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This paper is concerned with the prediction of acoustic response in a well
damped rectangular enclosure. The acoustic characteristics of the enclosure are
modelled using the modal expansion approach, with suitable modification of
the damping and frequency shift introduced into the rigid wall acoustic modes
of the enclosure. The prediction of acoustical transfer impedance in the
enclosure has demonstrated that a frequency dependent modal parameter may
be used to describe the acoustic response. This modal parameter is defined as
the specific acoustical modal admittance, which describes the contribution of all
the boundaries (locally and modally reactive and air leakage) to the modal
damping and the shift of nature frequencies. The sound absorption properties
of each boundary type and its effect on the response of the enclosure are
analysed. The predicted and measured space-average acoustic transfer
impedances in a damped rectangular enclosure are compared and reasonable
agreement is found. The Helmholtz resonance effect of the cockpit in a
helicopter is also included in the model. The measured dip at about 23 Hz in
the space-average acoustic impedance inside the passenger cabin of the
helicopter is accurately predicted.

© 1999 Academic Press

1. INTRODUCTION

The sound pressure inside the passenger cabins of helicopters show a strong
component around 15 to 20 Hz, which corresponds to the blade passing
frequency (BPF) of the main rotor. Although this noise component is below the
lower frequency limit of hearing, it may influence the comfort and performance
of passengers. Active noise control techniques have been proposed to attenuate
the BPF component and its harmonics [I, 2]. As a preliminary part of an
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investigation into this approach, the space-average acoustic impedance inside the
passenger cabin of a large helicopter (Agusta-Westlands EH101) was measured
and is shown as a solid curve in Figure 12. The space average acoustic
impedance is calculated by averaging the modulus of the acoustic impedance
measured between a large calibrated acoustic source placed in one corner of the
passenger cabin and 12 microphones distributed throughout the enclosure [3].
Numerical simulation has been conducted, which confirms that the average of 12
transfer acoustic impedances can adequately represent the space averaged
acoustic impedance in the frequency range of interest. To help understand the
characteristics of this transfer impedance, a laboratory enclosure was constructed
for detailed analysis. The space-average impedance of the laboratory enclosure is
also measured (shown as a solid curve in Figure 3) and can be seen to have
similarities at low frequencies with the helicopter space-average impedance. The
magnitude of the impedance shows that the enclosure is well damped and that
the very low frequency response of the room (below 50 Hz) is unexpectedly low.
Even the expected resonance response of the first (0, 1, 0) acoustic mode (at
28 Hz) is not apparent. As a result, difficulties in actively controlling low
frequency components using ordinary loudspeakers become apparent as very
large inputs to the control loudspeakers might be required to attenuate the
primary noise at the low frequencies.

In order to develop an effective method of actively attenuating the low
frequency noise components in the enclosures such as that in helicopters, it is
necessary to investigate the mechanism of sound absorption by the boundary
structures of the enclosure. It is also necessary to study the response of the
sound field to airborne excitation by control loudspeakers.

Based on the measured acoustic transfer impedance in the enclosure, this
paper presents an analysis of various boundaries and their effect on the room
characteristics. A general model of the acoustical response in a room with both
locally and non-locally reactive boundaries has been developed. Rigid wall
acoustic modes have been used as trial functions of the sound field. Effort has
been made to explain the sound absorption by different boundary structures and
to derive formulae for the prediction of the low frequency features in the
acoustic transfer impedance of the damped rectangular room and helicopter. The
model developed provides a base for future analysis of active noise control in
such an enclosure.

2. THEORY

2.1. DESCRIPTION OF ENCLOSURE

The acoustic enclosure shown in Figure 1 is made from 24 pieces of plywood
panels (approximately 2-1x 1-:05x0:02 m®). The internal dimensions of the
enclosure are L,=2-1m, L,=6:0 m and L.=2-1 m. The floor of the enclosure
is covered by a thin layer of carpet on plywood panels backed by the concrete
floor of a larger room. The surfaces of three side walls (x=0, x=L, and y=1L,)
have been treated by a layer of sound absorption material (z,=0-025 m) and an
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Figure 1. The co-ordinates of the acoustic enclosure.

air gap (t,=0-025 m) is left between the materials and the plywood panels. The
ceiling and one of the side walls (z=L. and y=0) are simple plywood panels
(t,=0-02 m). Possible air leakage exists at the joints of the panels. On the side
wall y =0, there is a hole (0 < x < 0-16 m and 0 < z < 0-:01 m) for the cables in
and out of the enclosure. In the measurement the loudspeaker was located at one
corner of the room (0, L, 0).

Because low frequency behaviour of the sound field in the enclosure is the
object of the present analysis, the modal approach will be used to describe the
sound pressure field and the vibration of the boundary structures. An
approximate solution of the sound field in an enclosure using rigid wall modes
has been developed by Dowell er al. [4] by using the Green’s identity
relationship. In this paper, an alternative approach is used to model the forced
response of the sound field in the enclosure on the bases of the modified method
of weighted residuals [5]. The same form of the modal coupling equations as that
obtained by Dowell et al. has been obtained, when rigid wall modes were
selected as a set of ““convenient” admissible functions in a linear representation
of the sound pressure field. It has been shown that to achieve a reasonable
convergence of the system response, a large number of rigid wall modes have to
be used.

