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1. INTRODUCTION

The study in reference [1] was considered with the derivation of alternative forms
of the frequency equation of a cantilevered Bernoulli±Euler beam (primary
system) to which several spring±mass systems (secondary systems) are attached
in-span. The present note is in some sense an extension of reference [1] because it
is aimed here to derive the characteristic equation for the case in which the
attached secondary systems are viscously damped. Two alternative formulations
of the characteristic equation of the combined system are given. Both
formulations are based on the discretization of the elastic beam by its ®rst n
eigenfunctions, according to the assumed modes method. In reference [2], a
general method for determining the exact undamped natural frequencies and
natural modes of vibration, the orthogonality relation for the natural modes and
the response to arbitrary excitation for both damped and undamped combined
systems is given. The method is based upon Green functions of the vibrating
distributed subsystems. The approach may be quite complicated, as the Green
function for the elastic structure needs ®rst to be determined, which can be both
tedious and time consuming in certain cases.
The following steps should be taken for ®nding the characteristic values of the

system considered in this work by using the method in reference [2]. After
writing down the Green function of the primary system, ®rst the roots of a
determinant whose elements are in terms of this function should be found; then
the exact eigenfrequencies and mode shapes of the undamped combined system
should be obtained. After these steps, the approximate characteristic values of
the damped combined system should be obtained by solving a general eigenvalue
problem whose matrix dimensions depend on the desired accuracy. While
forming the elements of the matrices the eigenvalue problem is based on, one
requires de®nite integrals of the squares of the mode shapes mentioned above.
Numerical problems encountered during the study of the example system when
using the above method will be mentioned later.
In the ®rst of the methods presented here, characteristic values are obtained

by equating a determinant of coef®cients to zero, while in the second method
they are obtained as the eigenvalues of a matrix. The comparison of the two
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methods clearly shows that ®nding the eigenvalues of a matrix is by far a
numerically less problematic procedure than ®nding the zeros of a determinant.
On the other hand, the fact that the characteristic values obtained by solving the
eigenvalue problem are very close to the exact values for an example system
indicates the effectiveness of the proposed method.
Although the formulation presented in this study is applied to a cantilever the

approach is valid and applicable for any combinations of boundary conditions.

2. FIRST ALTERNATIVE FORM OF THE CHARACTERISTIC EQUATION

It was shown in reference [1] that the kinetic and potential energies of the
system in Figure 1 can be expressed as

T � 1
2

Xn
i�1

_Z2i � 1
2

Xs
j�1

mej _z
2
j , V � 1

2

Xn
i�1

o2
i Z

2
i � 1

2

Xs
j�1

kej�zj ÿ dj�2, �1�

where overdots denote derivatives with respect to time t. Here, Zi(t) (i=1, . . . , n)
are the generalized co-ordinates. dj denotes the lateral displacement of the
attachment point of the jth damped spring±mass system to the beam while zj
represents the displacement of the mass mej . Finally, oi is the ith bending
eigenfrequency of the bare ®xed±free Bernoulli±Euler beam.
The Rayleigh dissipation function is

F � 1
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In the ®rst alternative formulation the approach of Dowell [3] is used, which
was also employed in reference [1]. The approach is essentially based on the
assumed modes method in conjunction with the Lagrange multipliers method.
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Figure 1. Clamped±free Bernoulli±Euler beam to which s viscously damped spring±mass sys-

tems are attached in-span.
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The result is a determinantal equation for the characteristic equation of the
system. Hence, the characteristic values of the system are obtained by solving
this equation numerically.
For a viscously damped system with n degrees of freedom where n redundant

co-ordinates are used, Lagrange's equations in connection with Lagrange's
multipliers are [4]
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with the kinetic potential L=T-V and n constraint equations

f`�t; q1, . . . , qn�n� � 0, ` � 1, . . . , n: �4�
Here l` denotes the `th Lagrangian multiplier. In the present case, there are s
constraint equations

fj �
Xn
k�1

wk�ZjL�Zk�t� ÿ dj�t� � 0, j � 1, . . . , s, �5�

where wk(x) represents the kth orthonormalized eigenfunction of the ®xed±free
Bernoulli±Euler beam.
The evaluation of Lagrange's equations (3) by considering the expressions (1)

and (5) results in the equations
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The substitution of the exponential solutions
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From equation (12)

�zj � ÿ�lj=mejl
2 �14�

can be obtained which, when put into equation (11), yields

�dj � ÿ�mejl
2 � dejl� kej�=�mejl

2�dejl� kej���lj, j � 1, . . . , s: �15�

If the above equations and equations (10) are substituted into the constraint
equations (13), the following set of s homogeneous equations for �lj are obtained:

Xn
k�1

wk�ZjL�

Xn
k�1

�l`wk�Z`L�
" #

l2 � o2
k

� �mejl
2 � dejl� kej�

mejl
2�dejl� kej�

�lj � 0, j � 1, . . . , s: �16�

A non-trivial solution of this set is possible if the determinant of the coef®cients
vanishes. This in turn leads to the following characteristic equation of the
mechanical system shown in Figure 1, the equation is written out explicitly in
order to re¯ect the symmetry properties better
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For further investigations, it is more suitable to rewrite the characteristic
equation above in terms of non-dimensional quantities as
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Here, the following abbreviations are used:

�bk � bkL, �b1 � 1�875104, �b2 � 4�694091, �b3 � 7�854757, . . . ,

lk � �b4k, o2
k � lko2

0, o2
0 � EI=mL4, wk�ZjL� � �1=

�������
mL
p

�akj,

akj � ch �bkZj ÿ cos �bkZj ÿ �Zk�sh �bkZj ÿ sin �bkZj�,

�Zk � �ch �bk � cos �bk�=�sh �bk � sin �bk�, l� � l=o0, amej � mej=mL,

akej �
kej

�EI=L3� , o2
ej
� kej

mej

, Dej �
dej

2mejoej

: �19�

The numerical solution of the determinantal equation above with respect to l*

yields the dimensionless characteristic values of the combined system shown in
Figure 1.

3. SECOND ALTERNATIVE FORM OF THE CHARACTERISTIC EQUATION

The second alternative form of the characteristic equation follows directly
from the formalism of the Lagrange's equations where the displacements of the
attachment points of the secondary systems to the beam are expressed in terms
of the generalized co-ordinates [5]. The formalism leads to a standard eigenvalue
problem, the solution of which gives the characteristic values of the system.
The kinetic and potential energies of the mechanical system, i.e., expressions

(1) can be written in matrix notation as
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where

ZZZT�t� � �Z1�t�, . . . , Zn�t��, OOO2 � diag�o2
i �, i � 1, . . . , n,

ln : n6n identity matrix: �21�
Upon considering that the bending displacements of the beam w(x,t) are
discretized according to

w�x, t� �
Xn
i�1

wi�x�Zi�t� � wT�x�ZZZ�t�, �22�

the displacements of the attachment points of the secondary systems (damped
spring±mass) to the beam i.e., dj(t), j=1, . . . , s, can be expressed in terms of the
generalized co-ordinate vector ZZZ(t) as

dj�t� � w�ZjL, t� � lTj ZZZ, j � 1, . . . , s �23�
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where

lj � �w1�ZjL�, . . . , wn�ZjL�T: �24�
By starting with the expressions (2), (20), along with (21) and (23) the

following matrix differential equation is obtained, by using the Lagrange's
equation formalism:
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Here, the following matrices and vectors are introduced:

l � �l1, . . . , ls�, z � �z1, . . . , zs�T, ke � diag�kei�,

me � diag�mei�, de � diag�dei�, i � 1, . . . , s, �26�
and 0 denotes a zero matrix or vector of appropriate dimensions. In obtaining
the above form of the equation of motion, extensive use is made of the formulas
regarding the partial derivatives of bilinear forms, quadratic forms and vectors
with respect to algebraic vectors [6].
By means of the transformation
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� T 0T
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where T= In and y=[y1, . . . , ys]
T, the equations of motion (25) can be written

as
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Here, the following abbreviations are introduced:

ej � TTlj � lj, o2
ej
� kej=mej , j � 1, . . . , s,

OOO2
e � diag�o2

ej
�, e � �e1, . . . , es�: �29�

Introducing exponential solutions of the form

p

y

� �
� �p

�y

� �
elt �30�

results in a set of homogeneous equations for the amplitude vectors �p and �y
where �p � ��p1, . . . , �pn�T and �y � ��y1, . . . , �ys�T. A non-trivial solution of this set is
possible only if the determinant of the coef®cient matrix vanishes. This condition
leads to the following form of the characteristic equation of the mechanical
system:
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l2In � ledeeT � OOO2 � ekee
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where

C � diag�l2 � ldei=mei � o2
ei
�, i � 1, . . . , s: �32�

The above form is an alternative presentation of the characteristic equation (17).
By using non-dimensional quantities de®ned in equations (19), this equation can
be brought into the form
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where, additional to those given in equations (19), the following abbreviations
are introduced:

LLL � diag�li�, i � 1, . . . , n, �ei � �a1i, . . . , ani�T
�e � ��e1, . . . , �en�, aaake � diag�akej �, aaame
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�,

C� � diag�l�2 � 2l�Dej
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Equation (33) represents now an alternative form of the characteristic equation
(18). This last form enables one to obtain l*, i.e., the dimensionless characteristic
values as the eigenvalues of the matrix
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The suitability of the above mentioned two alternatives of the characteristic
equation from the point of view of numerical calculations will be comparatively
considered in the following section.

