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The purpose of this research is to extend the previous work of Liao and
Wang [1, 2] (Journal of Smart Materials and Structures 5, 638±648; Journal of
Vibration and Acoustics 120, 894±900) on the Enhanced Active Constrained
Layer (EACL) damping treatments and provide more comprehensive results
that can be better generalized. For given strain distributions in the host
structure and utilizing a self-sensing control law, closed form solutions to the
longitudinal motion of the active cover sheet of the EACL are derived. Active,
passive, and hybrid (total) loss factors are de®ned to discuss the damping
properties of the treatments. With a non-dimensionalized formulation, this
research identi®es and examines the major factors that a�ect the EACL
damping characteristics. These factors are: the bending sti�ness ratio between
the host structure and the constraining layer, the o�set distance of the
constraining layer from the host structure, the strain distribution in the host
structure, the active control gain, the characteristic length of the EACL, the
Viscoelastic Material (VEM) loss factor, and the sti�ness distribution of the
edge elements. The e�ects of these factors on open-loop and closed-loop
damping characteristics of the treatment are discussed. This investigation
provides insights and design guidelines to generic one-dimensional EACL
surface damping treatments.

# 1999 Academic Press

1. BACKGROUND

The Active Constrained Layer (ACL) damping treatments [3±9] have been
designed to improve the damping ability of the classical Passive Constrained
Layer (PCL) damping con®gurations. A typical ACL consists of a layer of
viscoelastic material (VEM) sandwiched between a base structure and an active
piezoelectric (such as PZT ceramics) constraining layer. By controlling the active
cover sheet, the VEM shear deformation (shear angle) can be increased and thus
more energy can be dissipated. While the ACL treatments can indeed improve
the system passive damping, the VEM layer degrades the active control authority
of the piezoelectric actuator being applied to the base structure when compared
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to a simple purely active system (without VEM) [7, 8]. To increase the
transmissibility between the voltage input to the piezoelectric cover sheet and the
control action applied to the base structure, Liao and Wang recently developed
the Enhanced Active Constrained Layer (EACL) damping concept by adding
edge elements to the boundaries of the piezoelectric cover sheet [1]. It has been
shown that, with proper design, the edge elements can greatly increase the active
control authority and robustness of the traditional ACL system, while still
maintaining suf®cient passive damping [1, 2].

2. PROBLEM STATEMENT AND RESEARCH OBJECTIVE

Although the effectiveness of the EACL systems has been demonstrated and
some analyses have been performed to understand its characteristics, a
comprehensive and generic study that examines all the basic design parameters
of the treatments has not been completed. The major issues remaining to be
addressed are:
(1) Studies so far have only focused on using edge elements with equal

stiffness (a symmetric con®guration). The characteristics of an unsymmetric
treatment have not been examined. How the stiffness distribution of the edge
elements will affect the damping properties of the system has not been
investigated.
(2) The in¯uences of various key EACL design variables, such as the location

and geometry of the treatments, the material properties of the VEM and the
constraining layer, the stiffness distribution of the edge elements, and the active
action, on the overall system performance have not been generically quanti®ed.
Results of the previous EACL studies were derived from speci®c examples of
host structures, such as cantilever beams. The parameter space was also limited
(mainly focused on the edge element stiffness) and the formulation was not non-
dimensionalized. While these investigations do have merits in showing the
feasibility of the concept and providing qualitative observations, the conclusions
cannot be easily generalized.
The goal of this paper is to address the above issues and conduct a

fundamental and comprehensive study of generic one-dimensional EACL
con®gurations. By assuming different strain ®elds in the host structure and using
a self-sensing control algorithm [5, 9], closed-form solutions are derived and
non-dimensionalized. The active, passive, and total system (hybrid) loss factors
of the EACL damping treatment are de®ned, the non-dimensional parameters
that affect the loss factors are identi®ed, and their effects on the damping
characteristics of the treatment are studied.

3. SYSTEM DESCRIPTION AND MODEL

In this section, the equation of the longitudinal motion of the piezoelectric
layer and the corresponding boundary conditions are ®rst derived with speci®ed
strain ®elds of the host structure (a one-dimensional beam structure is used in
this study). Specifying a self-sensing control law, a closed form solution to the
equation is then obtained.
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A schematic of the structural con®guration is shown in Figure 1. The host
structure is attached by a VEM layer, which is constrained by a layer of PZT. At
the ends of the PZT, a pair of edge elements is used to connect the PZT directly
to the host structure. The geometry and the material of the edge elements can be
designed and selected to achieve different stiffness. The following assumptions
are made in deriving the model: (1) transverse displacement w is assumed to be
the same for all layers; (2) the shear strains in the PZT and the base structure are
negligible and the longitudinal strain in the VEM is neglected; (3) passive
damping is only considered in the shear deformation of the VEM; (4) interfaces
are perfect, no slip occurs between the layers; (5) the displacement (d) between
the edge element location on the base beam and the corresponding end of the
PZT layer is zero; (6) applied voltage is assumed to be uniform along the PZT;
(7) only harmonic, steady state vibration is considered; (8) linear theories of
elasticity, viscoelasticity, and piezoelectricity are used.
From Figure 2, the following kinematics relationship can be derived:

g � uc ÿ ub � h
@w

@x

� �
=hs, �1�
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Figure 1. One-dimensional base (beam) structure with EACL treatment.
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Figure 2. Kinematics relationship between g, w, uc and ub.
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with

h � hb=2� hs � hc=2; �2�
g is the shear strain in the VEM, uc and ub are the average longitudinal
displacements of the PZT and the host structure respectively.
Figure 3 shows the free-body diagram of the PZT. Applying Newton's second

law and assuming quasi-static in the axial direction of the PZT leads to

@sc
@x
ÿ t
hc
� 0: �3�

From the constitutive equation of the piezoelectric material, the stress sc can be
written as

sc � Ec
@uc
@x
ÿ L

� �
: �4�

L is the free strain of the PZT and can be written as

L � d31�V=hc�: �5�
Here, V is the control voltage applied to the PZT and d31 is the piezoelectric
constant.
In steady state, the shear stress in equation (3) can be expressed as

t � G�sg � G1�1� iZ�g, �6�
where G�s is the complex shear modulus of the VEM, G1 is the storage shear
modulus, and Z is the material loss factor.
Substituting equations (4) and (6) into equation (3) and considering the

kinematics relationship (1) yields the equilibrium equation of the longitudinal
displacement of the PZT:

