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A dynamic model is derived for misaligned rotor-ball bearing systems driven
through a flexible coupling by treating the reaction loads and deformations at the
bearing and coupling elements as the misalignment effect. In order to verify the
validity of the misaligned rotor system model, experiments are extensively carried
out with a laboratory test rig. Both the experimental and simulation results agree
well in that, as the angular misalignment increases, the whirling orbits tend to
collapse toward a straight line and the natural frequency of the misaligned rotor
system associated with the misalignment direction increases largely. It is found
that the increase in natural frequency is mostly due to the increase in effective
bearing moment stiffness associated with the misalignment direction.
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1. INTRODUCTION

The vibration in rotating machinery is mostly caused by unbalance, misalignment,
mechanical looseness, shaft crack, and other malfunctions. Misalignment is
present because of improper machine assembly and thermal distortion of the
bearing housing supports, resulting in abnormal rotating preload. However, the
perfect alignment between the driving and driven machines cannot be attained
[1–3].

In spite of its importance and frequent observations in practice and unlike other
malfunctions, only a few researchers have paid attention to misalignment due to
the complexity in modelling. In addition, a majority of the recent studies on
misalignment have mainly analyzed the effects of coupling misalignment on the
vibration of the connected rotor systems: Gibbons [4] and Arumugam et al. [5]
modelled the reaction forces and moments of misaligned flexible coupling; Sekhar
and Prabhu [6] numerically evaluated the effects of coupling misalignment on the
2× vibration response of a rotor-coupling-bearing system; Dewell and Mitchell
[7] showed experimentally that the 2× and 4× vibration components are largely
dependent upon coupling misalignment; Arumugam et al. and Xu and Marangoni
[8, 9] showed that the vibration responses due to coupling misalignment mainly
occur at the even integer multiples of the rotational speed; Simon [10] evaluated
the effect of the coupling misalignment on the bearing vibration, adapting
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arithmetically the exciting forces or moments due to the misalignment; Arumugam
et al. and Sekhar and Prabhu concluded that the effect of misalignment on the
critical speed of rotor-bearing-coupling systems is negligible. In the above
mentioned previous studies, dominance of even integer multiple harmonics is
associated with the shaft rotation or the excitation force transmitted through the
misaligned flexible coupling, which is similar to the universal joint effect. They
assumed that the bearing stiffnesses are isotropic and the preloads and
deformations of the bearing element due to misalignment are absent. However, the
preloads generated by misalignment are transmitted through bearings, shaft and
coupling, and force the shaft to move into one sector of the bearings. In particular,
the preloads at the bearings are known to have significant influence upon the
dynamic characteristics such as unbalance response, critical speed and stability of
the rotor systems [3, 11, 12]. Hence, to derive an adequate model for the
coupling-rotor-bearing systems with misalignment, the effects of misalignment on
the preloads and deformations of the bearings as well as the flexible coupling
should be included in the modelling.

In this study, a dynamic model for the misaligned rotor system was derived,
introducing the reaction loads at the bearing and coupling elements into the model
as the misalignment effects. To solve the equation of motion including the
non-linear bearing model, we developed a computer program using the
Runge–Kutta integration scheme. We also performed experimental studies to
investigate the rotor dynamic characteristics related to misalignment and to verify
the theoretical development for the misaligned rotor systems.

2. EQUATION OF MOTION

To investigate the effects of misalignment on the rotor dynamic characteristics,
we derived a dynamic model for coupling-rotor-ball bearing systems with three
types of misalignment as shown in Figure 1: angular, parallel and combined
misalignment. In this model, we introduced the reaction forces and moments of
bearing and coupling elements as the misalignment effects. Then, we calculated the
time responses under misalignment and unbalance force.

2.1.     

In this study, we utilized the finite element model (FEM) for the flexible shaft
and rigid disc elements [13]. Axial vibration, which is known to be an important
indication for the presence of misalignment [1–3], is also included in the model.
Using the co-ordinates given in Figure 2, the equation of motion for the shaft and
disc elements is expressed in partitioned form as

&m
s+ d

0
0

0
ms+ d

0

0
0
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Figure 1. Types of misalignment: (a) angular misalignment; (b) parallel misalignment;
(c) combined misalignment.

where

{y}= {q1 q2 q3 q4}T, {z}= {q5 q6 q7 q8}T,

{x}= {q9 q10}T.

