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1. 

The infinite impedance method is frequently used for vibration testing of sensitive
equipment installed in airborne structures [1–4]. This method is based on records
of flight vibrations data collected at the points of attachment of equipment to the
supporting structure. Those records, representing typically acceleration versus
frequency, usually show one or more characteristic peaks along with characteristic
valleys. The characteristic peaks correspond to natural frequencies of the airborne
structure as a whole, including equipment. That data is usually synthesized into
a single spectrum for design and test requirements. Since a margin of safety is
desirable, the synthesized spectrum is usually a smooth simple curve whose level
is determined principally by the peaks of a spectrum that is a composite of the
original field spectra. Then, the tested equipment is attached to a shaker
programmed to deliver the synthesized spectrum. Input acceleration to the test
specimen is maintained at the prescribed level regardless of the force magnitude
required to sustain this acceleration, i.e., no matter what the reaction of the unit
under test is. This amounts to testing with an infinite impedance vibration source
and thus implies that the actual equipment support structure must have an infinite
effective mass at all frequencies.

Of course, the supporting structure does not possess infinite effective mass at
any frequency. The validity of this assumption depends on the relative mass of the
tested equipment and the supporting structure. This will be a reasonable
assumption for, e.g., an aircraft with a mass of 10 000 kg and a piece of equipment
which has a mass of 100 kg. But, the applicability of the infinite mechanical
impedance assumption is not so obvious for equipment which has a mass of the
same order as the supporting structure. This is frequently the case for missiles or
satellites.

The vibratory motion of the supporting structure can be significantly affected
by the interface reactions of the coupled equipment item, i.e., by its dynamic
loading [5–7]. At certain frequencies an equipment item may exert an unusually
large reaction, or load, against support excitation. If the support excitation is a
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sinusoidal or random vibration, then the frequency response function of the
support will exhibit a notch or characteristic valley at this frequency. That
phenomenon is usually called antiresonance. Though quite common, the use of an
envelope of spectral peaks to determine vibration test levels for use in standard
test procedures does not account for the occurrence of antiresonance, i.e., the
dynamic loading of the equipment against its support is neglected. Neglecting the
dynamic interaction between equipment and support leads to a poor correlation
between actual (‘‘field’’) and test conditions. The resulting error may be large
enough to cause a permanent damage to the tested equipment, which would not
occur in real conditions.

The magnitude of overtest error is dependent on the amount of damping in the
system and on the dynamic properties of both the equipment and supporting
structure. The assumption that the dynamic properties of the equipment item are
negligibly small compared to the dynamic characteristics of the supporting
structure is often used as a justification for infinite impedance vibration testing.
The objective of this paper is to show that this assumption may lead to
unacceptable errors when masses of the tested equipment and the supporting
structure are of the same order.

2. 

To estimate the error involved in the applying the infinite impedance method
to test equipment with mass comparable to the mass of supporting structure, a
five-degree-of-freedom (5-DOF), ‘‘free–free’’ dynamic chain system pictured in
Figure 1(a) is analyzed. This system is used to model the dynamical interaction
between support, e.g., a missile structure, and equipment, e.g., an InfraRed seeker
head.

A typical missile structure consists of several individual sections that are
connected together to form the complete missile assembly. The individual missile
sections perform unique functions and will be referred to as missile subsystems.
Each subsystem usually consists of a number of levels or orders of structure. A
level, or order, of a mechanical subsystem is that portion of a subsystem which
can be identified as a single region in an overall model of the subsystem. For
example, aerodynamic turbulence and rocket motor vibration excite the outermost
airframe structure (first level), which drives the internal structure of the subsystem
(second level), which carries an equipment mounting bracket (third level), to which
is attached the case of an instrument (fourth level), which supports a module
chassis (fifth level), and the module chassis is the mounting for a small component
part (sixth level). The sixth level was neglected in the model used in this paper.
It is assumed that the support is represented by masses m1 and m2, equipment base
is modelled by m3, and the equipment is represented by masses m4 and m5. To
quantify the magnitude of error that can occur, a test specification based on the
results of the 5-DOF system is developed and applied to the equipment only
subsystem [m4 and m5 of Figure 1(a)].
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The equations of motion for the 5-DOF, free–free dynamic chain system
pictured in Figure 1(a) are

[M]{ẍ}=[C]{ẋ}+[K]{x}= {F}, (1)

where

m1 0 0 0 0

0 m2 0 0 0

[M]= 0 0 m3 0 0 ,G
G

G

G

G

K

k

G
G

G

G

G

L

l

0 0 0 m4 0

0 0 0 0 m5

c1 −c1 0 0 0

−c1 c1 + c2 −c2 0 0

[C]= 0 −c2 c2 + c3 −c3 0 , (2, 3)G
G

G

G

G

K

k

G
G

G

G

G

L

l

0 0 −c3 c3 + c4 −c4

0 0 0 −c4 c4

Figure 1. (a) Five-degree-of-freedom dynamic system, (b) two-degree-of-freedom system with base
input.
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{F}= 6f0, f0, 0, 0, 07T. (4, 5)

