO�1=4. The solution for Z(z) is identical to equation (20) with Ci replacing
Ai. Substitution of the Z(z) solution and equation (20) into equation (17) (or
equation (18)) yields

Z�z� � ÿiA1 cos azÿ iA2 sin azÿ iA3 cosh azÿ iA4 sinh az

� iA5 cos bz� iA6 sin bz� iA7 coshbz� iA8 sinhbz: �21�
The eigenfunctions are complex as seen in equations (20) and (21).
The separable solution w�r, y, t� � w�r, y�elt reduces equation (3) to

Kr4wÿ O2x� r�l2�wÿ r cos yfÿ r sin yc� ÿ O2�r cos yf r sin yc�� � 0: �22�
For an axisymmetric disk, disk±spindle couplng occurs only for the one-nodal
diameter eigenfunctions [3, 10]. These are the coupled modes of the system and
the only ones of interest here. For numbers of nodal diameters other than one,
the deformation is only in the disk; the spindle does not deform. These are the
uncoupled modes of the system; they are well known from analyses of rigidly
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supported disks. For the coupled modes, the solution

w�r, y� � g�r� cos y� p�r� sin y �23�

gives the radial part of the disk equation from equation (22),
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dr4
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g

� d2rr5fÿ o2 r
K

� �
r5f, �24�

where d=O/
����
K
p

and l= io. An identical equation is obtained for p(r) with f
replaced by c. The solution of equation (24) is obtained using the power series
method [11]. Using an expansion about the ordinary point r=1, the
homogeneous solution has the form

g�r� �
X1
n�0

an�1ÿ r�n: �25�

Substituting this in the homogeneous form of equation (24) and equating
coef®cients of each power of (1ÿ r) to zero, it is found that the coef®cients a0±a3
are arbitrary, a4±a7 depend on a0±a3, and each of the higher coef®cients depends
on the previous eight coef®cients. The recursion relation for ne 4 is

an�4 � ÿfÿ�4�n� 3��n� 2��n� 1�n� 2�n� 3��n� 2��n� 1��an�3
� �6�n� 2��n� 1�n�nÿ 1� � 6�n� 2��n� 1�n

� �ÿ3ÿ d2�c1 � c2 � c3���n� 2��n� 1��an�2
� �ÿ4�n� 1�n�nÿ 1��nÿ 2� ÿ 6�n� 1�n�nÿ 1�

� �6ÿ d2�ÿ4c1 ÿ 2c2 ÿ 6c3���n� 1�n

ÿ �3ÿ d2�c1 ÿ c2 � c4 ÿ r���n� 1��an�1 � �n�nÿ 1��nÿ 2��nÿ 3�

� 2n�nÿ 1��nÿ 2� � �ÿ3ÿ d2�6c1 � c2 � 15c3��n�nÿ 1�

� �3� d2�ÿ3c1 � c2 ÿ 5c4 � 5r��n� �ÿ3� d2�c1 ÿ c2 � c4� ÿ o2r=K��an
� �ÿd2�ÿ4c1 ÿ 20c3��nÿ 1��nÿ 2� � d2�3c1 � 10c4 ÿ 10r��nÿ 1�

� d2�ÿ2c1 ÿ 4c4� � 4o2r=K�anÿ1
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� �ÿd2�c1 � 15c3��nÿ 2��nÿ 3�

� d2�ÿc1 ÿ 10c4 � 10r��nÿ 2� � d2�c1 � 6c4� ÿ 6o2r=K�anÿ2
� �6d2c3�nÿ 3��nÿ 4� � d2�5c4 ÿ 5r��nÿ 3� � �ÿ4d2c4 � 4o2r=K��anÿ3
� �ÿd2c3�nÿ 4��nÿ 5� � d2�ÿc4 � r��nÿ 4�

� d2c4 ÿ o2r=K�anÿ4g=f�n� 4��n� 3��n� 2��n� 1�g: �26�

Substitution of n=0 in the recursion relation and setting the coef®cients with
negative subscripts to zero gives the expression for a4 in terms of a0±a3.
Similarly, substituting n=1 and the expression for a4 into the recursion relation
gives a5 in terms of a0±a3. This procedure is repeated to obtain a4±a7 in terms of
a0±a3. Finally, setting one of the coef®cients a0±a3 equal to one and the other
three equal to zero at a time in the power series (25) gives four independent
homogeneous solutions w0h1±w0h4 of equation (24). The general solution (23) to
the disk equation is

w�r, y� � �B1w0h1 � B2w0h2 � B3w0h3 � B4w0h4 � rf� cos y
� �B5w0h1 � B6w0h2 � B7w0h3 � B8w0h4 � rc� sin y, �27�

where rf is a particular solution of equation (24), Bi are complex constants, and
the p(r) sin y term of equation (23) has been included.
Insertion of equations (20), (21) and (27) into equations (6)±(9), (13), and (1)

yields 16 linear, homogeneous equations in the 16 coef®cients Ai and Bi. Roots
of the characteristic determinant give the natural frequencies o.
The disk and spindle modal de¯ections (27), (20) and (21) are collected into an

extended eigenfunction of the form (14) where the modal de¯ections and
rotations of the clamp are calculated from equation (1):

hm �

wm � gm�r� cos y� pm�r� sin y
zm�z�
Zm�z�

ucm � zm�1� � d1zmz
�1�

vcm � Zm�1� � d1Zmz
�1�

f � zmz
�1�

c � Zmz
�1�

0BBBBBBBB@

1CCCCCCCCA
, m � 1, 2, . . . : �28�

Note that equation (28) is the form for the complex coupled modes. They occur
in complex conjugate pairs. The uncoupled modes, which are real and degenerate,
have the form

hn � �Rn�r��a1 cos ny� a2 sin ny� 0 0 0 0 0 0�T, n 6� 1, �29�

where a1 and a2 are arbitrary constants. The coupled vibration modes are
qualitatively classi®ed as disk modes, in which the strain energy in the disk
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dominates the total strain energy, and spindle modes, in which the strain energy
in the spindle dominates the total modal strain energy [8].
The above solution can be specialized to solve two special cases: the zero

speed eigenvalue problem (O=0), and the critical speed eigenvalue problem to
determine the speeds at which an eigenvalue vanishes (o=0). To distinguish
from disk critical speeds introduced later, the term spindle critical speeds is used
for speeds with vanishing eigenvalues as these critical speeds exist for a spindle
not coupled to a disk. At such spindle critical speeds, static loads in the rotating
frame (e.g., a center of mass offset from the rotation axis) excite a resonance
condition. The recursion relations for these problems are obtained by
substituting O=0 or o=0 into equation (26). Homogeneous solutions of the
disk equation for the zero speed eigenvalue problem are Bessel functions. For
both O=0 and o=0, the following simpli®cations occur: equations (4) and (5)
reduce to decoupled stationary beam equations with well-known solutions, the
spindle deforms in only one plane for each mode, and the order of the
characteristic determinant is 8 as opposed to 16 because of this decoupling. All
roots (that is, zero speed natural frequencies and spindle critical speeds) of the
characteristic determinant are degenerate and the two associated modes are
identical except for the plane of motion.
The choice of the point of expansion for the power series (25) varies in the

literature. Lamb and Southwell [12] used the regular singular point r=0,
whereas Eversman and Dodson [13] and Chivens and Nelson [4] used the
ordinary point r=1. In order to check whether expansion about one point leads
to better convergence than the other, an approach identical to that above was
used to obtain the natural frequencies by expanding about r=0, that is

g�r� �
X1
n�0

anr
n�a

This method, however, gave only the ®rst two natural frequencies at each speed,
as shown in Table 2, irrespective of the number of terms retained in the power
series. Moreover, the convergence for r=0 is slower than that for r=1. The
choice r=1 is superior to r=0 for the parameter set considered here, and an
expansion about r=1 is used in the subsequent results.
The exact solution provides a valuable benchmark for evaluation of

approximate methods. The comparison between the exact solution and the
Galerkin solution in Parker and Sathe [8] is shown in Figure 2. Only the natural

TABLE 1

Non-dimensional parameters for the disk±spindle system

K=0�000355 r=0�022279
d1=0�032480 a=2�05774
g=0�5 Jc11 =0�029521

Jc22 =0�029521 Jc33 =0�057743
Jd11 =0�016404 Jd22 =0�016404
Jd33 =0�032808 �=0�28
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frequencies of the coupled one-nodal diameter modes are shown. Excellent
agreement with the exact solution is observed for all eigenvalues even for
extremely high speeds. The Galerkin solution employed 12 zero speed
eigenfunctions (six degenerate pairs) as basis functions at each speed. The exact