@2uc
@x2
ÿ G�s
Echchs

uc � ÿ G�s
Echchs

ub ÿ h
@w

@x

� �
, �7�

Two boundary conditions are needed to solve for uc. Modelling the edge
elements to be longitudinal springs with equivalent stiffness Keq1 (left end) and
Keq2 (right end), as shown in Figure 1, the following boundary conditions can be
derived:

@uc
@x
ÿ Lÿ Keq1

EcAc
uc ÿ ub � h

@w

@x

� �
� 0, at x � 0; �8�

∂  c
∂xc  +  c  dx  

dx  

Figure 3. Free-body diagram of PZT.
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@uc
@x
ÿ L� Keq2

EcAc
uc ÿ ub � h

@w

@x

� �
� 0, at x � L: �9�

It is worth noting that the equilibrium equation (7) governing the PZT
longitudinal motion of the EACL treatment is the same as that of the ACL or
PCL system. However, the boundary conditions for the EACL are quite
different due to the edge elements. When Keq1=Keq2=0, equations (8) and (9)
will reduce to the ACL boundary conditions. Further, if no control voltage is
applied, the strain at the boundaries of the PZT will be zero, and equations (8)
and (9) become the boundary conditions of the PCL treatment. By adjusting the
control gain and the edge element stiffness, the boundary control characteristics
of the EACL treatment can be tuned to give the best damping ability.
Equations (7)±(9) can be non-dimensionalized as

@2�uc
@�x2
ÿ G�2�uc � ÿG�2 �ub ÿ yh

@ �w

@�x

� �
, �10�

@�uc
@�x
ÿ Lÿ K1 �uc ÿ �ub � yh

@ �w

@�x

� �
� 0, at �x � 0; �11�

@�uc
@�x
ÿ L� K2 �uc ÿ �ub � yh

@ �w

@�x

� �
� 0, at �x � 1; �12�

where

�x � x=L, yh � h=L, G�2 � G�sL
2=Echchs, K1 � Keq1L=EcAc, �13--16�

K2 � Keq2L=EcAc, �uc � uc=L, �ub � ub=L, �w � w=L: �17--20�
G* is the non-dimensional complex characteristic length of the surface damping
treatment. It combines the effects of the material properties and geometry of the
treatment. For the traditional PCL, the damping property of the treatment is
uniquely determined by G* [10]. For the ACL, its damping property is also
related to the free strain L of the constraining layer or the control method since
the boundary conditions are not trivial as in the case of PCL. For the EACL,
non-dimensional edge element stiffness K1 and K2 make the boundary conditions

TABLE 1

System nominal parameters

Ab 90 mm2 Ec 6.496 1010 N/m2

As 15 mm2 hb 3 mm
Ac 15 mm2 hs 0�5 mm
Eb 7�16 1010 N/m2 hc 0�5 mm
Gs 4�5(1+ i)6 105 N/m2 L 250 mm
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even more complex than the ACL. But this also gives us the ¯exibility to design
L, K1 and K2 and achieve the best damping property of the system, as will be
seen later. All parameters used in this paper are listed in Table 1 unless stated
otherwise.
In this paper, a host structure with the EACL treatment on both sides is

considered. With this arrangement, the neutral axis of the composite beam will
always remain at the mid-section of the host beam. Therefore, the strain in the
host structure (note that only the strain ®eld of the base structure directly
beneath the VEM layer is of interest in this analysis) can be approximated as

e��x, �z� � �A�x� B��z: �21�

In the above expression, A and B are constants. The strain e is assumed to vary
sinusoidally over time due to the cyclic vibration of the system and change
linearly in space. When A is equal to zero, the strain along the base structure is
constant and symmetrical about the mid-section of the PZT. When A is equal to
ÿ2B, the strain ®eld is anti-symmetrical about the mid-section of the PZT. The
values of A and B are not important here since only the A to B ratio will affect
the loss factors (see next section). In this paper, the constant B is set to be ÿ0�1.
The constant A can change from 0 to 0�2 so that the strain ®eld of the host
structure varies from a symmetrical distribution to an anti-symmetrical
distribution. This is equivalent to consider the effects of the location of the
EACL and the vibration mode of the host structure. For example, the
antisymmetrical strain distribution corresponds to the case that the treatment
covers a nodal point of a vibration mode and the nodal point happens to be
located in the middle of the treatment. As long as the length of the EACL
treatment is less than the half wavelength of the vibration modes of interest, a
certain A and B combination can always be found to approximate the location
of the treatment. Otherwise, a higher-order polynomial has to be used to
approximate the strain ®eld. Integrating equation (21) with respect to x and
considering that there is no shear strain in the base beam, the following two
equations can be derived:

�ub � 0,
@ �w

@�x
� ÿ A

2
�x2 � B�x� C

� �
: �22, 23�

The constant C is not important in our discussion here since it will be cancelled
in the ®nal equations of the loss factors.
Substituting equations (22) and (23) into equation (10) gives

�uc � yh C1 cosh�G��x� � C2 sinh�G��x� � A

2
�x2 � B�x� C� A

G�2

� �
: �24�

The constants C1 and C2 will be determined by the boundary conditions of the
PZT.
Substituting equations (22)±(24) into equation (1), the shear g in the

viscoelastic layer becomes
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g � yh
ys

C1 cosh�G��x� � C2 sinh�G��x� � A

G�2

� �
, �25�

where ys is the non-dimensional viscoelastic layer thickness de®ned as

ys � hs=L: �26�
To solve for the constants C1 and C2, the free strain L of the PZT, which
depends on the control law, has to be determined ®rst. In this paper, the self-
sensing algorithm proposed by Shen [9] and Baz [5] is used:

L � Kg� _uc�0, t� ÿ _uc�L, t�� � ioKgL��uc�0, t� ÿ �uc�1, t�� � iG��uc�0, t� ÿ �uc�1, t��:
�27�

Here G is the non-dimensional control gain de®ned as KgoL. o is the frequency
in radians, and Kg is the practical control gain. While more sophisticated control
laws can also be employed, using this simple scheme will help us gain better
insight from the analytical results.
Substituting equations (22)±(24), and (27) into equations (11) and (12) gives

the following algebraic equations for solving the constants C1 and C2:

iG�coshG� ÿ 1� ÿ K1 G� � iG sinhG�

G� sinhG� � iG�coshG� ÿ 1� � K2 coshG� G� coshG� � iG sinhG� � K2 sinhG�

� �
C1

C2

� �
� d1

d2

� �
, �28�

d1 � ÿBÿ iG
A

2
� B

� �
� K1

A

G�2
, d2 � ÿAÿ Bÿ iG

A

2
� B

� �
ÿ K2

A

G�2
:

�29, 30�
It can be seen from equations (28)±(30) that the constants C1 and C2 are the
functions of the control gain (G), the complex characteristic length (G*), the
strain distribution in the host structure (A, B), and the stiffness distribution of
the edge elements (K1, K2).

4. LOSS FACTORS OF THE EACL TREATMENT

The energies dissipated per cycle by active control (Wa) and by passive
damping (Wp) can be expressed as [5, 9]

Wa � 2pGEcAcL��uc�0� ÿ �uc�1��2, Wp � 2pZG1AsL

�1
0

g2 d�x: �31, 32�

Considering equations (24) and (25), Wa and Wp can be expressed as

Wa � 2pGEcAcLy
2
h C1�coshG� ÿ 1� � C2 sinhG� � A

2
� B

� �2
, �33�
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Wp � 2pZEcAcLy
2
h Re�G�2�

�1
0

C1 coshG��x� C2 sinhG��x� A

G�2

� �2
d�x: �34�

The active loss factor Za and passive loss factor Zp of the EACL treatment are
de®ned as

Za �
Wa

2pWs
, Zp �

Wp

2pWs
, �35, 36�

where Ws is the maximum strain energy stored in the PZT, VEM, the edge
elements, and the host structure between the treatments:

Ws � EbbL
2

2

�1
0

�yb=2
ÿyb=2

e2��x, �z� d�z d�x� EcbL
2

�1
0

�yc=2
ÿyc=2

@�uc
@�x
ÿ �zc

@2 �w

@�x

� �2
d�zc d�x

� G1bhsL

�1
0

g2 d�x� Keq1L
2 �uc ÿ �ub � yh

@ �w

@�x

� �2
�x�0

� Keq2L
2 �uc ÿ �ub � yh

@ �w

@�x

� �2
�x�1

: �37�

Considering equations (21)±(25), Ws can be written in the form

Ws � EcAcLy
2
h fn�A, B, K1, K2, G, G�, EI, D�, �38�

where

fn � 2� EI

24D2

A2

3
� AB� B2

� �

�
�1
0

�C1G� sinh�G��x� � C2G� cosh�G��x� � A�x� B�2 d�x� K1 C1 � A

G�2

� �2
�Re�G�2�

�1
0

C1 cosh�G��x� � C2 sinh�G��x� � A

G�2

� �2
d�x

� K2 C1 coshG� � C2 sinhG� � A

G�2

� �2
, �39�

EI � EbIb
EcIc

, D � yh
yc
� h

hc
: �40, 41�

EI is the ratio of the bending stiffness of the host beam and that of the PZT, D is
the non-dimensional offset distance of the PZT from the mid-section of the host
structure.
Substituting equations (31), (32) and (38) into equations (35) and (36), the

active and passive loss factors can be expressed as
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Za � G

C1�coshG� ÿ 1� � C2 sinhG� � A

2
� B

� �2
fn�A, B, K1, K2, G, G�, EI, D� , �42�

Zp � Z Re�G�2�

�1
0

C1 coshG��x� C2 sinhG��x� A

G�2

� �2
dx

fn�A, B, K1, K2, G, G�, EI, D� : �43�

The total system (hybrid) loss factor of the EACL treatment Zs is the summation
of the active and passive loss factors.

Zs � Za � Zp: �44�
From equations (42) and (43), it is found that many factors will affect the
damping properties of the EACL treatment. Considering equation (28), the
active and passive loss factors can be written in the general forms

Za � fa�A, K1, K2, G, G, Z, EI, D�, Zp � fp�A, K1, K2, G, G, Z, EI, D�, �45, 46�
where the complex characteristic length G* is replaced by its magnitude G and
the VEM loss factor Z. One can derive from equations (42) and (43) that only
the A to B ratio, and not the values of A and B, will affect the loss factors.
Therefore, B is omitted in the expressions of Za and Zp (equations (45) and (46)).
The effects of some parameters, such as EI and D, are obvious. But the effects of
other parameters are not very clear. In the following two sections, it will be
examined how these parameters will in¯uence the open-loop and closed-loop
damping properties of the EACL treatment.

5. OPEN-LOOP DAMPING CHARACTERISTICS

The open-loop system is studied ®rst (control gain G=0). Such an
investigation will be useful for understanding the fail-safe ability of the design. It
can be seen from equation (46) that, except the bending stiffness ratio EI and the
offset distance D, the open-loop loss factor Zop(= Zp) is affected by four factors:
the VEM loss factor Z, the strain distribution in the host structure (A), the
stiffness distribution of the edge elements (K1 and K2), and the characteristic
length (G). Through this analysis, it is found that parameters K1, K2 and G can
be designed for each given strain ®eld A to maximize the open-loop loss factor
Zop. The higher the VEM loss factor, the higher the open-loop loss factor. But
the VEM loss factor Z will not affect the optimal selection of K1, K2, and G. The
details are presented in the following paragraphs.
For a symmetrical and constant strain ®eld (A=0) of the host beam, the edge

elements can be used to change the optimal characteristic length Gopt of the
treatment. The PCL without edge elements (K1=K2=0) reaches a maximum
loss factor when the characteristic length G equals Gopt0, as shown in Figure 4,
which is consistent with Plunkett and Lee's discussion about the optimal length