The complex acoustic pressure p(r) in the enclosure is described by the
frequency domain acoustic wave equation:

(V2 +12)p(r) = —jp,oq(r), (1)

where p, is the air density, k and w are respectively the wavenumber and angular
frequency of the sound waves and r is the position vector. ¢(r) is the strength of
the sound source describing the volume velocity per unit volume. If the acoustic
pressure field is described by the trial solution p™)(r), the residual of equation (1)
can be defined as:

R(pM (1)) = (V2 +12)p™ (1) + jp,0q(r). (2)

A set of shape functions ¢ (r), where J=1, 2, ..., N, may now be selected to
represent the spatial variation of the pressure field. Imposing the condition that
they are all orthogonal to the residual (ie., [y@Ar)R(P™(r)) dv=0), the
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following equation can be derived for each ¢ (r):

j 6,0V (r) dv+k2J 6, (0p™(x) dv:—jpowj g0, dv. (3)
|4 |4 |4

In case the trial solution does not satisfy the natural boundary conditions of the
enclosure, the interaction between the boundary and sound field should be
included in the formulation. For a one-dimensional beam vibration [5], the
weighted residual method was modified by including the boundary contribution
through integration by parts. For the three-dimensional sound field, as shown in
this paper, the first term on the left hand side of equation (3) can be expressed as
follows [6]:

| 609w v = | p V00 av+ | P 5
9.
-], 2 s, @)

The contribution of the movable boundaries to the sound field must be taken
into account if the trial solution does not satisfy the natural boundary
conditions. For this case, both trial solution (describing the pressure) and its
gradient on the boundaries should be replaced by the corresponding natural
boundary conditions. If the trial solution is expressed as:

N
PN = Prgy(r), (5)
J=1

where ¢r) are shape functions which satisfy the geometrical boundary
conditions of the sound field, the N generalised co-ordinates P; which define the
amplitudes of the shape functions used can be obtained from the solution of
equation (3) and correspond to the mode amplitudes in a modal expansion.

If the shape functions are taken to be the mode shapes of the rectangular
enclosure with rigid walls:

mny  nmz

Inx
D (1) = Ppun(r) = cosL—xcosL—ycosL—z, (6)

equations (3) and (4) give rise to following equations for the generalised co-
ordinate P,

ApM™ (r .
w-Bar =] 002 D as—jpo| om0
s n v
for J=1, 2, ..., N, where the wavenumber of the Jth rigid mode is

Ky = i = 7/ (/L) + (m/ L) + (n/ L., (8)
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TABLE 1

Parameters of the plywood panels
used for the analysis

Py 550 kg/m?
E, 7:9 x 10° N/m>
Np 0-2
v, 035
and
Ay = J P3(r) dv. 9)
14

Because the non-rigid boundary conditions have a non-zero pressure gradient,
equation (5) with rigid wall mode shapes ¢, (r) fails to predict the correct
pressure gradient at the walls (¢,,(r) do not satisfy the natural boundary
conditions of the enclosure). The gradient of the trial function in equation (7)
must be replaced by the expression of the sound pressure gradient on the
corresponding boundaries (i.e. dp/On=0p™/On). In the frequency domain, the
pressure gradient on a boundary is related to the normal velocity v, of the
boundary as:

9p
on

In this analysis, the positive direction of the pressure gradient is towards the
outside of the enclosure, and so for that of the normal velocity of the
boundaries. The contribution of the surface vibration to the acoustic pressure in
the enclosure can then be described by substituting equation (10) into equation
(7). It becomes apparent that the pressure gradient on the non-rigid boundary
surfaces will alter the characteristics of the rigid wall room. If the velocity on the
boundary depends only on the local pressure according to the expression
v(r) = poc,f(r)p(r), where S(r) is the specific acoustic admittance of the boundary,
then the surface is said to be locally reactive and a closed form solution for the
mode amplitudes can be obtained fairly easily. In this paper the use of a
generalised modal admittance function is considered to describe non-locally
reacting boundaries, and the way in which a number of boundaries can
contribute to this overall modal admittance function.

The boundaries of the enclosure, as shown in Figure 1, may be classified into
the following four areas with total surface area S=S;+S,+ S+ S4 (a) S,
includes three side walls (x=0, x=L, and y=L,) which are made up of 12
panel sound absorbers. Each absorber consists of absorption material, air gap
and a plywood panel (2:1x1-05x0-02 m?). (b) S, refers to the floor (z=0)
which has a thin layer of carpet on the plywood panels backed by a rigid
surface. (c) S5 includes the ceiling and the front wall (z= L. and y =0) which are
made of 7 plywood panels without any damping treatment. Each panel has a
size of 2:-1x1-:05x0:02 m> (d) S; describes the area of air leakage on the

(1) = —jp,ma(r). (10)
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Figure 2. Configuration of one of the panel sound absorbers in boundary S;.

boundaries. In particular there is an opening hole at y=0 (0 < x < 0-16 m and
0<z<010 m).

2.2. CONTRIBUTION FROM PANEL ABSORBERS (S;)

Figure 2 shows the configuration of one panel absorber (out of 12) in the
boundary surface S;. The parameters used to describe the absorbers are listed in
Table 1. The porous mat shown in Figure 2 is described in terms of the complex
specific acoustic impedance W, and complex propagation constant K,. They are
functions of flow resistance R; of the mat and frequency [7]. For this analysis,
the flow resistance R; is assumed to be 3000 Rayls/m.