TABLE 2

Convergence of the lowest three dimensionless natural frequencies for power series expansion
about r=0 and r=1 for 
=0�5, 1 and 2. Parameters used are given in Table 1

r=0 r=1
Number of terms Number of termsz�������������������������������}|�������������������������������{ z�������������������}|�������������������{

O Galerkin 20 40 60 80 20 40 60

0�593 0�593 0�593 0�593 0�593 0�593 0�593 0�593
0�5 1�528 1�558 1�555 1�554 1�552 1�528 1�528 1�528

1�844 1�844 1�844 1�844

0�113 0�114 0�113 0�113 0�113 0�113 0�113 0�113
1 1�987 2�036 2�032 2�031 2�030 1�988 1�987 1�987

2�267 2�268 2�267 2�267

0�852 0�870 0�852 0�852 0�852 0�852 0�852 0�852
2 2�948 2�979 2�977 2�976 2�974 2�950 2�948 2�948

3�457 3�458 3�457 3�457
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Figure 2. Comparison between exact natural frequencies (denoted by circles) and Galerkin [8]
natural frequencies (solid curves) for a rotating disk±spindle system. Parameters are given in
Table 1. The dashed line has unity slope. Its points of intersection with the solid lines are the disk
critical speeds Ocri .
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solution requires 40 terms to converge at O=2, as shown in Table 2; more
terms are necessary at higher speeds. Validation of the Galerkin results is
important as Galerkin discretization is far more convenient than the exact
solution from the perspectives of programming ease and computational
ef®ciency. The accuracy of the Galerkin discretization cannot be taken for
granted in the absence of a verifying exact solution, however, as discretization
methods for gyroscopic systems at high speeds may converge poorly and yield
erroneous results [14, 15]. An advantage of the Galerkin solution is that the
inertia, gyroscopic, and stiffness matrices are independent of speed and are
calculated only once.
A key feature of the above complex, speed-dependent eigenfunctions is that

they likely provide an excellent basis for discretization of models with non-linear,
time-varying, and dissipative effects that are present in practical systems. For
example, axially moving media systems (which are gyroscopic systems)
demonstrate excellent convergence when complex, speed-dependent
eigenfunctions are used in the discretization [14]. Similar behavior can be
expected for other gyroscopic continua because the basis functions adapt to the
changing speed. The dif®culty, however, is in analytically calculating the speed-
dependent eigenfunctions of a simpler, related gyroscopic system. The complex,
speed-dependent eigenfunctions herein provide the necessary basis functions for
spinning disk±spindle systems, and one would expect more rapid convergence
compared to the stationary system eigenfunctions or other speed-independent
basis functions.

4. DISK CRITICAL SPEEDS

The spindle critical speeds at which an eigenvalue vanishes in Figure 2 are
only part of the complete critical speed picture. In addition to these critical
speeds derived from the gyroscopic terms in the spindle equations of motion,
there are also disk critical speeds where the name re¯ects the association with the
critical speeds of a classical spinning disk. To understand this concept, ®rst
consider the critical speeds of a classical, rigidly supported disk.
The critical speeds of a rigidly supported, spinning disk are the speeds at

which a disk natural frequency in a ground-based (inertial) reference frame is
zero [16]. At such speeds any constant, stationary force applied to the disk leads
to large amplitude resonant response. In a rotating reference frame, the critical
speeds are given by Ocr=on/n where on is the natural frequency in the rotating
reference frame and n 6� 0 is the number of nodal diameters in the associated
mode. To see the relationship between the ®xed and rotating frame
characterizations, consider a stationary point force of unit magnitude acting on
the disk perpendicular to its plane. In the rotating frame, the excitation appears
as the rotating force Fd= d(rÿ r0)d(y+Ot)/r0 where d(�) is the Dirac delta
function. The modal force associated with the n-nodal diameter mode
wn(r, y)=Rn(r) cos ny is