620 YANNING LIU AND K. W. WANG

of the PCL [10]. In fact, if Ws in equation (37) were de®ned as the maximum
strain energy stored in the PZT and neglecting the shear in the VEM,

Ws � EcbL
2

�1
0

�yh�yc=2
yhÿyc=2

e2��x, �z� d�z d�x � EcbycL2 y2h �
y2c
12

� �
A2

3
� AB� B2

� �
,

�47�

it can be shown that the optimal characteristic length Gopt0=3�28, which is
exactly the number obtained by Plunkett and Lee. Increasing the stiffness of the
edge elements simultaneously reduces the loss factor of the system, which is not
desired here. However, an interesting and useful case is when one of the edge
elements is stiff and the other is extremely soft (K1!1, K2=0; or K1=100,
K2=0 in Figure 4). In this case, the system has an optimal characteristic length
Gopt1, which is half the length in the preceding case. This is easy to imagine
because the shear strain in the VEM is zero at the mid-section and symmetrical
about the mid-section when the constraining layer is free at both ends. When the
constraining layer is ®xed at one end, it forces the shear in the VEM to be zero
at that end, just as it is in the mid-section of the preceding case (K1=K2=0)
[11]. Therefore, the optimal characteristic length Gopt1 in this case is 1

2Gopt0. The
energy dissipated by the viscoelastic layer is half of the previous case. Since the
energy stored in the system now is also half of the previous case, the maximum
open-loop loss factor Zop remains the same, according to the de®nition of the
open-loop loss factor. Further increasing or decreasing G will result in the
degradation of the damping ability of the system. In Figure 5, the maximum loss
factor Zop and its corresponding optimal characteristic length Gopt are shown for
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Figure 4. Open-loop loss factor Zop versus characteristic length G for the constant strain ®eld in
the host beam: � � � � � � , K1=K2=0; ÐÐ , K1=1, K2=0; -�-�-�-, K1=100, K2=0; - - - -,
K1=K2=5.
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the different selections of the edge element stiffness K1 and K2. The loss factor
Zop reaches almost the same maximum value when K1=K2=0�01; K1=100,
K2=0�01; and K1=0�01, K2=100. But the optimal characteristic lengths Gopt

for these cases are distinct. In some practical problems, the constrained layer
treatment without edge elements might not reach the optimal characteristic
length Gopt due to space constraints. The edge elements can be used to restrain
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Figure 5. (a) Maximum open-loop loss factor Zop versus K1 and K2 for A=0, B=ÿ0�1; (b)
optimal characteristic length Gopt versus K1 and K2 for A=0, B=ÿ0�1.



622 YANNING LIU AND K. W. WANG

one end of the constraining layer to bisect Gopt so that the damping property of
the treatment can be improved.
Constant strain in the host structure is very unlikely to happen in reality. In

most cases, the strain of the beam beneath the treatment has a certain
distribution. When the strain in the host structure is not uniform, the optimal
characteristic length Gopt and its corresponding maximum loss factor Zop will
change. For each strain distribution in the host structure, there is an optimal
selection of K1, K2 and G to maximize the open-loop loss factor Zop of the
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Figure 6. (a) Maximum open-loop loss factor Zop versus strain distribution index A; (b) optimal
characteristic length Gopt versus strain distribution index A; � � � � � � , K1=100, K2=0�01; ÐÐ ,
K1=K2=0�01; -�-�-�-, K1=0�01, K2=100; - - - -, K1=K2=100.
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treatment. Using the ®rst order approximation, the strain can be expressed
linearly as shown in equation (21). In Figure 6, the maximum open-loop loss
factor Zop and its corresponding optimal characteristic length Gopt are plotted
versus strain distribution index A for the different selections of the edge element
stiffness distribution. For the constrained layer treatment with very soft edge
elements (K1=K2=0�01), Gopt increases and Zop, in general, drops slightly when
the strain ®eld changes from constant and symmetric to anti-symmetric.
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Figure 7. (a) Maximum open-loop loss factor Zop versus K1 and K2 for A=0�1, B=ÿ0�1; (b)
optimal characteristic length Gopt versus K1 and K2 for A=0�1, B=ÿ0�1.
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Demoret and Torvik [12] also found that Gopt of the PCL without edge elements
becomes larger when the strain varies away from the constant ®eld. It is obvious
from Figure 6 that the constrained layer treatment without edge elements is not
the best choice when the strain ®eld being treated is not constant. The case of
K1=100, K2=0�01 achieves higher damping than the other cases in a large

range of A. This phenomenon is because selecting a stiffer edge element at the
higher strain end has the effect of amplifying the shear strain in the viscoelastic
layer [11]. When the strain ®eld is symmetric (A=0) or anti-symmetric
(A=0�2), the cases of K1=100, K2=0�01 and K1=0�01, K2=100 obtain the
same open-loop loss factor since they are essentially the same selection. To
consider the effect of the stiffness distribution of the edge elements, the
maximum loss factor Zop and the corresponding optimal characteristic length Gopt

are plotted versus K1 and K2 for A=0�1 in Figure 7. As it shows, to have the
best damping property, the most rigid K1 (K1=100), softest K2 (K2=0�01) and
Gopt1 should be used. However, when the strain ®eld being treated is anti-
symmetric (A=0�2), as shown in Figure 8, the most rigid K1 and K2

(K1=K2=100) and G=Gopt2 (this value depends on EI and D) should be
selected to give the highest damping.