In the low frequency range, the acoustic impedance at the back of the porous
mat facing the Qth panel (Q €[1, 12]) is the parallel combination of the specific
acoustic impedance of the panel Z,, and the acoustic compliance of the air
gap Z,:

Zy0Z
R (1)
PQ g
where Z,=j(p,c,/wt,). Similarly, the acoustic impedance on the surface of the
mat in front of the Qth panel is the parallel combination of Z, and the acoustic
compliance of the mat Z,,:

ZOQZm

Lip=5——"
e ZOQ +Z,

(12)
where Z,,=j(W /K 4t,), and the acoustic compliances of the air gap and the mat
are assumed to be the same for all the 12 panel absorbers.

The average acoustic impedance of a panel is used to represent Z,, of the
plywood panels behind the porous mats. This average acoustic impedance is
defined as the ratio between sound pressure p and averaged velocity of the panel.
The modal expansion of the velocity of the Oth panel can be expressed as:

Mo
Vo(0) = > Voo, (0), (13)
Qo=1

where Yo, (0) is the shape function of the Qyth panel structural mode evaluated
at location . As the plywood panels behind the porous mats are heavily
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damped, the effect of the sound radiation loss of the panel is negligible. For this
case, the modal velocity components of the panel vibration are:

jo J
pOHO (w? — )y — jig,000,) A0, Js,

Vo, = —

P¥g,(0) ds, (14)
where p@h@ is the surface density of the panel, wp, and 59, are respectively
the natural frequency and modal loss factor of the Qpth mode.
Ag, = ISIQ gDZQQ(J) ds and Sjo .is the surface of the Qth panel in boundary S;.

The averaged surface velocity is:

I7Q = IJ VQ(O') dS, (15)
S10 )5y,

which gives the volume velocity per unit area of the panel. For a uniform sound
pressure on the panel surface, the acoustic impedance of the panel is defined as:

P Sig
Zpp=+-=— '
% M ’
’ f Q10 (o2 — J Vo, (7) ds
G P hQ(w? — W, — N, ®@®0,) A0y 51
(16)

Therefore, the specific acoustic impedance Z;, on the surface of the mat
supported by the Qth panel can be calculated using equations (16), (11) and (12).
The boundary integration on S; in equation (7) for the [th acoustic mode
includes the contribution from the 12 panel sound absorbers in Si:

(0)

ap(r) . 2L
PRI N b i A (17)
JSI N on oo = Lo

where the coupling coefficient between the /th and Jth rigid wall acoustic modes
on the surface of S is:

d%zjs¢ﬂw@wwm (18)

If 1=, C(JQ} = fSl (;33(0) ds is thus a measure of the area of the Qth panel
absorber, weighted %y the magnitude of acoustic mode shape.

2.3. CONTRIBUTION OF A LOCALLY REACTIVE SURFACE (S,)
The specific acoustic impedance of the thin carpet (thickness #.) on a rigid
floor surface can be modelled as:
Z) = —jWC/ tan K¢t (19)

where W and K are respectively the complex specific acoustic impedance and
complex propagation constant of the carpet. The expression of the boundary
integration in equation (7) over S, for the /th enclosure mode can be expressed as:
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[ o0 g = 05, (20)

=1

where ng)J is the coupling coefficient between the /th and Jth rigid wall acoustic
modes over S,.

2.4. CONTRIBUTION OF THE LIGHTLY DAMPED PANELS (S;)

The boundary integration in equation (7) over S; describes the interaction
between acoustical and structural modes. S5 consists of seven individual panels
(P=1,2,...,7, 5 of them on the surface z=L. and 2 on y=0). Simply
supported boundary conditions are assumed for this analysis. The modal
expansion of the displacement of the Pth panel is:

Wi = ZWQPpoP (o), (21)

Op=1

where Wy, and y¢,(0) are respectively the modal amplitude and shape function
of the O,th mode of the Pth panel, and ¢ is again the location on the panel.

Using equation (10), the boundary integration in equation (7) on S; can be
represented as:

Opr 7
j b0) 25 ds = p,0 J Wb ds = p,* S5 Bo, Wo,  (22)
53 P=1 Qp

where W, is the normal displacement of the boundary S3 and By, ; is the
coupling coefficient between the Jth rigid wall acoustic mode and the Qpth panel
mode of the Pth panel:

Bov, = |, Vo,(0),(r) ds (23)
S3

As the mode shape of the panel is defined by the local co-ordinates of the panel,
it is necessary to transfer the local co-ordinate into the co-ordinate of the
enclosure to calculate the coupling coefficients.

For a simply supported panel with length Lg() and width L<Y), the mode shape
functions are:

. ITXg, . STy
Vo,(0) = ¥,,(c) = sin L(;an sin L(PQ)P, (24)
X Y

where (xg,, yo,) are position variables in the local co-ordinates of the panel.
Using the bending wave equation of a thin plate, the modal components of the
Pth panel are described as:
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(—pPhPe? + Dkl + jng, Dk ) A, Wo,
= M) ds — “rd 25
S5 S5

for Qp=1, 2, ..., Mp, where

2 272
S <—r ) +<—S ) (26)
Op — P P
! Ly Ly

and np, is the loss factor of the Qp mode, p? and A” are respectively the
density and thickness of the Pth panel.

i _ E () _ J 2

== ) and Ap, = w Yo, ds.

In equation (25), p*' is the external sound pressure on the surface of Ss.

