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This paper reports a study of correlation dimension in gearbox condition
monitoring. In contrast to other fault diagnosis methods, such as Fourier
spectrum analysis, time—frequency analysis, etc., the correlation dimension can
provide some intrinsic information of an underlying dynamic system
reconstructed from measured scalar time series. A three-stage analysis
procedure using correlation dimension is presented. Some important influencing
factors relating directly to the computational precision of correlation dimension
are discussed. Industrial gearbox vibration signals measured from different
operating conditions are analyzed using the above method. Results show that
the correlation dimension is able to identify clearly a gearbox-operating
condition with fatigue crack or broken tooth compared with the normal
condition.

© 1999 Academic Press

1. INTRODUCTION

A gear transmission converts a rotary input motion into another rotary motion
at a different frequency. In an ideal mechanism the relationship between input
and output depends only on geometry or kinematics of the meshing gears.
However, in real industrial gearboxes, non-linear departures from the ideal
mechanism, such as gaps, play and friction, clause complex dynamic behavior of
the meshing mechanism. Though there have been many efforts in gearbox faults
diagnosis [1-3], the understanding of non-linear vibration or noise in gearboxes
has been a neglected subject. Modern developments in non-linear dynamics have
provided new tools to deal with this hitherto unsolved problem.

A number of papers have appeared which treat the possibility of non-linear
and chaotic vibrations in gear kinematics mechanism. Complex dynamic
compacts in gear transmission systems have been given by Pfeiffer and co-
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workers, who have pioneered in the application of the Poincaré map technique
to predict noise in automotive and other gear transmission systems [4, 5].
Comparin and Singh have investigated various non-linear vibrations of gear
systems including chaotic dynamics [6].

The development of non-linear dynamics theory has brought new
methodologies to identify and forecast complex non-linear vibration behavior.
One of the important concepts is the correlation dimension [7-9]. Calculating
correlation dimension can be used in that it: (1) gives an indication as to how
many state variables are influencing the process output, (2) can be used to reject
a null hypothesis in which the system is random, (3) can be used as a descriptive
statistic and (4) may indicate that some short term prediction is possible [10].

Correlation dimension has been widely used as a powerful tool for interpreting
irregular signals in electrical, mechanical, biological and other engineering
domains. Researchers have also explored the application of the correlation
dimension to machinery condition monitoring and the fault diagnosis field.
Logan and Mathew introduced the correlation dimension for the diagnosis of
rolling element bearing defects [11]. Promising results show that the correlation
dimension can classify three major rolling element bearing faults: outer race
fault, inner race fault and roller fault.

A gearbox in normal condition generates considerably different time series to
one with a cracked or broken tooth due to the different dynamic mechanisms.
The correlation dimension may be able to distinguish such differences. In this
paper, the authors intend to introduce a new technique for extracting
quantitative parameters from raw time series of vibration acceleration data with
the correlation dimension. Results show that there are distinctive differences in
the correlation dimension obtained from a normal gearbox and those with
cracked or broken tooth.

The structure of this paper is as follows: first, the basic non-linear time series
analysis method based on correlation dimension is introduced; then the
experimental investigation and discussion are presented; lastly, the analysis
results, discussion and conclusions are drawn.

2. BASIC THEORY

The non-linear dynamic or chaos theory has concentrated on characterizing
irregular, broadband signals, which are generic in non-linear dynamical systems,
and extracting physically interesting and useful information from such signals
[8, 9]. The development of the chaos theory has brought some new tools such as
the correlation dimension, the Liyapunov exponent, and so on, to interpret
observations of physical systems where the time trace of the measured quantities
is irregular. The attractor dimension has been the most widely studied invariant
quantity for dynamical systems. The concept of a phase space or state space
dimension is the number of quantities needed to identify the state of a dynamic
system. In the case of ordinary differential equations, the state space dimension
corresponds to the number of equations. In the case of partial differential
equations or the Navier—Stokes system, the state space dimension is infinite.
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However, in dissipative dynamical systems it is frequently the case that the
system behavior is attracted to a low dimensional state space. If the attractor is
strange, the state space dimension becomes a non-integer value called the fractal
dimension.