In practical applications, if the strain distribution of the host structure is
approximately known, the selection of the edge element stiffness K1 and K2 and
the optimal characteristic length Gopt can be simpli®ed. It is worth noting from
Figure 6 that when A changes from 0 to 0�1, Gopt of the cases of K1=K2=0�01
and K1=100, K2=0�01 is almost unchanged. This means that when the strain
in the beam is in phase or when the treatment does not cover a nodal point, the

value of Gopt from the constant strain ®eld can be used to provide the maximum
damping ability to the treatment. As illustrated in Figure 6, Zop of the
constrained layer treatment with the cover sheet constrained by the edge element
at the high strain end (K1=100, K2=0�01) is larger than any other cases, and
Gopt remains unchanged until A is greater than 0�15. Thus, this case is more
ef®cient and robust in dissipating system energy than others are. If the treatment

has to be placed on a nodal point of a certain mode, and the nodal point has to
be near the middle section of the treatment, very large K1 and K2 and the
corresponding Gopt, as shown in Figure 8, should be used to increase the
damping of this mode.
In the above studies of the selections of K1, K2 and G for the different strain

®elds in the host structure, the VEM loss factor Z is ®xed. The reason is that the
VEM loss factor will not affect the selection. In Figure 9, the open-loop loss

factor Zop versus G is plotted for the different VEM loss factors, when A=0,
A=0�1 and A=0�2, respectively. It can be seen from the ®gure that the open-
loop loss factor can be ampli®ed by selecting the VEM with larger loss factor.
But for the different VEM loss factor, the optimal characteristic length Gopt

remains the same. Therefore, in the design of the open-loop damping treatment,
the VEM with the largest loss factor should ®rst be selected. Then, K1 and K2

should be selected according to the strain ®eld in the host structure. And ®nally,
the characteristic length G can be optimized.
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6. CLOSED-LOOP DAMPING CHARACTERISTICS

When a control voltage is applied to the PZT, it changes the shear strain in
the VEM layer, and thus changes the system passive damping. On the other
hand, such input will also direct active force and moment to the host structure
and provide active damping. The total system damping (Zs) is thus a
combination of active (Za) and passive (Zp) damping actions.
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626 YANNING LIU AND K. W. WANG

(a)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.00
101

op

100

(b)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00
101

op

100

(c)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00
101

op

100

Figure 9. The open-loop loss factor Zop versus characteristic length G. (a) A=0: - - - -,
K1=100, K2=0�01, Z=5; ÐÐ, K1=100, K2=0�01, Z=1; -�-�-, K1=100, K2=0�01, Z=0�2;
-��-��, K1=K2=0�01, Z=5; � � � � � � , K1=K2=0�01, Z=1; ± ±, K1=K2=0�01, Z=0�2. (b)
A=0�1: - - - -, K1=100, K2=0�01, Z=5; ÐÐ, K1=100, K2=0�01, Z=1; -�-�-, K1=100,
K2=0�01, Z=0�2; -��-��, K1=K2=0�01, Z=5; � � � � � � , K1=K2=0�01, Z=1; ± ±,
K1=K2=0�01, Z=0�2. (c) A=0�2: - - - -, K1=K2=100, Z=5; ÐÐ, K1=K2=100, Z=1;
-�-�-, K1=K2=100, Z=0�2; -��-��, K1=K2=0�01, Z=5; � � � � � � , K1=K2=0�01, Z=1; ± ±,
K1=K2=0�01, Z=0�2.



ENHANCED ACTIVE CONSTRAINED LAYER DAMPING 627

From equations (45) and (46), except EI and D, the closed-loop loss factor Zs
will be affected by ®ve factors: the VEM loss factor Z, the strain distribution in
the host structure (A), the stiffness distribution of the edge elements (K1 and K2),
the characteristic length G of the treatment, and the control gain G of the
system. Therefore, the effects of the six parameters A, G, K1, K2, G and Z on the
loss factors (Za, Zp, Zs) need to be discussed to completely understand the closed-
loop damping characteristics of the EACL treatment.

6.1. ACTIVE CONTROL ABILITY OF THE EACL TREATMENT

The effectiveness of using the edge elements to increase the active loss factor
not only depends on the control gain G and the stiffness distribution of the edge
elements (K1 and K2), but is also closely related to the strain distribution in the
host structure (A) and the characteristic length of the treatment (G).
When the strain in the host structure is in phase (0EAE 0�1), the control

gain G can be optimized to maximize the active loss factor. Figure 10 shows the
effects of the control gain G and strain distribution parameter A on the active
loss factor (Za) for three selections of the edge element stiffness distribution when
G=Gopt0. It can be seen clearly that there is an optimal control gain maximizing
the active loss factor for non-anti-symmetric strain ®eld. That is, higher gain
does not always give more active damping. This is because of the self-sensing
control algorithm used here. In fact, when G approaches in®nity, equation (28)
can be simpli®ed to

C1

C2

� �
� 0

ÿ�A=2� B�= sinhG�
� �

: �48�

Substituting C1 and C2 into equation (42) and since fn is constant in this case, Za
will approach zero.
In addition to the control gain, the stiffness distribution of the edge elements

can also be optimized to magnify the active loss factor. It can also be observed
from Figure 10 that the active loss factor can be increased signi®cantly if both
K1 and K2 are large, when A is not close to 0�2 (anti-symmetrical strain ®eld).
Take A=0 and A=0�1 as examples (Figures 11(a) and (b)), increasing the edge
element stiffness can enhance the active control authority, especially when K1

and K2 are increased simultaneously.
In the above discussions of the optimal control gain and the stiffness

distribution of the edge elements, the VEM loss factor and the characteristic
length G are ®xed. It is found that the effects of G on the maximum active loss
factor and its corresponding optimal control gain are correlated with the
stiffness distribution of the edge elements. But the VEM loss factor Z almost has
no effect on the maximum active loss factor and the corresponding optimal
control gain. In Figures 12(a)±(d), the maximum active loss factor Za and its
corresponding optimal control gain Gopt are plotted against the characteristic
length G for Z=0�2 and 1�0, when A=0 and A=0�1. It can be seen from the
®gures that when K1=100, K2=0�01, increasing G can enhance the active loss
factor. This is because, for this case of K1, K2 distribution, increasing G can
provide stronger transmissibility between the input voltage and output force, and
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Figure 10. Active-loss factor Za versus control gain G and strain distribution parameter A for
G=Gopt0: (a) K1=K2=0�01, (b) K1=K2=100, (c) K1=100, K2=0�01.
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thus can obtain a larger active loss factor. In this sense, G can be regarded as the
domain factor and K1 and K2 as the boundary factors for determining
transmissibility. When K1=K2=100, the transmissibility is already high due to
the edge element distribution, and thus Za is almost independent of G, as shown
in Figures 12(a) and (c). In both cases, the VEM loss factor Z almost does not
in¯uence the maximum Za and the optimal control gain Gopt. Therefore, to
achieve high active control authority, the largest K1 and K2 should be selected,
and the corresponding optimal control gain should be used.
When the strain distribution of the host structure is anti-symmetric (A=0�2),

symmetric EACL (K1=K2) cannot actively control the structure, no matter
what the characteristic length and the control gain are. Unsymmetrical EACL,
on the other hand, can actively control the structure. From equation (28), when
A=ÿ2B and K1=K2=K, constants C1 and C2 can be expressed as