Here, the superscripts s and d mean the shaft and disc elements, respectively; the
superscript a means the axial direction; the matrices, [m], [g] and [k], are the mass,
gyroscopic and stiffness matrices, respectively; the force vectors, {fy} and {fz},

Figure 2. Typical finite rotor element co-ordinates.
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include the unbalance, gravity and external forces, and the axial force vector, {fx},
has the axial component of unbalance force and the axial force developed by the
axial deformation of the shaft element.

2.2.      

In a rotor system, the ball bearing forms a link between the rotor and the
support. If there is a misalignment in the system, the bearing undertakes the radial,
axial and moment loads, leading to the deformation of the rolling elements. In the
ball bearing with n rolling elements, the bearing reaction forces, Fb’s, and
moments, Mb’s, generated by the bearing deformation can be expressed, using the
Hertizian contact stress principle, as [14, 15]

Fbx = s
n

j=1

K3/2 d3/2
j sin aj ,

Fby = s
n

j=1

K3/2 d3/2
j cos aj cos cj ,

Fbz = s
n

j=1

K3/2 d3/2
j cos aj sin cj , (2)

Mby = s
n

j=1

1
2 Dm K3/2 d3/2

j sin aj sin cj ,

Mbz = s
n

j=1

1
2 Dm K3/2 d3/2

j sin aj cos cj

Here, dj and aj are the elastic deformation and loaded contact of the j-th rolling
element located at angle, cj , from the y-axis; K3/2 is the effective stiffness constant
for the inner race–rolling element–outer race contacts; and Dm is the pitch diameter
of the ball bearing.

2.3.   

The presence of misalignment between the connected shafts deflects the coupling
element and imposes the associated reaction forces and moments on the shafts as
shown in Figure 3, although couplings, such as helical and metallic disc couplings,
are normally made flexible enough to smooth misalignment. These reaction forces
and moments due to misalignment are made up of two parts. One part, which acts
on the driving and driven shafts, is due to the transmitted torque. Another part
is developed by the deformation of the coupling element [4–6].

First, when there are angular and parallel misalignments in the driven shaft as
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Figure 3. Reaction forces and moments of coupling element.

shown in Figure 3, the moments and forces transmitted to the driven shaft by the
driving torque Tq are

MTy =Tq sin (fa ) cos (fp )+Tq sin (fp ) cos (fa ),

MTz =−Tq sin (ua ) cos (up )−Tq sin (up ) cos (ua ), (3)

FTy =MTz /lc , FTz =MTy /lc ,

where

ua =sin−1 (Dza /lb ), fa =sin−1 (Dya /lb ), up =sin−1 (Dzp /lc ),

fp =sin−1 (Dyp /lc ),

Dya = yb2 − yb1, Dza = zb2 − zb1, Dyp = yb1, Dzp = zb1.

Here, the subscripts a and p denote the angular and parallel misalignments,
respectively; the subscripts y and z denote the y and z directions; u and f are the
bending deflection angles; Dy and Dz are the amounts of misalignment in the y
and z directions, respectively; lc is the distance between the articulating points of
the coupling element; lb is the bearing span; MT and FT are the moment and force
due to the transmitted torque.

In order to describe the reaction forces and moments generated by the
deformation of the coupling element, we modelled the coupling as a beam element
with the effective flexural and axial rigidity, EIc and EAc , respectively. When the
coupling element is deformed due to misalignment, the resulting forces, FD , and
moments, MD , can be represented as

FDy =
12EIc

l3c 0Dyp −
fa lc
2 1 FDz =

12EIc

l3c 0Dzp −
ua lc
2 1,

MDy =
6EIc

l2c 0Dyp −
2fa lc

3 1 MDz =
6EIc

l2c 0Dzp −
2ua lc

3 1. (4)
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When the coupling element is deflected by Dx from its free length in the axial
direction, the axial force imposed on the connected shafts becomes

FDx =
EAc

lc
Dx. (5)

2.4.   

Combining the shaft, bearing and coupling element models, we can obtain the
governing equation for a misaligned rotor system as

[M]{Q� }+[G+C]{Q� }+[K]{Q}= {F}b + {F}e , (6)

where [M], [G], [C] and [K] are the mass, gyroscopic, damping and stiffness
matrices for the rotor system; the displacement vector, {Q}, consists of the bending
and axial displacements of the shaft element; {F}b is the force vector associated
with the bearing reaction loads; and the force vector, {F}e , includes the unbalance
force, gravity force and coupling reaction forces and moments. In order to describe
various misalignment conditions shown in Figure 1, we incorporated the bearing
and coupling reaction loads in equation (6) by interconnecting the shaft
displacement vector, {Q}, with the deformations of the coupling and bearing
elements. This interconnection imposes additional reaction loads on the bearing
and coupling elements as the misalignment effects. Then equation (6), including
the non-linear bearing model, was integrated using the Runge–Kutta integration
scheme with a step size of 0·25 ms, in order to obtain the time responses under
misalignment and unbalance force.