There are several different dimensions in use now, of which the most widely
used one is the correlation dimension. Before calculating the correlation
dimension, it is necessary to reconstruct the attractor state space from the
measured raw time series.

2.1. STATE SPACE RECONSTRUCTION

The system state space, which plays an important role in dynamics theory, is a
mathematical space with orthogonal co-ordinate directions representing each of
the variables needed to specify the instantaneous state of the dynamical system
[12]. However, in many practical situations it is difficult to measure all variables
of a system. It is usually the case that only one variable scalar time series can be
observed and it seems difficult to infer any information about the underlying
system from the measured time series. In this instance, the time-delay embedding
theory [13, 14] is available to reconstruct the state space of the underlying system
from a measured raw time series {x(i), i =1, 2,..., N}. The main idea of the
time-delay embedding theory is that it is unnecessary to know the derivatives to
form a co-ordinate system in which one can capture the structure of orbits; one
can use directly the lagged variable to construct the state space. Upon choosing
the time lag v and the dimension of the space m, the state space vectors can be
reconstructed as:

X)) =[x(@), x(i+71),....,x([+(m=1)7)], i=1,2,...,N—(m— 1)t (1)

where X(i) is the reconstructed state space vector, x(i) is the scalar time series, m
is the embedding dimension of the reconstructed state space, and N is the length
of data sequence.

Two important parameters, lag v and embedding dimension m, must be
determined before reconstructing the state space. The fundamental theory of
reconstruction, introduced by Takens [13], gives no restrictions on the selection
of 7, while for m it states the sufficient (but not necessary) condition m = 2d + 1,
where d is the fractal dimension of the underlying attractor. For limited noisy
observations, the selection of the parameters t and m is important for the quality
of reconstruction.

If the value of lag 7 is too small, the co-ordinates x(i) and x(i + 7) will be so
close to each other in numerical value that one cannot distinguish between them.
From any practical point of view they have not provided two independent co-
ordinates. Similarly, if the selected value of 7 is too large, x(i) and x(i + 7) will
be completely independent of each other in a statistical sense. Among several
suggested methods, a simple and reasonable choice is to let the value of
correspond to the first zero of the auto-correlation function of the time series
x(i), i.e., let R(r) = 0, where R(r) is the auto-correlation function of time series

x(i) [15].
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The standard way to choose embedding dimension m is the method of
“saturation” with the correlation dimension. Therefore, the appropriate
embedding dimension m* can be assessed by computing the correlation
dimension D, for m = 1, 2, ... until the variation of D, ceases.

2.2. CORRELATION DIMENSION

The basic correlation dimension algorithm is now discussed—the GP
algorithm—which was introduced by Grassberger and Procacia in 1983 [7]. A
natural procedure is to start with an initial T and m, then compute the
correlation dimension until the embedding dimension m is sufficiently large.
Firstly one defines the correlation integral C(r), a statistic that measured the
number of pairs of points on the attractor having a separation distance less than
some value r,

N
€)= 7= 2 O = X() = X()). )
i#]

where C(r) is the correlation integral, r is the distance between two points in the
state space, N is the length of data sequence, |:| denotes the Euclid form, X(i)
and X(j) are state space vectors, @(x) is the Heaviside function defined as
O(x) =0 for x<0and O(x) =1 for x > 0.

The correlation dimension is defined as follows:

D = lim(log C(r)/ logr), (3)

where D, is the correlation dimension, C(r) is the correlation integral versus
specific hyperspherical radius r.

For deterministic systems, the correlation integral behaves in the power law as
C(r) ~ r". The exponent v should be estimated from the slope of the graph of log
C(r) against log r over a linear region, which gives the numerical estimation of
correlation dimension D,.

3. INFLUENCES OF SAMPLE SIZE AND NOISE LEVEL ON THE
CORRELATION DIMENSION

Including the lag and embedding dimension, size of data set and noise levels
are two important factors that influence the computational precision
significantly. Here one discusses in depth how the two factors influence the
computational precision of the correlation dimension.