C1

C2

� �
� B 1� 2K

G�2

� �

6
iG�coshG� ÿ 1� ÿ K G� � iG sinhG�

G� sinhG� � �iG� K� coshG� ÿ iG G� coshG� � �iG� K� sinhG�
� �ÿ1

6
ÿ1
1

� �
: �49�

Then, it can be shown that the following equation is always true:

�uc�1� ÿ �uc�0� � yh�C1�coshG� ÿ 1� � C2 sinhG�� � 0: �50�
Since energy dissipated per cycle by active damping is proportional to the

displacement difference at the ends of the PZT [9], the active loss factor is zero.
That is, symmetrical EACL cannot actively control the anti-symmetrical strain
®eld. Since the symmetrical EACL on the anti-symmetrical strain ®eld results in
the uncontrollability of the active action, the most straightforward way to avoid
this is to change the position of the EACL treatment such that the strain in the
host structure directly beneath the treatment is in phase (0EAE 0�1). Another
possible method is to use EACL with unsymmetrical stiffness distribution of the
edge elements. The active loss factor versus K1 and K2 for anti-symmetrical
strain ®eld (A=0�2) is plotted in Figure 11(c). The ®gure veri®es that the active
loss factor is zero when K1 equals K2. The more interesting phenomenon is that
the unsymmetrical EACL, that is when K1 6�K2, can actively control the anti-
symmetrical strain ®eld. The active loss factor of the treatment can be further
increased by selecting optimal characteristic length, as shown in Figure 12(e).
However, the active loss factor here is relatively small. This indicates that, to
achieve high active control authority, the EACL should not cover the nodal
points of the modes to be controlled.

6.2. PASSIVE DAMPING ABILITY OF EACL TREATMENT

Similar to the active loss factor, the effects of the control gain G and the
stiffness distribution of the edge elements (K1 and K2) on the passive loss factor
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(Zp) are different for the different strain ®elds in the host structure (A) and the
different characteristic length G of the treatment.
When the strain in the host structure is constant along the length direction

(A=0), active control can enhance the passive damping of the EACL treatment.
Figure 13 plots the passive loss factor Zp as a function of the control gain G and
the strain distribution parameter A for K1=K2=0�01; K1=K2=100; and
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G=Gopt0: (a) K1=K2=0�01, (b) K1=K2=100, (c) K1=100, K2=0�01.



ENHANCED ACTIVE CONSTRAINED LAYER DAMPING 633

K1=100, K2=0�01. It can be seen from the ®gure that, for a constant strain
®eld in this host structure, Zp increases with the growth of the control gain G,
but it saturates when G is suf®ciently large. This is again related to the control
algorithm used. According to equation (48), when the control gain is so large
that the constants C1 and C2 approach their limit values, the control will not
further change the distribution of uc and g, and Zp will thus become insensitive to
the increase of the control gain.
It is obvious from Figure 13 that the stiffness distribution of the edge elements

will strongly affect the passive damping properties of the EACL treatment. For a
constant strain ®eld, to achieve the largest passive damping, the EACL with at
least one soft edge element should be used. In Figure 14(a), the passive loss
factor Zp is shown versus K1 and K2 for A=0. Zp achieves the maximum values
when K1=K2=0�01; K1=100, K2=0�01; and K1=0�01, K2=100. This is
easy to understand since the active control can increase the shear strain in the
VEM layer in these cases. If both ends of the PZT are constrained by the edge
elements with high stiffness, the passive loss factor is small, as shown in Figure
14(a).
The EACL with at least one soft edge element not only can provide high

passive damping for the constant strain ®eld in the host structure, but also can
achieve high passive damping when the strain in the host structure has the same
phase (0EAE 0�1). This is shown clearly in Figures 13(a) and (c). Actually, for
each given strain ®eld and characteristic length G, an optimal stiffness
distribution of the edge elements can be found. Take A=0�1 as an example, as
shown in Figure 14(b); the EACL with K1=100, K2=0�01 obtains the highest
passive loss factor when G=Gopt0. When the strain ®eld in the host structure is
anti-symmetrical (A=0�2), active control from symmetrical EACL (K1=K2)
cannot enhance the passive damping, but increasing the active gain in
unsymmetrical EACL (K1 6�K2) can increase the passive loss factor of the
treatment. Since the symmetrical EACL cannot actively control the anti-
symmetrical strain ®eld, the shear strain in the VEM layer is also independent of
the control gain. Therefore, the control gain G cannot change the passive loss
factor of the treatment when K1 equals K2, as shown in Figures 13(a) and (b).
The passive loss factor is the same as the open-loop loss factor in this case. By
changing the stiffness distribution of the edge elements, the anti-symmetrical
strain ®eld can be actively controlled by the unsymmetrical EACL, and the
passive damping can also be enhanced by the active control, as illustrated in
Figure 13(c). Figure 14(c) shows the passive loss factor versus K1 and K2. It can
be seen that increasing stiffness of any (or both) of the edge elements can
improve the overall passive damping of the treatment when the strain ®eld being
treated is anti-symmetric. This is because the shear strain in the VEM layer is
increased in such scenarios [11]. It is also interesting to note that the enhanced
passive damping in the unsymmetrical EACL cases (e.g., K1=100, K2=0�01 or
K1=0�01, K2=100) is still lower than the open-loop damping under K1=
K2=100 (Figures 14(c) and 15(c)).
In the above discussion of the effects of the control gain and the stiffness