In this analysis, equation (22) describes the contribution of the seven panels
(P=1,2,...,7) and shows that 22:1 M p extra unknowns of the displacement
components of the panels exist in equation (7). Equation (25) provides the same
number of equations for the extra unknowns. By combining equation (7) and
equation (25) and using the integration on the other boundaries (S, S, and Sy),
the resultant equations are complete in the sense that the number of equations
are equal to the number of unknowns.

The second integration on the right-hand side of equation (25) may include:
(1) External driving force and sound pressure on the external surface of modally
reactive boundaries. (2) Back pressure of sound radiation from the vibrating
boundaries. The external driving force and sound pressure are often provided as
the system input function for the analysis of sound transmission into the
enclosure. The estimation of the back pressure of the sound radiation, however,
depends upon the characteristics of the acoustic space to which the radiating
surfaces face. The loss of vibrating energy in practical structures is usually
dominated by their internal damping and effect of back pressure on the panel
vibration is ignored in this analysis. Therefore, the contribution of the sound
pressure on the external surface of the panel to the panel vibration is controlled
by the external forcing pressure p¥o<®:

pext zp(force)_ (27)

2.5. CONTRIBUTION FROM AN AIR LEAK (S,)

The contribution of the air leakage to the boundary integration in equation (7)
can be described as:



552 J. PAN ET AL.

op(r) Jjp,m N @)
ds = —2— C,’, P 28
L4 20 5 $=""7, gy b b @)

where Cf?, is the coupling coefficient over S;.

If one only considers the opening hole at y=0 (0 <x <016 m) and
0 <z <0-10), the acoustic impedance Z, can be obtained by modelling the
opening as an air-piston:

Zs = (JMrow + R, /S4), (29)

where M= p,S4l, and R, = (p,c,/2m)S2k? are respectively the equivalent air mass
and sound radiation impedance of the air piston. /, is the equivalent thickness of
the air piston.

3. PREDICTED TRANSFER RESPONSE OF THE RECTANGULAR
ENCLOSURE

3.1. RESPONSE TO A SOUND SOURCE

The source strength of a point sound source located at (0, L,,0) is described
as:

q(r) = Qoo(x)o(y — L,)d(2). (30)

If a volume velocity of Q,=1 m?/s is used, the corresponding sound pressure
(e.g., at (L0, L.)) can represent the acoustic transfer impedance. Using equation
(30), the volume integration in equation (7) gives:

J0o J 6, (0)4(r) dv = jp,0Q,(~1)", (31)

where m is the acoustic modal index in the Y direction (see equation (6)).

If the sound field is driven only by the internal acoustic sound source,
equation (25) will give rise to an explicit expression for the modal amplitudes of
the panels of S;.

1

Wo, — — : B p[P], (32)
Q p(ﬂ)h(P)AQl,(a)z — COQQP —.]ﬂprpr) Z ¢
where
4
o DVk,
Op p(l’)h(l’) ’

Using the net specific acoustic admittance ff=p,c,/Z for each surface area,
where Z is acoustic impedance of the surface, and using equations (17), (20),
(22), (32) and (28), equation (7) can be re-written as:
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(k> = K2 APs — jk > BV P =i BICE) Py
Ji 1

— kST BOCE P — k> BYCY) Pr = —jp,00,(-1)",  (33)
1 1
where
() ) o
ﬁ C = PoCo = (34)
1 1,J QX:I ZlQ
2)
C
2
ﬁ(z)cs,?] = :0()00%2.]7 (35)
7 .
_](DBQP IBQPJ
BO e 120 i (36)
B ; 5 PP (02 — ), — jng,wwe,)Ag,
and

(37)

Equation (33) describes the effect of the boundaries on the response of the sound
field in terms of the modal coupling coefficients f;,C;, among all the rigid wall
acoustic modes. For the locally reactive boundaries, such as S;, S, and Sy, f;
describes the nature of sound absorption by the boundary materials while C;;
represents the geometrical coupling between the /th and Jth rigid wall modes
over the specific locally reactive boundary surfaces. For the modally reactive
surface such as S;, ﬁf)J and C§3)J shown in equation (36) cannot be separated as
the sound absorption by the panel is due to the global coupling between the
acoustical and structural modes and to the modal absorption of the structures.

Equation (33) also shows that the effect of boundaries on the sound field are
through their modification of each individual co-ordinate (modal amplitude) of
the rigid wall acoustic mode P,. Qualitatively, P; is directly modified by the
boundaries through the following term:

1 1 2 3 3 4
By.,Crr =B C + B, + pP,cY, + g, (38)

The real part of f,,C,, provides the modal damping and the imaginary part
corresponds to the shift of natural frequency from that of rigid wall acoustic
modes. The external “forcing term” includes not only the contribution from the
sound source, but also that from the acoustical/acoustical coupling of the Jth
mode with other modes.

3.2. RESULTS AND DISCUSSION

To explain the features of acoustical transfer impedance measured in the
damped rectangular enclosure, the traditional approach is to introduce a specific
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acoustic modal admittance ;. For this case, the generalised co-ordinate can be
expressed as

jpoon(_l)m

P =- :
! (k2 = k) Ay = jkBy ,Cra

(39)

where
CJ,J = JS ¢12mn (l') ds = Z(VMVHL}’LZ + Y1 LZLX + Y1Vm LXL,V)' (40)

Vis Ym»> Yo=11f [, m, n=0 and v, v,,, 7,=1/2 if I, m, n#£0. The space-average
response can be calculated by

> 2 Ay
(pp)" =D _|PI"5
I=1

which is used to describe the space-average acoustic transfer impedance when
Qo =1.