4. NUMERICAL RESULTS

This section is devoted to the numerical evaluation of the expressions
established in the preceding sections. For the numerical applications, the following
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values are chosen for the physical data of the mechanical system in Figure 1.
s=1 is chosen, i.e., only one secondary system is considered. Z1=ake1 =0�5,
ame1

=1, De=0�05. The number of modes n in the expansion (22) is chosen as
10.
The ®rst ®ve pairs of dimensionless eigenvalues l* of the system (arranged

with respect to the magnitude of the imaginary parts) are given in Table 1. The
complex numbers in the ®rst column represent the ``exact'' characteristic values
l*, which are obtained from the solution of equation (A7) of the Appendix with
MATLAB. The complex numbers in the second column are obtained from the
solution of equation (18) with MATLAB. Finally, the numbers in the third
column represent simply the eigenvalues of the matrix A which are obtained also
with MATLAB.
Before comparing the complex numbers in the three columns of Table 1, it is

in order to mention the numerical problems encountered during the application
of the method in reference [2].
Because no results are available in the literature for the characteristic values of

the system in Figure 1 (s=1 case), to the knowledge of the author, it was
intended to make comparisons using the results of the method in reference [2].
With the notation used in the above reference, N is selected as 11 and using
MATHCAD some results are obtained in which a6 and a8, i.e., the sixth and
eighth exact dimensionless frequency parameters of the undamped system were
not accurate enough. Running the MATLAB programs was successful with
accurate results except the dif®culties in obtaining a8. The later stages of the
computations were realized in both MATLAB and MATHEMATICA, and the
real parts of the characteristic values were found way too small except for the
®rst characteristic value, though the imaginary parts were quite accurately
found. Apparently, the example investigated represents a numerically ill-
conditioned case. Therefore, the alternative of establishing the exact
characteristic equations given in the Appendix was chosen and solved
numerically.

TABLE 1

Non-dimensional characteristic values �* of the system in Figure 1, with s= 1;
�1=�ke1 =0�5, �me1

=1, De=0�05 are chosen

From equation (A7) From equation (18) From matrix (35)

ÿ0�0338572 0�698847i ÿ0�0338822 0�698868i ÿ0�0338582 0�698847i
ÿ0�0175762 3�549540i ÿ0�0175672 3�549540i ÿ0�0175762 3�549541i
ÿ0�0722332 22�057189i ÿ0�0722332 22�057187i ÿ0�0722332 22�057188i
ÿ0�0000502 61.697221i ÿ0�0000552 61�697214i ÿ0�0000552 61�697221i
ÿ0�0694772 120�905906i ÿ0�0708182 120.905889i ÿ0�0707282 120.905910i
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The comparison of the complex numbers from the second and third columns
indicate clearly that the results of both alternative forms of the characteristic
equation are identical. This is nothing else but the numerical justi®cation of the
fact, that both alternative forms are identical indeed. On the other hand, the
comparison of these values with those from the ®rst column reveals clearly that
the two alternative forms of the characteristic equation yield very good
approximations to the ``exact'' characteristic values of the mechanical system in
Figure 1.
Although it is well known that generally problems are encountered in ®nding

the roots of transcendental equations, no signi®cant problems were encountered
in obtaining the roots of equations (A7) and (18) for selected numerical values.
However, it must be stated that this is, to a great extent, due to the fact that the
eigenvalues of the matrix A can be used as precise starting values. Considering
that the solution of an eigenvalue problem gives all eigenvalues of the
corresponding matrix simultaneously, the following conclusion can be drawn by
inspection of Table 1. When especially the ®rst couple of the characteristic values
of the system in Figure 1 are needed, the most practical way to follow is to solve
the eigenvalue problem of matrix A.