fn �
� �

Fd�r, y, t�wn�r, y� dA � Rn�r0� cos nOt: �30�
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Resonant response (i.e., a critical speed) occurs when nO=on as noted
previously. One would expect modes having any number of nodal diameters
other than zero to become critical at some speed, but Renshaw and Mote [17]
proved that the one-nodal diameter modes of a rigidly supported disk never
become critical. These modes, however, do become critical for the coupled disk±
spindle system as discussed below.
We use the stationary force interpretation to characterize the disk critical

speeds of the coupled system. The extended excitation vector f associated with a
stationary point force on the disk is f=[Fd 0 0 0 0 0 0]T where Fd is as given
above. The modal force associated with the uncoupled extended eigenfunctions hn
of equation (29) (with a1=1 and a2=0) is

fn � �hn, f� � Rn�r0� cos nOt, n 6� 1, �31�
which is identical to equation (30). Resonant response occurs when nO=
on (n 6� 1), as for the rigidly supported disk. Because the uncoupled vibration
modes (n 6� 1) and corresponding rotating frame natural frequencies on of a
disk±spindle system are exactly those of a rigidly supported disk [1], the disk
critical speeds of the uncoupled modes are unaffected by disk±spindle coupling.
Thus, the coupled system is subject to the same critical speed instabilities as the
rigidly supported disk; the unstable critical modes are identical to those of a
rigidly supported disk and involve purely disk deformation.
Considering now the coupled vibration modes hm of equation (28), the

associated modal force is

fm � �hm, f� � gm�r0� cosOtÿ pm�r0� sinOt, m � 1, 2, . . . : �32�
Resonance occurs for O=om, where om are the coupled, one-nodal diameter
natural frequencies, and this condition de®nes the disk critical speeds
corresponding to the coupled modes. This condition is satis®ed as is evident
from Figure 2, where the lowest disk critical speed is actually lower than the
lowest spindle critical speed (o=0). Thus, in contrast to the rigidly supported
disk, critical speed instabilities of the one-nodal diameter modes, which are the
coupled modes of the disk±spindle system, do occur. The severity of a disk
critical speed instability depends on whether the critical coupled mode involves
predominantly disk or spindle deformation. For the parameter set considered in
Table 1, the critical modes at all disk critical speeds are predominantly spindle
modes. For these modes the modal force given by equation (32) is small. As a
result, the instability may not be severe in light of the small damping inherently
present in the system that limits the resonant response amplitude. A more
dangerous situation exists when the critical coupled mode is predominantly a
disk mode, as the resonant response induced by stationary disk forces would be
driven by a larger modal force.
In summary, spindle critical speeds exist at zero eigenvalues of the coupled

system as viewed in the rotating frame. The critical modes are all coupled modes
as pure spindle modes do not exist. Disk critical speeds exist for the uncoupled
modes (pure disk deformation) at exactly the same critical speeds as for the
rigidly supported disk, that is, Ocr=on/n, where on are the rotating frame
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natural frequencies of the uncoupled modes (not shown in Figure 2). Disk
critical speeds exist for the coupled modes when O=om, where om are the
natural frequencies of the coupled modes as given in Figure 2.

5. NATURAL FREQUENCY SENSITIVITY TO SYSTEM PARAMETERS

The extended operator structure allows application of eigenvalue perturbation
to examine the sensitivity of the natural frequencies and critical speeds to the
non-dimensional parameters. To demonstrate the approach, consider
perturbation of the disk±spindle stiffness ratio, K=K0+ eK 0. De®ning L 0a0=
[K 0r4o0 0 0 0 0 0 0]T, the zero speed eigenvalue problem in terms of extended
operators is

�L� eL 0�aÿ o2Ma � 0, �33�
with appropriate homogeneous boundary conditions. Here, a is the extended
eigenfunction associated with the natural frequency o, where l= io is the
eigenvalue. o and a are represented as

o2 � o2
0 � em, a � a0 � ea1: �34�

Substitution of equation (34) into equation (33) leads to

La0 ÿ o2
0Ma0 � 0, �35�

La1 ÿ o2
0Ma1 � ÿL 0a0 � mMa0, �36�

where the appropriate boundary conditions are appended to equations (35) and
(36). The unperturbed eigenvalue problem (35) can be solved analytically [10].
Each of its natural frequencies is degenerate, so a0= d1a01+ d2a02, where a01 and
a02 are the unperturbed eigenfunctions associated with o0, and d1 and d2 are
constants to be determined. The a0i satisfy the orthonormality conditions
(a0i, Ma0i)= dij. Solvability conditions from equation (36) yield