3.1. INFLUENCE OF SAMPLE SIZE

In general, a great amount of data N is required to compute the correlation
dimension D,. In fact, there is no consistent agreement on how many data can
meet the computation needs. Here, some of the existing viewpoints are listed.

Theiler states N ~ @P. “Experience indicates that @ should be of the order of
10, but experience also indicates the need for more experience.” [16].
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Smith et al. claims that to keep errors below 5% one must have N >42Y
where M is the largest integer less than the set’s dimension [17].

Ruelle argues that if one estimates a dimension, a data set of least size 10°/? is
required [18].

In order to study the influence of data set size on the computational precision
of the correlation dimension, the correlation dimensions of simulated chaos
signals are calculated using the GP algorithm for different data set sizes. The
simulated chaos signals are integrated from the Lorentz attractor, the Ikeda
attractor and the Hénnon attractor. The numerical integration method of the
Lorenz system is fourth and fifth order Runge—-Kutta formulas with a desired
accuracy of 1073, The definitions of attractors are:

1. Lorenz attractor

Y=0o(y—z), y=(p-2)x—y, Z=xy-pz,
where
c=10, p=28, f=8/3 (4)
2. Ikeda attractor
Zpi1 = P+ BZ, eil@iz/(mzn\z)’
where
P=092, B=09, K=04, a=060; (5)
3. Hénnon attractor
Xpp1 =1 — ocxi + Vns Ynr1 = Pxa,
where
o=14, [=03. (6)

Since correlation dimensions of all the above attractors are less than 3 (the
attractor dimensions of Lorenz, lkeda, Hénnon are 2:02, 1-80 and 1-26
respectively), one takes the embedding dimension as 5. Correlation dimensions
of signals with different sample sizes (256, 512, 1024 and 4096) are computed
using the GP algorithm.

Figure 1 demonstrates the log—log plots of correlation integral C(r) against
normalized distance r. From the plots it is obvious that when the sample sizes of
signals increase, the correlation integral plots become smoother. Gradually, the
separate regions with different slopes merge into a uniform scaling region with a
single slope. Therefore, more precise computational results will be obtained as
the sample size increases. The computational results are shown in Table 1 in
detail. From the table one can see that when the sample size N = 512, all related
error is less than 5%; while the sample size N = 4096, all related error is less
than 1%.

From the above experiments one can summarize that the computational
precision increases as the sample size increases. For the low dimensional system



534 J. D. JIANG ET AL.

16

N=4096
1024

12~ 512

256

10 [

log C(r)

log (r/ry)

Figure 1. Log-log plots of correlation integral C(r) versus normalized distance r. It is shown
that the “‘smoothness” of the curves depends on the data length N.

(D5 < 3), a small sample size with the order of 500 can meet computational
accuracy requirements of related error less than 5%. It indicates that the opinion
of Theiler (1990) is closest to our findings.

3.2. INFLUENCE OF NOISE LEVEL

In practical application the measured time series are unavoidably
contaminated by noise. Noise or random system fills its state space uniformly
because there is no relationship between the state space vector X(¢) and X(z + 7).
Therefore, the correlation integral C(r) is proportional to the hyperspherical
radius r and the correlation dimension is proportional to the embedding

TABLE 1

Computational results of correlation dimensions with different sample size

Signal type  True value: D,  Results: D, + ¢ Related error (%) Signal length

Lorenz 2:02 1-834 + 0-235 9:4 256
2-:089 + 0-149 34 512

2:070 + 0-054 2:5 1024

2:034 + 0-019 07 4096

Tkeda 1-80 1789 + 0-018 06 256

1745 + 0-013 31 512

1-778 + 0-004 1-2 1024

1797 + 0-017 0-17 4096

Hénnon 1-26 1-:211 + 0-013 37 256
1-255 + 0-:024 04 512

1-287 + 0-020 21 1024

1-:258 + 0-014 0-16 4096
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Figure 2. The correlation integrals of a Lorenz signal imposed with different level white noises.
Curve 1 corresponds to a pure chaotic signal, curves 2, 3, 4, 5, 6 and 7 correspond to mixed
signals for which SNR = 1000, 100, 50, 20, 10 and 1 respectively. (a) Log—log plot of C(r)
versus r; (b) local slope of the correlation integral.

dimension [11]. When a chaotic signal is superimposed by noise, the correlation
integral exhibits similar features as displayed in Figure 2.