Several values of specific acoustic admittance were used for the best curve-
fitting of the measured acoustic transfer impedance. Figure 3 shows the
calculated acoustic transfer impedance, when a constant value of specific
acoustic admittance, f,,=0-067, is used in equation (39). In this calculation the
number of cavity modes i /,,, X My X By = 9 X 11 x 9 =981. Compared with
the measured acoustic transfer impedance, a reasonable agreement can be found
except at the low frequencies, in which case there is a difference of up to 20 dB.
A better fit above 40 Hz could be obtained if 8, , was allowed to increase with
frequency. If a negative imaginary value is arbitrarily included in the equivalent
acoustic admittance (e.g. f,,=0:067—0-2) to describe a mass controlled
boundary reactance at low frequencies, some improvement in the prediction of
the space-averaged impedance at some frequencies can be observed (see Figure
3). This suggests that a complex and frequency dependant value of the effective
total admittance for each mode, f8;;, can be used to describe some of the effects
observed in practice, particularly at low frequencies.

60

50 SNt o Nl

. .
a0 - b s

<pp*>(dB)

] SINS

20

10 l

|

Figure 3. Average acoustic transfer impedance. Measured (
(—-—-—), and with f,,=0-067—;0-2, f<40 Hz, f,,=0-067, f >40 Hz, (....... ).

100
Frequency (Hz)

150

), predicted with f;,=0-067

200
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Following the theoretical analysis presented in this paper, one can calculate
the value of the specific acoustic modal admittance f,; corresponding to the
actual boundary conditions as a function of frequency. As a first order
approximation, the cross coupling between cavity modes due to the reactions of
all the boundaries can be ignored. For this case, equation (38) is used only to
calculate the complex term in the denominator of the sound pressure component
in equation (39).

3.3. ABSORPTION BY PANEL ABSORBERS (S))

Observation of Figure 3 provides the following criteria for the identification of
the boundary surfaces mainly responsible for the characteristics of the room
response: (1) The real part of the specific acoustic modal admittance of the
boundaries which are responsible for the sound absorption in the enclosure
should be in the order of 0-07 in the frequency range above 40 Hz. (2) The
imaginary part of the specific acoustic admittance of the boundary structures
which determines the low frequency response of the enclosure should be in the
order of 0-2 at the very low frequencies. (3) The acoustical/acoustical modal
coupling coefficients C,, give a measure of the required area for the sound
absorption and the contribution to the modal coupling. Equation (40) shows
that 7-4 m? < C,; <592 m? for the various shape functions used in this
analysis.

When the specific acoustic impedance of the plywood panels behind the
porous mats are included in the analysis, a large increase in the specific acoustic
admittance may be found at the resonance frequencies of the volume
displacement modes of the panels. Using equation (16) as the specific acoustic
impedance of the panel for equations (11) and (12), the specific acoustic
admittance on the surface of porous mats can be obtained. When simply
supported mode shape functions are used, equation (16) can be simplified as:

—1

2 .
14 4 Jjo
Zpp == — 4 . (41
=y, Lq ZS <pqrc2> pDhO (w2 — wlf — ji, 0w, ) 1)

»q=1, 3,5, D> q

Figure 4 shows the specific acoustic admittance of the porous mat backed by an
air gap and then a plywood panel. In the calculation of Z,, in equation (41), five
volume displacement modes of the panel ((1, 1 ), (1, 3), (3, 1), (1, 5) and (5, 1))
were used, but only the effect of the first (1,1) mode is apparent in Figure 4.
Three panels with stiffness values (0-5E,, E,, 1-5E,), where E, is the actual
Young’s modulus of the panels, were used to describe the effect of differences in
panel parameters on the resonance frequencies of the modes. The behaviour of
specific acoustic admittance shown in Figure 4 is very similar to that of
traditional panel sound absorbers [8]. Figure 4 shows that the specific acoustic
admittance is characterised by the resonance absorption of the first panel mode.
As S, occupies half of the total surface area of the enclosure, this large
resonance absorption at the low frequencies (10 to 60 Hz) will have a large
influence on the acoustic transfer impedance in the corresponding frequency
range. Above 60 Hz (up to 200 Hz), the real part of the acoustic admittance is
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Figure 4. Specific acoustic admittance of the porous mat backed by an air gap and then a ply-
wood panel of differing stiffness: 0-5E, (...... ), E,=79x10° N/m? ( ) and 1-5E, (——— ).

also above 0-025 due to the off-resonance sound absorption of the panel
supported mats. With a large area of sound absorption, one would expect that
S, will also significantly affect the transfer impedance in the frequency range
between 60 and 200 Hz. Because of the stiffness at the support of the panels,
both real and imaginary acoustic admittance are very small at the very low
frequencies (<10 Hz). Therefore, S; will not have a significant effect on the
characteristics of the room at very low frequencies.