System parameters have been chosen as m1 =4m, m2 =3m, m3 =3m, m4 =2m, m5 =m,
c1 = c2 = c3 = c4 = c, k1 =5k, k2 =3k, k3 =4k, k4 = k, and f0 =F0 sin (2pft) where
m=0·9068 kg, k=1·751×106 N/m, and F0 =88·96 N. Amplitudes of steady state
responses for x3(t), x4(t), and x5(t) have been obtained in terms of frequency f and
gravitational acceleration g using Cramer’s rule. All computations were performed using
the MathematicaTM symbolic manipulation package. Final expressions for steady state
acceleration amplitude have the form

ẍi =
(2pf)2

g
=AFi =
=A= , i=3, 4, 5, (6)

where

[A]=−v2[M]+ iv[C]+ [K] (7)

and [AFi ] is matrix [A] with the ith column replaced by the {F} vector.
Accelerations of masses m3, m4 and m5 model actual ‘‘field’’ responses of the

base, and both components of the equipment subsystem, respectively. Test
specifications are generated as envelopes of the m3 base acceleration versus
frequency characteristic peaks for the 5-DOF ‘‘field’’ configuration and five
different damping levels: c=1, 5, 10, 15 and 25 Ns/m. These envelope spectra are
then applied to the equipment-only subsystem as inputs for a hypothetical infinite
impedance vibration test. It was assumed that the 2-DOF equipment-only
subsystem was excited by the motion of the base (i.e., by the motion of mass m3)
defined by the envelope of the m3 base acceleration characteristic peaks in the
5-DOF field result. The equipment-only subsystem excited by the base is shown
in Figure 1(b). Acceleration response of equipment subsystem components in
terms of base acceleration can be represented using the concept of frequency
response function:

ẍ4 =Hẍ4ẍ3, ẍ5 =Hẍ5ẍ3, (8, 9)

where Hẍ4 and Hẍ5 are frequency response functions for ẍ4 and ẍ5, respectively, and
ẍ3 is defined by the envelope of base acceleration. Each subsystem component
acceleration can be expressed in terms of relative displacements y4 = x4 − x3,
y5 = x5 − x4, and non-dimensional system parameters v4, v5, z4, z5, M as

ẍ4 =−2z4v4ẏ4 −v2
4y4 +2Mz5v5ẏ5 +Mv2

5y5, (10)

ẍ5 =−2z5v5ẏ5 −v2
5y5, (11)
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where

v4 =Xk3

m4
, v5 =Xk4

m5
, z3 =

c3

2m4v4
, z4 =

c4

2m5v5
, and M=

m5

m4
.

Relative displacements y4 and y5 can be written in terms of frequency response
functions as

y4 =Hy4ẍ3, y5 =Hy5ẍ3. (12, 13)

Equations (12) and (13) are substituted into equations (10) and (11) from which
frequency response functions Hy4 and Hy5 are determined. These functions can be
expressed as

Hy4 =
ny4

dy4

, Hy5 =
ny5

dy5

, (14, 15)

where

ny4 =v2 − (1+M)v2
5 −2i(1+M)vv5z4,

dy4 =v4 +v2
4v

2
5 +2ivv4v5(v5z3 +v4z4)−2iv3(v4z3 +v5z4 +Mv5z4)

−v2(v2
4 +v2

5 +Mv2
5 +4v4v5z3z4),

ny5 =v2
4 +2ivv4z3,

dy5 =−v4 −v2
4v

2
5 −2ivv4v5(v5z3 +v4z4)+2iv3(v4z3 +v5z4 +Mv5z4)

+v2(v2
4 +v2

5 +Mv2
5 +4v4v5z3z4).

Equations (14) and (15) are substituted into equations (8) and (9) from which
frequency response functions Hẍ4 and Hẍ5 are determined. These functions can be
expressed as

Hẍ4 = nẍ4/dẍ4, Hẍ5 = nẍ5/dẍ5, (16, 17)

where

nẍ4 =v2
4v

2
5 −2iv3v4z3 +2ivv4v5(v5z3 +v4z4)−v2v4(v4 +4v5z3z4),

dẍ4 =v4 +v2
4v

2
5 +2ivv4v5(v5z3 +v4z4)−2iv3(v4z3 +v5z4 +Mv5z4)

−v2(v2
4 +v2

5 +Mv2
5 +4v4v5z3z4),

nẍ5 =v2
4v

2
5 −4v2v4v5z3z4 +2ivv4v5(v5z3 +v4z4),

dẍ5 =v4 +v2
4v

2
5 +2ivv4v5(v5z3 +v4z4)−2iv3(v4z3 +v5z4 +Mv5z4)

−v2(v2
4 +v2

5 +Mv2
5 +4v4v5z3z4).