5. CONCLUSIONS

The present study deals with the establishment of two alternative forms of the
characteristic equation of a combined system consisting of a clamped±free
Bernoulli±Euler beam to which several viscously damped spring±masses are
attached in-span. Both formulations are based on the discretization of the elastic
beam by its ®rst n eigenfunctions, according to the assumed modes method.
One of the alternatives enables one to determine the characteristic values as the
roots of a determinantal equation, whereas the second alternative yields
the characteristic values as the eigenvalues of a special matrix. Although the
formulation presented in this study is applied to a cantilever the approach is
valid and applicable for any combinations of boundary conditions.
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APPENDIX

Derivation of the exact characteristic equation of the system in Figure 1 for
s=1, i.e., only one secondary system, proceeds as follows. The equations of
motion are

EIwIV
i �x, t� �m�wi�x, t� � 0, i � 1, 2, �A1�

where w1(x, t) and w2(x, t) denote the bending displacements within the regions
to the left and right of the attachment point of the damped spring±mass to the
beam. The corresponding boundary and matching conditions are

w1�0, t� � 0, w01�0, t� � 0, w1�ZL, t� � w2�ZL, t�,

w01�ZL, t� � w02�ZL, t�, w001�ZL, t� � w002�ZL, t�,

EIw0001 �ZL, t� ÿ EIw0002 �ZL, t� ÿme�z1 � 0,

me�z1 ÿ ke�w1�ZL, t� ÿ z1� ÿ de� _w1�ZL, t� ÿ _z1� � 0,

EIw002�L, t� � 0, EIw0002 �L, t� � 0, �A2�
where z1(t) denotes the displacement of the mass me, and the subscripts 1 on the
system parameters are omitted for simplicity.
Assuming exponential solutions of the form

wj�x, t� �Wj�x�elt, z1�t� � Z1 e
lt, �A3�

where l denotes the unknown characteristic value, which is a complex number in
general, one obtains, from equations (A1),

WIV
j �x� ÿ b4Wj�x� � 0, j � 1, 2, �A4�

where

b4 � ÿml2=EI: �A5�
The general solutions of the differential equations (A4) are

W1�x� � C1 e
bx � C2 e

ÿbx � C3 e
ibx � C4 e

ÿibx,

W2�x� � C5 e
bx � C6 e

ÿbx � C7 e
ibx � C8 e

ÿibx, �A6�
where C1±C8 represent eight integration constants to be determined and
i=

�������ÿ1p
. Introduction of equations (A6) into the corresponding boundary

conditions (A2) yields a set of nine homogeneous equations for C1, . . . , C8 and
Z1. For non-trivial solutions to exist, the determinant of the coef®cients must
vanish, which in turn results in, after simple rearrangements, the characteristic
equation for the dimensionless parameter �b,

det �A � 0, �A7�
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where the elements of the 96 9 matrix �A are de®ned as

a11 � eÿZ�b, a12 � eZ
�b, a13 � eÿiZ�b, a14 � eiZ

�b,

a21 � eÿZ�b, a22 � ÿeZ�b, a23 � ieÿiZ
�b, a24 � ÿieiZ�b,

a31 � a32 � a33 � a34 � 1, a35 � a36 � a37 � a38 � ÿ1,
a41 � 1, a42 � ÿ1, a43 � i, a44 � ÿi, a45 � ÿ1,
a46 � 1, a47 � ÿi, a48 � i,

a51 � a52 � 1, a53 � a54 � a55 � a56 � ÿ1, a57 � a58 � 1,

a61 � 1, a62 � ÿ1, a63 � ÿi, a64 � i, a65 � ÿ1, a66 � 1,

a67 � i, a68 � ÿi, a69 � a,

a71 � a72 � a73 � a74 � a1 � a2, a79 � ÿ�1� a1 � a2�,

a85 � e�1ÿZ��b, a86 � eÿ�1ÿZ��b, a87 � ÿei�1ÿZ��b, a88 � ÿeÿi�1ÿZ��b,

a95 � e�1ÿZ��b, a96 � ÿeÿ�1ÿZ��b, a97 � ÿiei�1ÿZ��b, a98 � ieÿi�1ÿZ�
�b: �A8�

All other elements are zero.
In the above expressions the following abbreviations are introduced,

�b � bL, ame
� me=mL, ake � ke=�EI=L3�,

De � de=2meoe, o2
e � ke=me, o2

0 � EI=mL4,

a1 � ÿake=ame
�b4, a2 �2�2Dei=�b2�

���������������
ake=ame

q
, a � ÿame

�b: �A9�

The solution of equation (A7) with respect to �b yields, via

l� �2i�b2 �A10�
the ``exact'' values of the unknown non-dimensional complex characteristic
values of the system in Figure 1 for s=1.
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