md1 � d1�a01, L 0a01�, md2 � d2�a02, L 0a02�: �37�
Expansion of equation (37) yields the equivalent conditions

m � K 0
� �
�w0 cos y�r4�w0 cos y� dA � K 0

� �
�w0 sin y�r4�w0 sin y� dA, �38�

where w0(r) is the radial component of the disk de¯ection for a01 and a02. The
biharmonic operator is positive de®nite, so m is positive and the zero speed
natural frequencies increase with K (Figure 3).
The spindle critical speed eigenvalue problem is

�L� eL 0�bÿ O2
cr
~Lb � 0, �39�

with homogeneous boundary conditions. b is the extended critical speed
eigenfunction. With the representations b= b0+ eb1, O2

cr � O2
cr0
� ed,
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perturbation yields

d � K 0
� � �wcr cos y�r4�wcr cos y� dA

�b01, ~Lb01�
� K 0

� � �wcr sin y�r4�wcr sin y� dA
�b02, ~Lb02�

, �40�

where b01 and b02 are the degenerate critical speed eigenfunctions and wcr(r) is
the radial component of the disk de¯ection for b01 and b02. Consider the
unperturbed critical speed eigenvalue problem Lb0i ÿ O2

cr0
~Lb0i � 0. The

associated Rayleigh Quotient is O2
cr0
� �b0i, Lb0i�=�b0i, ~Lb0i�. Because O2

cr0
is

positive and L is positive de®nite, the inner product �b0i, ~Lb0i� is positive for
critical speed eigenfunctions b0i. Thus, d> 0 and the spindle critical speeds
increase with K.
Analogous results when all elements of the inertia tensors are perturbed

simultaneously, that is Jc,dii � Jc,dii0 � eJc,d
0

ii , are

m � ÿ�Jc 022 � Jd
0

22�o2
0f

2
0 < 0, d � �J

c 0
33 � Jd

0
22 ÿ Jc

0
11�O2

crf
2
cr

�b0i, ~Lb0i�
: �41�

Perturbation of the clamp mass parameter a according to a= a0+ ea 0 yields the
zero speed natural frequency and spindle critical speed perturbations
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Figure 3. Variation of the zero speed natural frequencies with the non-dimensional parameters
K, J c,d

ii and a. The parameters K0, J
c,d
ii0

and a0 are as in Table 1. The circles denote disk natural
frequencies and the crosses denote spindle natural frequencies.
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m � ÿa 0o2
0u

c2
0 < 0, d � ÿa

0O2
cru

c2
cr

�b0i, ~Lb0i�
< 0: �42�

Figure 3 shows the natural frequencies obtained by solving the stationary
system eigenvalue problem for different values of the non-dimensional
parameters considered above. The calculated results are consistent with the
perturbation predictions. Table 3 shows di as a percentage of O2

cri when the
perturbations K 0, Jc,d

0
ii and a 0 are assigned values 10% of the corresponding

values in Table 1. While the dimensionless spindle critical speeds follow the
trends predicted by the perturbation analysis, their changes are small. In fact,
spindle critical speed curves analogous to those in Figure 3 remain virtually ¯at
across the same parameter ranges as Figure 3.

6. FORCED RESPONSE

An important feature of the analytical eigensolution for the rotating system is
that, in conjunction with the extended operators, it admits a gyroscopic system
modal analysis [18, 19] to obtain the response to external excitation. Parker [1]
applied this procedure to obtain formal expressions for the rotating disk±spindle
response using the extended operator formulation. The method is brie¯y
discussed here; the details can be found in the references.
The response is expanded in the form

x �
X1
m�1
�zm�t�ym � Zm�t�zm�,

where zm(t) and Zm(t) are modal co-ordinates and ym and zm are the real and
imaginary parts of the complex coupled eigenfunctions hm of equation (28).
Modal analysis yields