From the graph one can see that the scaling region becomes narrower as the
signal-noise ratio is reduced. If the noise level is low (SNR > 20, where SNR is
defined as energy ratio of signal to noise), there is a sufficiently broad platform
in the correlation integral as shown in Figure 2(b) to estimate the correlation
dimension reliably. If the noise level is rather high, the platforms of the
correlation integral disappear and we cannot induce any information about the
deterministic system masked by the noise. Therefore, it is necessary to preprocess
the data using noise reduction methods if non-linear time series analysis is used
to analyze practical signals.

3.3. NOISE REDUCTION

As is known, the observations of physical systems are usually contaminated by
“noise”. In the absence of prior knowledge about the contamination, it is
plausible to assume the system state space is rather high dimensionally and the
noise will fill in low dimensional state space more or less uniformly [11].

Let the necessary embedding dimension of the dynamic system be d» and one
works in dr dimensional state space, where di > dy. In a heuristic sense, dg — dy
dimensions of state space are filled with noise alone. The observations are
considered to be composed of signal x(n) and noise c(n): y(n) = x(n) + ¢(n), and
are embedded in dr dimensional state space. Then construct dy x dr dimensional
sample covariance matrix:

N
Cov =13 1v(n) — v W] [¥(n) ()] (7)
n=1

where

1 N
Yav = N;ym)
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The first dy eigenvalues of the covariance matrix almost arise from the signal
(slightly contaminated); the left dr — dy eigenvalues arise from the noise. If the
contamination is white noise or quite high dimensionally, it will fill in dg— dy
dimensional state space uniformly. In this case, it is possible to find a “noise
floor” that arises from noise by investigating the eigenvalue of the covariance
matrix. By removing those extra eigenvalues, a great amount of noise is reduced.
This method is based on singular value decomposition and is called singular
spectrum analysis (SSA) [20].

4. EXPERIMENTAL INVESTIGATION

4.1. TESTING

The experimental set-up contains a two-stage reduction gearbox (6J90T)
manufactured by Shannxi Vehicle Gear Manufacturing Plant. The gearbox
transmission plot is shown in Figure 3. The gearbox translational vibration
signals are measured externally on the gearbox bearing case using acceleration
sensor YD42 and amplified by charge amplifier B&K 2626 to monitor the
operating condition of the gearbox. The sampling frequency is 5 kHz.

The total testing time of the gear fatigue experiments is up to 180 h. During
the testing process, the gearbox’s running condition undergoes three different
stages naturally. At first, the gearbox’s running condition is normal. Then a
crack in one tooth root arises and enlarges gradually. Lastly one tooth of the
meshing gear is broken and the testing experiment is terminated. It is found that
only one tooth of the meshing gear with 36 teeth is broken when the gearbox is
stripped. For more details of the experiment one may refer to reference [19]. In
the above paper the authors detected the occurrence of gear fatigue crack based
on the amplitude and phase demodulation technique proposed by McFadden [1].
In this paper the correlation dimension is used to detect the gear fatigue crack.

Raw vibration signals measured from outside of the gearbox in different
operating conditions are displayed in Figure 4. Obviously there are distinct

1270 r.p.m.

43

Figure 3. Gearbox transmission graph, with two pairs of meshing gears and the input rotating
speed 1270 r.p.m. The teeth numbers of meshing gear pairs are denoted in the plot.
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Figure 4. Gearbox vibration acceleration signals of different operating conditions: (a) normal,
(b) with cracked tooth and (c) with broken tooth.

differences between the vibration signals of the gearbox with a broken tooth and
those of the other two operating conditions, but there is only a slight difference
between the vibration signals of the normal condition and of the condition with
a cracked tooth.
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Figure 5. The singular spectrum of raw time series measured from the normal operating
condition. The window length is 50 and the lag is 1.
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Figure 6. The pseudophase diagrams of raw vibration acceleration signals (a, ¢ and e) against
cleaned signals (b, d and f) correspond to different running conditions: (a), (b) normal condition;
(c), (d) operating condition with crack tooth; (e), (f) operating condition with broken tooth.