Now, equations (8) and (9) can be used to compute the response of the 2-DOF
subsystem subjected to an acceleration input enveloping the peaks of m3

acceleration obtained for the 5-DOF system. Thus, the behavior of an equipment
subsystem mounted on a shaker is modelled. Next, maximum accelerations of
equipment subsystem components found from the 5-DOF system analysis were
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compared with maximum accelerations computed for the equipment as a separate
2-DOF system. Their ratio gave a measure of overtest in the infinite impedance
method.

Then, the level of interaction between equipment and support was studied and
the effect the two systems had on each other was demonstrated. The mean square
acceleration of m4 was computed for different combinations of the following
dimensionless parameters: the mass ratio M, the frequency ratio v5/v4 between
the uncoupled natural frequencies of each spring–mass system and the damping
ratios z3, z4 associated with each spring-mass-damper system. The mean square
accelerations, F(ẍ2

4 ) and F(ẍ2
5 ), are normalized by dividing by the mean square

acceleration that the first mass would have had under the same excitation if m5

had been removed completely. That corresponds to a 1-DOF system response.
The mean square F(Y2) of a stationary response process Y can be obtained from

F(Y2)=S0 g
a

−a

=H(v)=2 dv, (18)

assuming that the input excitation is ideal white noise, so that the power spectral
density of the input excitation is Sx (v)=S0. All of the frequency response
functions used previously can be represented in a following general form, given
by Crandall and Mark [8], as

H(v)=
−iv3B3 −v2B2 + ivB1 +B0

v4A4 − iv3A3 −v2A2 + ivA1 +A0
. (19)

The integral in the expression for F(Y2) is given by Gatscher and Kawiecki [9] as

g
a

−a

=H(v)=2 dv=

p
0B2

0

A01(A2A3 −A1A4)+A3(B2
1 −2B0B2)+A1(B2

2 −2B1B3)+0B2
3

A41(A1A2 −A0A3)

A1(A2A3 −A1A4)−A0A2
3

.

(20)

The mean response F(ẍ2
4 ) can be obtained by substitution of the appropriate A

and B constants, from each frequency response function [equation (16)], into the
general solution formula. A complete expression for F(ẍ2

4 ) is given by Gatscher
[10].

The absolute acceleration complex frequency response functions Hẍ (v) for the
1-DOF system are obtained from the 2-DOF results by setting M=0 in equation
(16):

Hẍ (v)=
2ivz3v4 +v2

4

v2
4 −v2 +2iz3v4v

. (21)
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Figure 2. Experimental set-up.

The mean square absolute acceleration F(ẍ2) is obtained similarly and has the
form

f(ẍ2)=
pv4S0(1+4z2

3 )
2z3

. (22)

3.  

Experimental validation was done using a steel beam/block structure designed
to represent a support/equipment unit system. This structure is shown in Figure
2, where dimensions are given in millimeters. The depth of all structural elements
is 50 mm. The shaded top beam/block assembly could be detached from the
combined structure and bolted directly to the shaker platform. Therefore, the top
beam/block assembly represents an equipment unit for which a vibration test is
to be developed. The combined structure was instrumented with six accelerometers
attached to each of the five blocks and to the base plate. A constant 3 g amplitude
logarithmic sine sweep (20–2000 Hz, t=1500 s) was performed on the structure
configured as shown in Figure 2 and for the top beam/block subsystem only. Then,
a finite element model of the structure was developed using the ANSYS
commercial finite element package. The purpose of finite element modelling was
to evaluate stress at various locations on the structure. Bolted connections were
modelled using spring elements. The advantage of using local springs, at the bolted
connection locations, was the ability to adjust the finite element model to match
the natural frequencies of the real test structures. Spring stiffnesses and Rayleigh
damping coefficients were fine-tuned until a satisfactory agreement between
acceleration frequency response functions was achieved for all instrumented
locations. Once the finite element model performance was found to be adequate,
bending stress frequency response functions were obtained for the maximum
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bending stress location indicated in Figure 2. These frequency response functions
were obtained for the configuration shown in Figure 2 and for the top beam/block
assembly mounted directly to the shaker platform.

4.  

Figure 3 shows test specifications as an envelope of the m3 base characteristic
peaks from the 5 DOF field result for a system with very low damping
(c=1 Ns/m, z3 =0·00014, z4 =0·00040). This envelope is then applied to the
equipment only 2-DOF subsystem as an input for a hypothetical infinite
impedance vibration test.