_zm ÿ omZm � Fz
m, _Zm � omzm � Fy

m, �43�
where Fz

m � ÿom�zm, f�, Fy
m � om�ym, f� and f is the extended excitation vector

[1]. Decoupling these equations and introducing small modal damping gives

TABLE 3

Perturbations for the critical speed eigenvalue problem. The perturbations K0; Jcd0ii and �
0 are

assigned values 10% of the corresponding values in Table 1 and the critical speed
perturbations �i are calculated. The table shows the ratios of �i to 
2

cri

Critical speed perturbation (%)z�������������������������������}|�������������������������������{
Parameter

d1
O2

cr1

d2
O2

cr2

K 5�65e-4 1�733e-6
Jc,dii 0�204 0�067
a ÿ4�68 ÿ0�418
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�zm � 2rmom
_zm � o2

mzm � _Fz
m � omF

y
m, �44�

�Zm � 2rmom _Zm � o2
mZm � _Fy

m ÿ omF
z
m, �45�

where rm is the damping ratio for the mth mode.

6.1. SUPPORT MOTION EXCITATION

Consider the problem where the bearing support is subjected to a speci®ed
time-varying displacement. This case is of particular importance for systems such
as disk drives. It also provides insight into the natural frequency veering
phenomenon, the modal coupling between the disk and spindle, and the
potential for energy transmission between components. The equations of motion
are

Mhtt � OGht � �Lÿ O2~L�h � 0, �46�
with the time-varying boundary conditions

ujz�0 � f1�t�, uzjz�0 � 0, vjz�0 � f2�t�, vzjz�0 � 0: �47�
This problem with non-homogeneous boundary conditions is transformed into
an equivalent forced vibration problem with homogeneous boundary conditions
using the transformation

u�z, t� � û�z, t� � f1�t�, v�z, t� � v̂�z, t� � f2�t�: �48�
With the representation h � ĥ� ~h where h=[w u v uc vc f c]T,
ĥ � �ŵ û v̂ ûc v̂c f̂ ĉ�T and ~h=[0 f1 f2 f1 f2 0 0]T, substitution into equation (46)
gives

Mĥtt � OGĥt � �Lÿ O2~L�ĥ � f, �49�
where

f � ÿ

0
�f1 ÿ 2O_f2 ÿ O2f1
�f2 � 2O_f1 ÿ O2f2

a��f1 ÿ 2O_f2 ÿ O2f1�
a��f2 � 2O_f1 ÿ O2f2�

0
0

0BBBBBBBB@

1CCCCCCCCA
�50�

and components of ĥ satisfy homogeneous boundary conditions. ~h is known, so
solution of equation (49) yields the complete solution h.
Consider the base excitation where the bearing is subjected to a time-varying,

vertical displacement sin pt in the ground-based (inertial) reference frame.
Transforming this into rotating co-ordinates yields

u�0, t� � �sin�p� O�t� sin�pÿ O�t�=2, v�0, t� � �cos�p� O�tÿ cos�pÿ O�t�=2,
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and the forcing function (50) becomes

f � f1 � f2 � p2

0
sin�p� O�t
cos�p� O�t
a sin�p� O�t
a cos�p� O�t

0
0

0BBBBBBBB@

1CCCCCCCCA
� p2

0
sin�pÿ O�t
ÿ cos�pÿ O�t
a sin�pÿ O�t
ÿa cos�pÿ O�t

0
0

0BBBBBBBB@

1CCCCCCCCA
: �51�

For each bearing excitation frequency p the effective force f and response ĥ are at
two frequencies, p2O. Consequently, resonant response occurs for p=o2O,
where o are the natural frequencies of the coupled vibration modes (the
uncoupled modes do not participate in the response). Figures 4(a, b), which are
readily obtained from Figure 2, show the resonant excitation frequencies for the
f1 and f2 components, respectively. Figures 5(a, b) show the response amplitudes
of the disk at r=1, y=0 caused by the components f1 and f2 when O and p are
varied. Notice that not all resonances predicted in Figure 4 appear in Figure 5.
The qualitative explanation lies in the disk or spindle nature of the vibration
modes [8]. Spindle modes are not prominent because the response is calculated
on the disk, which is like a ``node'' for the spindle modes. Disk modes are not
prominent because such modes are not excited by the purely spindle and clamp
excitation (51). The disk response in Figure 5 is dominated by coupled modes
that involve substantial disk and spindle de¯ection. The large peak in the
response of the o7 mode in Figure 5(a) re¯ects this. Near the peak, o7 is veering
away from o9 (Figure 2) and the vibration mode is changing rapidly from a disk
mode to a spindle mode. The response is maximized in the veering zone where
the mode is mixed and decays as the mode adopts disk (O< 4) or spindle (O> 6)
character. Thus, bearing support motion may induce substantial vibration in the
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disk in the absence of any other forcing. In general, spindle excitation can drive
large disk response and vice versa, an important consideration in practical
applications. Modes having mixed disk and spindle character are particularly
susceptible to this transfer of energy.
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Figure 5. Transverse disk response amplitude at r=1, y=0 to the (a) f1 component of
equation (51) and (b) f2 component of equation (51) for sinusoidal bearing excitation with fre-
quency p.