3.4. ABSORPTION BY LOCALLY REACTING SURFACE (S,)

The porous mat used for the enclosure is described by the flow resistance and
thickness (R; =3000 Rayls/m, 7,=0-025 m). The specific acoustic admittance of
the porous mat backed directly by a rigid surface and by an air gap
(t,=0-025 m) and then a rigid wall are calculated using equations (11) and (12).
In the frequency range of interest (<200 Hz), the maximum values of the real
part of the specific acoustic admittance for these two configurations are less than
0-015 and 0-018, respectively. At low frequencies, the positive imaginary values
of the specific acoustic admittance for both cases are less than 0-05, which
indicates that the stiffness controlled reactance of the materials is negligibly
small. In addition, the acoustical/acoustical modal coupling coefficients on S; are
also smaller than C,; described in equation (40). In summary, the highly
damped response of the sound field in this frequency range is not controlled by
the mechanism of the sound absorption of the porous mat. For the same reason,
the contribution of the thin carpet on S, to the low frequency sound absorption
is also not significant.

3.5. ABSORPTION BY LIGHTLY DAMPED PANELS (S3)

The interaction between one plywood panel on the y=0 surface
(0<xp, <12m, 0<zp <21 m)is considered in the calculation of the room
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TABLE 2
Resonance frequencies of the first 50 rigid wall modes of the
enclosure
l n1 n ﬁmn I m n f}mn
0 0 0 0 0 1 2 1662
0 | 0 286 2 1 0 1662
0 2 0 573 0 6 0 1720
0 0 1 81-9 0 2 2 1735
1 0 0 81-9 2 2 0 1735
0 3 0 860 | 0 2 1831
0 1 1 867 2 0 1 1831
1 | 0 867 | 5 1 1842
0 2 1 99-9 0 3 2 1850
1 2 0 99-9 2 3 0 1850
0 4 0 114-6 | 1 2 1853
1 0 1 115-8 2 1 1 1833
0 3 1 1187 0 6 1 1905
1 3 0 1187 | 6 0 1905
1 1 1 119-3 2 2 1 1919
1 2 1 129-2 1 2 2 1919
0 4 1 140-9 0 4 2 1999
1 4 0 140-9 2 4 0 1999
0 5 0 143-3 0 7 0 2006
1 3 1 144-2 2 3 1 2023
1 4 1 162-9 1 3 2 2023
0 0 2 163-8 1 6 1 2073
2 0 0 163-8 1 4 2 2160
1 5 0 165-0 2 4 1 2160
0 5 1 165-0 0 7 1 2167

response. The indices and resonance frequencies of the first 15 panel modes
(simply supported boundary conditions) and the first 50 cavity modes are listed
in Tables 2 and 3. In the modelling, nine panel modes and 891 cavity modes
were used.

With the variations in the panels’ stiffness, boundary conditions and possible
coupling between the panels, a large number of modes (more than 70) are
expected to have natural frequencies in the frequency range of interest.
Therefore, the consideration of the coupling with the seven plywood panels in S;
can give some indicative results. Figure 5 shows the acoustic transfer impedance
of the enclosure for panels with different stiffness (0-5E,, E, and 1-5E,,
o, =0-1). The damping provided by the panel to the sound field is selective in
narrow frequency bands. For example, the panel with stiffness E, provides larger
damping to the response around 30 Hz , while the panel with stiffness 1-5E, has
larger sound absorption around 70 Hz. It can be observed from Figure 5 that
the coupling between the simply supported panels in S; and the sound field is
also not capable of providing much decrease of the room response at the low
frequencies (<20 Hz) because the finite panel is in the stiffness controlled region
below its first resonance frequency.
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TABLE 3

Resonance frequencies of the first 15 modes of
a simply supported panel

Sps Jps Jps

P s 0-5E, E, 1-5E,
1 1 239 33-8 41-5
1 2 41-6 589 72-1
| 3 71-1 100-6 1232
2 1 78-1 110-:5 1353
2 2 95-8 1355 1660
1 4 112-4 1590 1947
2 3 1253 1772 2171
1 5 1655 2341 2867
2 4 166:6 2356 2886
3 1 168-4 2382  291-8
3 2 186-1 2633 3224
3 3 2156 3050 3735
2 5 2197 3107 3805
1 6 230-4 3258 3991
3 4 2569 3634 4450

When all the modally reactive boundaries are included, the sound absorption
by the modally reactive panels becomes significant. Together with the panel-mat
surface, they appear to be the main sources of sound absorption in the frequency
range from 60 to 200 Hz.

3.6. ABSORPTION BY AIR LEAKAGE ONLY (S,)

The specific acoustic admittance of the 0-016 m? rectangular opening in the
enclosure (from equation (29)) is shown in Figure 6. Because of the small area of
the leakage, the contribution of the leakage to the acoustic damping is negligible.
However, the mass controlled reactance is significant at the very low frequencies
and increases the nature frequency of the cavity from 0 Hz. Because of the shift
in the natural frequency, the response of the sound field is significantly reduced

100
80

60 |

<pp*>(dB)

40

20 1 1 1
0 50 100 150 200

Frequency (Hz)

Figure 5. Acoustic transfer impedance of the enclosure with seven plywood panels of differing
stiffness: 0-5E, (...... ), E,=79%10° N/m? ( )and 1-5E, (———).
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Figure 6. Specific acoustic admittance of the opening surface S, describing the air leakage.

at the very low frequencies. It can be shown that the air leakage of the cable hole
decreases the magnitude of the transfer impedance of the enclosure at very low
frequencies (below 10 Hz) because of the large mass controlled reactance.
However, the averaged response at higher frequencies is not reduced
significantly.