distribution of the edge elements on the passive loss factor of the EACL
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treatment, the characteristic length G and the VEM loss factor Z are ®xed.
Figure 15 shows how the passive loss factor changes with the variation of the
characteristic length G and the VEM loss factor Z for high control gain (so that
the passive loss factor reaches saturation). Similar to the open-loop system, there
is also an optimal characteristic length in the closed-loop system with high
control gain to maximize the passive loss factor. When the strain in the host
structure has the same sign (0EAE 0�1), compared to the open-loop system,
the optimal characteristic length in the closed-loop system is increased because of
the control action. This indicates the characteristic length of the treatment
should be designed separately for the open-loop and closed-loop systems. When
the strain distribution in the host structure is anti-symmetric (A=0�2), the
optimal characteristic length for the symmetrical EACL will not change because
of the control.
In contrast to the active damping of the treatment, on which the VEM loss

factor has almost no effect, the passive damping of the closed-loop system can
be improved by using the VEM with a higher loss factor. It can also be observed
from the ®gure that the optimal characteristic length Gopt remains about the
same for the different VEM loss factors.

6.3. HYBRID DAMPING ABILITY OF THE EACL TREATMENT

As de®ned in equation (44), the system hybrid damping can be derived by
summing up the passive and active loss factors. Again, the effects of the control
gain G and the stiffness distribution of the edge elements are ®rst discussed for
the different strain ®elds in the host structure. The effects of the characteristic
length and the VEM loss factor are then considered.
When the strain along the length of the host structure has the same sign

(0EAE 0�1), active damping dominates in the symmetrical EACL treatment
with high-stiffness edge elements, and passive damping dominates when there is
at least one very soft edge element in the treatment. As shown in Figure 16, the
system loss factor for the symmetrical EACL with the high-stiffness edge
elements (K1=K2=100) is very similar to the active loss factor in Figure 10.
The system loss factor of the EACL with at least one soft edge element is very
similar to the passive loss factor in Figure 13.
To obtain the maximum system loss factor when the strain has the same sign

in the domain of the treatment (0EAE 0�1), symmetrical EACL with the most
rigid edge elements should be used. Figure 17(a) and (b) show the system loss
factor versus the stiffness distribution of the edge elements for A=0 and
A=0�1. Obviously, the higher the stiffness of the edge elements, the greater the
system loss factor, since the increase of the active loss factor outweighs the
decrease of the passive loss factor (if there is any decrease). In these cases, the
selection of the complex characteristic length G* has little effect on the maximum
systems loss factor and its corresponding optimal control gain, as shown in
Figure 18(a)±(d), since the active loss factor dominates in these situations, and
the active loss factor, as shown in Figure 12, is nearly independent of G*.
As A increases (especially from 0�1 to 0�2), using stiff and equal (symmetrical)

edge elements to enhance the active damping and system damping of the
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Figure 16. System loss factor Zs versus control gain G and strain distribution parameter A for
G=Gopt0: (a) K1=K2=0�01, (b) K1=K2=100, (c) K1=100, K2=0�01.
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mizing the system loss factor Zs is used at all points): (a) A=0, (b) A=0�1, (c) A=0�2.
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treatment becomes less effective. When the strain ®eld of the host structure is
anti-symmetric (A=ÿ2B), there is only passive damping in the symmetrical
EACL treatment. But in unsymmetrical EACL, there are both passive and active
damping. Figure 17(c) shows the system loss factor as a function of the edge
element stiffness. Compared with Figure 8(a), it can be seen that the highest
point moves from K1=K2=100 to K1=100, K2=0�1 and K1=0�1, K2=100.
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Figure 18. System loss factor Zs and its corresponding optimal control gain Gopt versus the
characteristic length G: (a) Zs versus G for A=0, (b) Gopt versus G for A=0, (c) Zs versus G for
A=0�1, (d) Gopt versus G for A=0�1, (e) Zs versus G for A=0�2, (f) Gopt versus G for A=0�2;
- - - -, K1=100, K2=0�01, Z=1; ÐÐ, K1=K2=0�01, Z=1; � � � � � � , K1=K2=100, Z=1; -��-��,
K1=100, K2=0�01, Z=0�2; -�-�-, K1=K2=0�01, Z=0�2; . . ., K1=K2=100, Z=0�2.
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Recall these two points also achieve the highest active loss factor. Therefore, the
system damping ability of the EACL treatment on the anti-symmetrical strain
®eld can be improved by selecting unsymmetrical stiffness distribution of the
edge elements.
The effectiveness of using the unsymmetrical EACL to enhance the system

damping when the strain distribution is anti-symmetric is related to the VEM
loss factor and the characteristic length G of the treatment. As shown in Figure
18(e), for small VEM loss factor, the system damping ability can be improved
signi®cantly by using the unsymmetrical EACL with one stiff edge element. For
a high VEM loss factor, however, the improvement is not so prominent when
compared with the open-loop system with K1=K2=100. From the above
discussion, it is found that the VEM loss factor has very little effect on the active
loss factor, but has signi®cant effects on the passive loss factor. Therefore, for
low VEM loss factor, the active damping from the unsymmetrical EACL is far
greater than the passive damping. The system loss factor of the closed-loop
system can be increased signi®cantly by choosing the unsymmetrical EACL. For
high VEM loss factor, the passive damping in the closed-loop system will
dominate. The system loss factor of the closed-loop system can only be slightly
increased by using unsymmetrical EACL.