Figures 4 and 5 display the results of the equipment only subsystem test
superimposed on the field results from the original 5-DOF system. As shown in
these figures, for the system with very low damping the amount of overtest is in
error by a factor of 35 for m4 response (4940 gs field results versus 175 000 gs test)
and by a factor of 58 for m5 response (10 700 gs field versus 619 000gs test).

Similar computations were made for a system with higher damping
(c=25 Ns/m, z3 =0·0035, z4 =0·0099). For this system the amount of overtest,
although significantly reduced, was still unnecessarily high. It was in error by a
factor of 1·4 for m4 response (198 gs field results versus 279 gs test) and by a factor
of 2·3 for m5 response (429 gs field versus 990 gs test). Similar procedure was
repeated for systems with c=5, 10 and c=15 Ns/m. Obtained results were used
to plot the amount of overtest for m4 and m5 as a function of damping ratio z;
see Figure 6. We can note that the amount of overtest for systems with damping
ratio magnitudes typical for many metallic structures (z1 0·002–0·005) can be in

Figure 3. Acceleration test specification, c=1 Ns/m; ––, base field acceleration; ——, acceleration
envelope.
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Figure 4. Frequency response function of m4, c=1 Ns/m; - - - , ‘‘field’’ results from 5-DOF
system; ––, infinite impedance equipment test.

error by as much as by a factor of 10. Even the damping ratios representative of
composite structures (z1 0·01) can be associated with overtest errors by a factor
of 2. This is still an unacceptable amount of overtesting.

Figure 5. Frequency response function of m5, c=1 Ns/m; - - - , ‘‘field’’ results from 5-DOF
system; ––, infinite impedance equipment test.
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Figure 6. Amount of overtest versus damping ratio: ––, m4; ——, m5.

Clearly, the amount of damping significantly affects the response of the tested
mechanical system. Figures 6 and 7 reveal the influence the system damping has
on dynamic loading.

Figure 7. Mean square relative acceleration of m4 as a function of M and damping ratios z3 = z4

for v5/v4 =1% ––, z3=z4 =1%; - - - , z3 = z4 =2%; ––, z3=z4 =5%; – – – , z3 = z4 =10%.
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Figure 8. Mean square relative acceleration of m4 as a function of M and z4 for v5/v4 =1 and
z3 =1%; ––, z4=1%; - - - , z4 =2%; ––, z4=5%; – – – , z4 =10%.

Figure 7 shows that equal damping in each spring–mass–damper system
(z3 = z4) dynamic loading is relatively independent of the damping ratio for mass
ratios close to 1. Also, for mass ratiosQ 0·1 an increase in damping ratio will
decrease the amount of dynamic loading.

Figure 8 indicates that for constant z3 an increase in z4 will increase the dynamic
absorber effect on the bottom mass, or as the damping in the upper mass system
increases, it is more efficient as a dynamic vibration absorber for given M and z3.

Similarly, it is possible to show that for constant z4 an increase in z3 will decrease
the dynamic absorber effect on the bottom mass, or as the damping in the lower
mass system increases, the upper mass, for given M and z4, is less efficient as a
dynamic vibration absorber.

5.    

Figure 9 shows a comparison of the experimental versus calculated acceleration
response for the top block. It is apparent that the finite element model was able
to represent the system response very well. Similarly good results were obtained
for the remaining accelerometer locations.

Figure 10 demonstrates bending stress frequency response functions for the
configuration shown in Figure 2 and for the top beam/block assembly mounted
directly to the shaker platform. The maximum bending stress computed for the
‘‘field’’ configuration was 240 MPa. The bending stress determined for the same
location during an infinite impedance test reached 6794 MPa, indicating the failure
of the tested ‘‘equipment unit,’’ with an overtest factor of 28. This result confirmed
the overtest results obtained theoretically.
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Figure 9. Comparison of experimental versus calculated response: ––, experimental; - - - , finite
element results.

Figure 10. Bending stress frequency response functions comparison; - - - , ‘‘field’’ results; ––,
infinite impedance test results.

6. 

This analysis thoroughly emphasizes the effect, for a wide range of
dimensionless parameters, that an equipment item has on its supporting structure.
It is shown that for lightly damped systems where masses of the supporting



JSV MS 2678 223/5 issue MB 17/5/99

    833

structure and of the equipment are of the same order, the infinite impedance test
can result in equipment damage.

The conclusion can be made that very few lightly damped systems with
comparable masses of equipment and the supporting structure can neglect the
dynamic loading interaction between equipment and support, without risking a
severe overtest at the equipment laboratory vibration test. The dynamic loading
an equipment item exerts against its support must be considered.
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