DISK±SPINDLE SYSTEM 463

6.2. SPINDLE EXCITATION

As a second example, consider the case of direct spindle excitation where a
sinusoidal point force in rotating co-ordinates acts along the direction of the
de¯ection u at z=0�7, that is qu(z, t)= d(zÿ 0�7)eiot. Figure 6 shows the spindle
and disk frequency response amplitudes at O=2, 5 and 8. This range
encompasses the veering zone between the third and ®fth modes as seen in
Figure 2. Large, complementary changes in these vibration modes occur in the
veering region: the third mode changes from a disk mode to a spindle mode and
the ®fth mode tends toward a disk mode from a spindle mode. The relative
amplitudes of the resonant peaks demonstrate the change in character of the
third and ®fth modes. While the third mode peak is barely distinguishable in the
spindle response at O=2, it is prominent at O=8. Correspondingly, the ®fth
mode peak is reduced as its character changes from disk to spindle mode. Both
modes are prominent at O=8 where each mode has substantial disk and spindle
deformation.
The foregoing forced response analyses were duplicated using a Galerkin

discretization with the stationary system eigenfunctions as basis functions [1]. Six
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pairs of stationary system eigenfunctions associated with the degenerate, coupled
natural frequencies were used. The exact and Galerkin solutions show excellent
agreement. Thus, as with the free vibration results of Figure 2, Galerkin
discretization provides an accurate and ef®cient tool for response analyses.

7. SUMMARY AND CONCLUSIONS

1. A closed-form analytical solution to the eigenvalue problem of the rotating
disk±spindle system is obtained. In conjunction with the extended operator
formulation, the exact solution permits straightforward application of
analytical procedures such as perturbation and modal analysis. The complex,
speed-dependent eigenfunctions likely provide an excellent basis for
discretization of disk±spindle systems in the presence of non-linear, time-
varying, and dissipative effects.

2. The exact solution provides a valuable benchmark for evaluation of
approximate methods. Galerkin discretization as presented in references [1, 8]
provides excellent results for both eigensolutions and forced response. This
approach is simpler to program and more computationally ef®cient than the
exact solution.

3. For the parameter set considered, the convergence of the power series
solution to the disk equation is markedly better for expansion about the
ordinary point r=1 than about the regular singular point r=0. While the
limited parameter range considered here does not permit general convergence
conclusions, the large difference suggests superiority of the expansion about
r=1.

4. Disk critical speeds analogous to those of a rigidly supported spinning disk
exist in addition to spindle critical speeds associated with vanishing
eigenvalues. Furthermore, disk±spindle coupling introduces disk critical
speeds associated with the one-nodal diameter coupled modes that do not
exist for a rigidly supported disk. The critical speeds of a rigidly supported
disk corresponding to the modes with numbers of nodal diameters other than
one remain points of instability; these speeds are unaffected by disk±spindle
coupling.

5. The extended operator formulation allows perturbation analysis of the zero
speed and critical speed eigenvalue problems. This analysis yields simple
formulae for the sensitivity of the zero speed natural frequencies and spindle
critical speeds to changes in the non-dimensional parameters.

6. The analytical eigensolutions of the rotating disk±spindle system and the
extended operator formulation admit a closed-form modal analysis for
continuous gyroscopic systems to obtain the forced response. This technique
is exploited to examine two cases, support motion and spindle excitation, that
provide insight into the modal interaction associated with natural frequency
veering and the transmission of excitation energy between the spindle and
disk.
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