Because the imaginary part of the specific acoustical impedance of leakage is
very large, the resonance frequency of the 0, 0, 0 acoustic mode is no longer zero
due to the Helmholtz resonator formed by the inertance of the air in the opening
and the compliance of the air in the cavity. This resonance frequency of this
Helmholtz resonator can be estimated by

1
— 42
CH=A\C My (42)

where C,=V,/p,c2 is the acoustical capacitance of the enclosure volume ¥, and
M = My/S; is the acoustical mass of the opening hole, which corresponds to
9-5 Hz for the laboratory enclosure considered here.

3.7. CONTRIBUTION FROM ALL THE BOUNDARIES

In this analysis, the effect of boundary absorption on the acoustical transfer
impedance is described by modal admittance (equations (38) and (39)). Figure 7
shows the admittance of the first acoustic mode (0, 0, 0), and contribution from
each of the four boundaries. The peak values of the modal admittance at 42 and
108 Hz are contributed to by the resonance absorption of the lightly damped
panels (S3). The large admittance at the panel resonance has a significant effect
on the room response when the corresponding structural resonance frequency is
close to that of the room (see Figure 5, when panel stiffness is 0-5E,). The
admittance at off-resonances is dominated by the panel sound absorbers (S)).
Because of the small air leakage area, the contribution of S, to real(fo0,) is very
small. However, the air leakage on S; has a significant contribution to
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Imag(Admjj)

\ \
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Figure 7. Admittance of acoustic mode (0, 0, 0): (
S ), S> (=—=), S5 (——-—)and Sy (— —— ).

) and contributions from four surfaces:

imag(fo.o,0) at the low frequencies, which causes the shift of resonance frequency
of mode (0, 0, 0) to the Helmholtz resonance frequency (equation (42)). The
contribution of S, to By 1s negligible.

The predicted average acoustical transfer impedance of the enclosure for each
of the four surfaces are shown in Figure 8. The effect of boundary admittance
on the acoustic transfer impedance has shown that three mechanisms of
boundary absorption are at work in three frequency ranges. As summarised in
Figure 9, the behaviour of the acoustic transfer impedance at very low
frequencies (0—10 Hz) is controlled by the air leakage (S4). Above the very low
frequency range, the resonance absorption (10 to 60 Hz) of the panel-mats
surface (S) starts to control the transfer impedance. Above 60 Hz, the coupling
between the cavity modes and the panel modes distributed in S5 provide certain
damping to the sound field. Therefore, the interaction between the cavity modes
with the modes in the panel-mat surfaces (S;) and in the panels’ structural modes
of S; dominates the general feature of the acoustic transfer impedance above the
very low frequency range.

Contributions from all the boundary surfaces were included in the final
calculation of the space-average acoustic transfer impedance as shown in Figure
10. This shows that a reasonable prediction of the space-average transfer
impedance of the enclosure can be made on the basis of estimation of the
boundary properties for the specific acoustic modal admittance described in
equations (38) and (34)—(37).
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<pp*>(dB)

0 50 100 150 200
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Figure 8. Predicted average acoustical transfer impedance of the enclosure for each of the four
surfaces: Sy (——— ) Sy (hennn ), S3 (————) and Sy ( ).

The major assumption in using equation (39) is that the cross coupling of the
enclosure modes can be ignored. Previous analysis [9] has shown that when the
specific acoustic impedance Z/p,c, of the boundary of a one-dimensional tube is
larger than about 15 ~ 20, the cross coupling can be ignored. The estimated
value of the specific acoustical admittance is about 0-067 in this case, which gives
a value of Z/p,c,= 15, so that the assumption of uncoupled modes appears to be
justified in this case.

4. HELMHOLTZ RESONANCE EFFECT OF THE COCKPIT IN THE
HELICOPTER

The model described in the previous sections can be used to predict the
acoustical response in the helicopter if the boundary and source conditions of
the helicopter were available. However, in this section only the modelling of the
Helmholtz resonance effect of the cockpit in the helicopter is considered by
introducing the acoustic impedance of the resonator into equation (33). The
results from this modelling may be used to explain the pronounced dip in the
response at about 23 Hz (see Figure 12). A plan view of the helicopter used to
take these measurements is shown in Figure 11. This dip in the impedance curve

Sound absorption mechanisms
Air leakage Panel sound Panel sound absorbers
absorbers Plywood panels
| | | |
Very low Low frequencies Medium frequencies
frequencies
(0 to 10 Hz) (10 to 60 Hz) (60 to 200 Hz)

Figure 9. Effects of boundaries on the acoustic transfer impedance of the enclosure.
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Figure 10. Average acoustical transfer impedance of the enclosure. Measured (
dicted considering the contributions of all the boundary surfaces (—-—-—).