7. CONCLUSIONS

This investigation extends the initial work of Liao and Wang [1, 2] on EACL
and provides more quantitative and comprehensive results that can be better
generalized to design EACL for one-dimensional structures. Closed form
solutions to the active, passive and system loss factors are developed. The non-
dimensional parameters that affect the damping properties of the treatment are
identi®ed and the in¯uences of these parameters on the loss factors are discussed
for the open-loop and closed-loop systems.
In the open-loop system, the maximum loss factor and its corresponding

optimal characteristic length change with the variation of strain distribution in
the host structure. If the strain has the same sign in the domain of the treatment
(0EAE 0�1), the optimal characteristic length for the constant strain
distribution can be used and the constraining layer at the high strain end should
be constrained by a stiff edge element, while the other edge element should be
soft. If the strain distribution is anti-symmetric (A=0�2), both ends of the
constraining layer should be constrained by stiff edge elements and the
corresponding optimal characteristic length should be used. If the strain
distribution is such that 0�1<A< 0�2, an optimal stiffness distribution of the
edge elements and the corresponding optimal characteristic length can be found
for each A.
In the closed-loop system, to obtain the highest system (hybrid) damping

ability, the requirements on the stiffness distribution of the edge elements, the
optimal control gain, and the treatment characteristic length will be different for
different strain distribution in the host structure. If the strain along the host
structure is of the same sign (0EAE 0�1), symmetrical EACL with very stiff
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edge elements can signi®cantly improve the system damping ability by mainly
improving the active control authority of the treatment. In this case, the optimal
control gain has to be used but the complex characteristic length is not
important. Unsymmetrical EACL with one stiff edge element and one soft edge
element can be used to enhance the passive damping of the treatment. In this
case, the complex characteristic length will play an important role. When
0�1<A< 0�2, the optimal stiffness distribution of the edge elements, the optimal
control gain and the optimal characteristic length should be found for each given
A. When the strain ®eld becomes anti-symmetric (A=0�2), symmetrical EACL
cannot actively control the structure. The system damping can be improved by
using unsymmetrical EACL. The improvement will be related to the VEM loss
factor. For a small VEM loss factor, this improvement will be signi®cant.
However, the improvement will be very limited for high VEM loss factors.
In practical damping treatment design, open-loop damping guarantees the fail-

safe ability of the system, while closed-loop damping quanti®es the overall
system performance. Based on this study, the following guidelines are developed
for the design of the EACL treatment.
The treatment should be on the high strain area since more energy of the

treated structure can be dissipated with such arrangement, which is consistent
with previous studies about surface damping treatments.
The location and length of the treatment should be such that the strain in the

host structure is in phase (has the same sign), which means the treatment does
not cover a nodal point of the mode that needs to be controlled. In such a strain
®eld, the closed-loop system damping of the treatment can be signi®cantly higher
than the open-loop damping. Depending on the stiffness distribution of the edge
elements, the system damping can be mainly from the active part (e.g.,
K1=K2=100), passive part (e.g., K1=K2=0�01), or both (e.g., K1=100,
K2=0�01; K1=0�01, K2=100).
To fully utilize the EACL's active±passive hybrid characteristics, one design

philosophy is to obtain the highest system hybrid damping while maintaining
some amount of the open-loop damping for fail-safe purpose. For such a
scenario, the key design parameters will be the stiffness distribution of the edge
elements, the control gain, and the characteristic length of the treatment. The
VEM with the largest loss factor should be used.
From equations (39)±(43), smaller EI and larger D should be designed to

achieve better damping effect, since EI and D only appear in equation (39) which
happens to be the denominators of the loss factors. Smaller EI means stiffer
constraining layer compared to the host structure. When all the other parameters
can be suitably selected, stiffer constraining layer should be used. Larger D
corresponds to larger offset of the constraining layer from the base structure.
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APPENDIX: NOMENCLATURE

b width of the Beam, VEM, or PZT
d31 piezoelectric constant
hc, hs, hb thickness of PZT, VEM and base beam, respectively
h distance from the mid-plane of the base beam to the mid-plane of

the PZT
i

�������ÿ1p
uc, ub average longitudinal displacements of PZT and base beam,

respectively
w transverse displacement
x position co-ordinate along the base beam length
z position co-ordinate along the base beam thickness
g shear strain in VEM
sc axial stress of PZT
d displacement between the edge element and the corresponding

bound of PZT
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t shear stress of VEM
Z loss factor of VEM
Zop open-loop loss factor
Za, Zp, Zs active, passive and hybrid loss factor of EACL treatment,

respectively
L free strain of PZT
e axial strain of the beam
o vibration frequency in radians
A, B, C constants used in the assumption of beam strain or displacement

®eld
C1, C2 constants determined by the boundary conditions of the PZT
Ac, As, Ab cross section area of PZT, VEM and base beam, respectively
Ec, Eb Young's Modulus of PZT and base beam, respectively
EI ratio of the bending stiffness of the host structure and the PZT
Gs complex shear modulus of VEM
G non-dimensional control gain
G1 storage modulus of the VEM
Ic, Ib moment of inertia of PZT and base beam, respectively
Keq1, Keq2 stiffness of the edge elements at x=0 and x=L, respectively
Kg control gain
L length of the PZT
V control voltage
Wa, Wp energy dissipated per cycle by active control and passive damping,

respectively
Ws maximum strain energy stored in the PZT, VEM, edge elements and

beam section beneath VEM.
K1, K2 non-dimensional stiffness of the edge elements at x=0 and x=L,

respectively
�x non-dimensional position co-ordinate along base beam length

de®ned as x/L
�zc non-dimensional position co-ordinate along the PZT thickness

de®ned as (zÿ h)/L
�z non-dimensional position co-ordinate along base beam thickness

de®ned as z/L
yc non-dimensional thickness of PZT de®ned as hc/L
yb non-dimensional thickness of the host beam de®ned as hb/L
ys non-dimensional thickness of VEM de®ned as hs/L
yh non-dimensional length between the mid-planes of the base beam

and the PZT de®ned as h/L
�uc non-dimensional longitudinal displacement of PZT de®ned as uc/L
�ub non-dimensional longitudinal displacement of base beam de®ned as

ub/L
�w non-dimensional transverse displacement de®ned as w/L
G* complex characteristic length of EACL treatment de®ned as

G*=
��������������������������
G�sL2=Echchs

p
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G characteristic length or the magnitude of the complex characteristic
length G*

Gopt0 optimal characteristic length of PCL without edge elements for
constant strain ®eld

Gopt1 optimal characteristic length of PCL with K1=100(1) and K2=0
for constant strain ®eld

Gopt2 optimal characteristic length of PCL with K1=K2=100(1) for
anti-symmetric strain ®eld

D non-dimensional offset distance of the PZT from the neutral axis of
the beam de®ned as h/hc
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