4.2. ANALYSIS

As is known, it is difficult to identify the operating condition with fatigue
cracks against the normal running state not only from the time domain but also
from the frequency domain.
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Figure 7. Log-log graph of correlation integral C(r) versus normalized distance r. The embed-
ding dimension is 15 and signal length is 1024. The numbers in the textbox demonstrate the corre-
lation dimensions of gearbox vibration signals in different operating conditions. Key: ----- s
normal D = 6:18; ----, cracked D = 4-24; ------ , D =339

The first stage of a non-linear analysis procedure is to reduce noise level from
the measured vibration signals based on the singular value decomposition
technique [20]. The singular spectrum of the normal condition vibration signal is
illustrated in Figure 5. From the plot one can see clearly that the first several
singular values are significantly large and possess the main component of the
total signal energy. Therefore, the first six significant singular values are
reasonably selected to reconstruct the “clean” signal.

Some non-linear diagnostic methods are available for practical application,
such as time—frequency analysis based on the Wigner distribution, the Kullback
index of complexity based on information theory, pseudophase diagrams, etc.
The pseudophase diagrams are the most convenient for on-line diagnostics [21].
Some pseudophase diagrams of the raw vibration signals and constructed signals
are illustrated in Figure 6.

The pseudophase diagrams of raw vibration signals are rather irregular, from
which one can hardly extract characteristic information for diagnostics.
However, the pseudophase diagrams become more regular after noise reduction
processing, even though it is still difficult to identify the operating condition with
the cracked tooth against the normal condition from the pseudophase diagram
only. The reason lies in the fact that the pseudophase diagram only qualitatively
displays geometric features of the phase space projection and cannot indicate
any quantitative character. In contrast, the correlation dimension can indicate
quantitative information about the phase space. Subsequently, the non-linear
analysis method based on the correlation dimension is tried.

Signals preprocessed by the singular value decomposition technique are used
to reconstruct the state space of underlying gearbox dynamic system. The
choices of reconstruction parameters are based on the above-mentioned
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methods. Following the reconstruction operation, the correlation dimension of
signals is calculated and the computational results are shown in Figure 7.

From the log—log graph, one can see that there are various slopes of different
plots during the same scaling. The correlation dimension is estimated from the
slope. Results shown in the figure indicate that the state spaces of different
operating conditions construct into various low dimensional attractors due to
different kinematics mechanisms. In the case of normal running condition, the
state space dimension of the attractor reconstructed from the normal operating
condition is near to 6, which is higher than that of the other two cases. During
the fatigue testing process, the reconstructed attractor dimension decreases as all
the gear fatigue crack appears. When one of the meshing teeth is broken, the
attractor dimension drops to the bottom limit.

5. CONCLUSIONS

Non-linear time series analysis theory based on correlation dimension for
practical application, especially for gearbox fault diagnosis, is introduced in this
paper. The influences of sample size and noise level on correlation dimension
computational precision are discussed. Based on simulation experiments, some
valuable principles are presented to improve the calculation precision of the
correlation dimension:

(1) Sample size of N ~ O can meet the computation precision requirements,
where N is the sample size, and © is of the order of 10.

(2) It is necessary to preprocess the data using noise reduction methods if non-
linear time series analysis based on the correlation dimension is used to analyze
practical signals.

The application of correlation dimension in industrial gearbox condition
monitoring is presented. Analysis results show that the correlation dimension is
capable of identifying industrial gearbox defects which occur naturally. The
growth of gear fatigue crack leads to the decrease of state space dimension. It
shows that the correlation dimension has great potential for the diagnosis of
defects in industrial gearboxes.

Further work on this subject will be to investigate the relationship between
gear crack extent and the correlation dimension.
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