) and pre-

is thought to be due to the effects of the Helmholtz resonator formed by the
relatively narrow passage into the cockpit, approximately 0-7 m wide, 1-8 m high
and with an effective length of 2 m, and the volume of air in the cockpit,
approximately 3 m>. The acoustic impedance of such a resonator can be written
as

1
Z,= R+ joL +—, 43
+ jo +ja)C (43)

where R is the acoustic resistance of the resonator, which is assumed to be
negligible here, L is the acoustic inertance, given by L=mr,/'/S where [’ is the
effective length, S the cross-sectional area of the neck, and C is the acoustic
compliance, given by C=V/p,c?, V being the volume of the resonator. The
Helmholtz resonance frequency is given when the reactive part of equation (43)
goes to zero and is equal to about 23 Hz for the neck and cavity dimensions
given above. The acoustic impedance given by equation (43) can be divided by
the characteristic impedance, p,c,/S, to give the specific acoustic impedance of
the Helmholtz resonator, and if R is small, it can be seen that the specific

y
Avionics
and
stowage
| E—
Cockpit 2.5m
o Bulkhead
Avionics —
) A
Front 09m| 5.6 m 08 m  Rear
_ 7.3 m |

Figure 11. A plan view of the helicopter used for the measurements of acoustical transfer
impedance.
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acoustic impedance can fall well below the value of 15, which was mentioned
above as the minimum value necessary to ensure that cross-coupling of the
enclosure modes can be ignored.

To incorporate the effect of the Helmholtz resonator formed by the cockpit
passage and volume into the model for the acoustic response of the passenger
cabin, the specific acoustic admittance over the area of the passage can be taken
to be

poc()
— Loto 44
ﬁr SZ, ( )

but the cross coupling effects between the enclosure modes must be accounted
for near the Helmholtz resonance frequency, when f, is relatively large. These
effects have been incorporated by rewriting equation (33) in matrix form as

Kp—-B,p=q (45)

where the vector of principle co-ordinates (mode amplitudes) is

p=I[P1 Pr..., Py, (46)
the vector of modal excitations for the corner acoustic source is
4 =jp,oQll. —1...J", (47)
the matrix of wavenumbers is
Ay (k* = k3) 0 0
K — 0 Ay (k — k3) 0 ’ (48)
' Ak

and the matrix of terms due to the Helmholtz resonator is

Cn Cp
Cy Cxn
B, = jkB, | . . . (49)

Cyn

Cy is given by equation (18) evaluated over the area of the cockpit passage. The
effect of other boundaries can be taken into account by adding additional terms
to B, to include the effects of the other terms in equation (33) as described
above. Unfortunately, a detailed model for the other boundaries, such as that
used for the laboratory enclosure, was not available for the helicopter and so to
illustrate the effect of the Helmholtz resonator the modal damping ratio,

_ coBCri
wy V

<s , (50)

was assigned the value {=0-1 for all the enclosure modes to account for the
damping in the enclosure.
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Figure 12. Average acoustical transfer impedance of the passenger cabin of EH101. Measured

( ) and predicted (—-—-—).

Figure 12 shows the space arranged acoustic impedance measured in the
helicopter and that calculated using the model outlined above. Although most of
the response below 80 Hz has not been very accurately modelled, because the
effects of the panel resonators and air leaks are being ignored in this simple
model, the measured dip in the response at above 23 Hz is accurately predicted.
Above about 80 Hz the space-average acoustic impedance is relatively uniform
and its level is fairly accurately predicted by the simple modal model with a
modal damping ratio of 0-1.

5. CONCLUSIONS

Using the modified method of weighted residual, the response of an enclosed
sound field can be described by a set of admissible functions. When the
admissible functions are the eigenfunctions of the rigid wall enclosure, similar
modal equations to those developed by Dowell et al. were obtained. However,
the formulation of the sound pressure response allows the use of other
admissible functions for fast convergence of the results [10]. A formula (equation
(33)) was derived to predict the response of the enclosure to the excitation of
sound source. In equation (33), the contribution of all the boundaries are
modelled in the same format. The contribution of the boundaries to the sound
field response is through the modification of the modal amplitudes of rigid wall
acoustic modes by changing the characteristics of the modes and by introducing
modal coupling forcing terms.

When the cross coupling between the cavity modes is ignored, the specific
acoustical modal admittance, f3,,, is related to the properties of the boundary
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structures by equations (34)—(38). It becomes obvious that 5, is both frequency
and modally dependent. A general model is developed to predict the acoustic
transfer impedance of the enclosure with both locally and modally reactive
boundaries. If the estimated specific impedance of the boundary surface is in the
order of 20, equations (38) and (39) can be used for the prediction. If the
estimated specific impedance is very small, such as when a Helmholtz resonator
is coupled to the enclosure, cross mode coupling should be considered. For this
case a matrix extension of equation (33) should be used.

This model was used to successfully predict the general features of the acoustic
response of both a helicopter passenger cabin and a laboratory enclosure. A
more detailed modelling of the low frequency damping mechanisms in the
laboratory enclosure was possible and these were found to be dominated by: (1)
At very low frequencies, the air leakage at the cable opening hole and panel
joints contribute significantly to the acoustic transfer impedance. The
contribution of the air leakage with a small opening area is mainly through the
mass reactance in increasing the original cavity resonance frequency from 0 Hz
to the resonance frequency described by equation (42). (2) The resonance
absorption of the panel-mat surface significantly controls the low frequency
behaviour of acoustic transfer impedance (10 to 60 Hz). (3) Structural/acoustical
coupling between the panel modes and the cavity modes also significantly
attenuates the resonance response shown in acoustic transfer impedance.
Together with the off-resonance sound absorption of the panel-mat surfaces,
they dominate the characteristics of the acoustic transfer impedance in the
medium frequency range (60 to 200 Hz).

The Helmholtz resonance effect of the cockpit in the helicopter is also
included in the model. The measured dip at about 23 Hz in the space-average
acoustic impedance inside the passenger cabin of the helicopter is accurately
predicted.
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