2.5.  

Figure 4 shows the laboratory test rotor system running at the rotational speed,
v. The shaft, which is 10 mm in diameter and 500 mm in length, is supported by
two identical deep groove ball bearings described in Table 1, and the rigid disc
is located at the mid-span of the shaft. The shaft was modelled as two equal finite
element beams with an elastic modulus of 2·1×1011 N/m2 and density 7800 kg/m3.
The mass, polar and diametrical mass moment of inertia of the disc were 0·26 kg,
0·02 kg m2 and 0·01 kg m2, respectively. In the experiments and numerical
simulations, the unbalance was set to be 15·7 gmm, and a 30 mm long

Figure 4. Experimental set-up.
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T 1

Specifications for ball bearing

Model Deep grove ball bearings

Load-deflection constant, K3/2 7·566x109 (N/m3/2)
Number of rolling elements, n 8
Radial clearance, e 5 mm
Pitch diameter, Dm 20·5 mm

axisymmetric rubber coupling was used as the coupling element, which was found
to be very flexible relative to the shaft. The effective flexural and axial rigidities
of the coupling were 0·03 Nm2 and 728·4 N, respectively. The nominal power and
maximum rotational speed of the driving motor were 0·1 hp and 10 000 r.p.m.,
respectively, and the torque was inversely proportional to the rotational speed.
With the experimental set-up, the magnitudes of the bending moments related to
the universal joint effect were less than one-hundredth of the bearing reaction
moments developed by the angular misalignment. Thus, the universal joint effect
in modelling of the misalignment effect was not considered.

The test rig consisted of two translation stages movable by 0·01 mm up to
6·5 mm in the vertical and horizontal directions as shown in Figure 4. The initial
shaft alignment was carefully achieved by adjusting the two translational stages
so that the fundamental natural frequencies of the rotor system in the y and z
directions were equally minimized and the circular whirling orbits were observed
in the operating speed range. Using the carefully aligned rotor systems with the
two translational stages, various angular and parallel misalignments with less than
0·02 mm positioning error were imposed at the two ball bearing locations. In the
experiments, the angular misalignment values, Dya and Dza , varied from 0 to
2·0 mm for the 500 mm long shaft, whereas the parallel misalignment values, Dyp

and Dzp , varied from 0 to 1·0 mm for the 30 mm long coupling element.

3. ANALYSIS

In this section, the theoretical model for misaligned rotor systems is
experimentally verified, and the effect of misalignment on the dynamic
characteristics such as the whirling orbits, frequency responses and parameter
sensitivity are extensively investigated.

3.1.  

Figure 5 shows the change in whirling orbits measured at the mid-span, as the
angular misalignment is varied. The rotor could not be run in the speed range near
the critical speed of about 3000 r.p.m., due to excessive vibrations. As mentioned
before, the orbits of the initially well-aligned rotor show nearly circular motions
in the operating speed range, as shown in Figure 5(a). However, for the angular
misalignment along the z direction, as in Figure 5(b and c), the orbits tend to
collapse toward an ellipse with the major axis along the y(z) direction for the speed
below (above) the critical speed. Likewise, for the angular misalignment along the
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Figure 5. Whirling orbits for angular misalignment: experiment (a) no misalignment; (b)
Dza =1·0 mm: (c) Dza =2·0 mm; (d) Dya =2·0 mm.

y direction, as in Figure 5(d), as the rotor passes through the critical speed, the
major axis of the elliptic whirling orbit is changed from the z direction to the y
direction. The angle of inclination made by the major axis of the elliptic orbit with
the y-axis [16] is well represented in Figure 6. Note that the angle of inclination
is perpendicular to the angular misalignment direction below the critical speed and
it coincides with the misalignment direction above the critical speed. Figure 7
shows the simulated whirling orbits for the same misalignment conditions as in
Figure 5. The comparison between the results in Figures 5 and 7 clearly indicates
that the simulation results represent well the elliptic whirling motions observed

Figure 6. Inclination angle for the synchronous component of whirling orbit. w, Dza =2·0 mm;
W, Dya =2·0 mm.
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Figure 7. Whirling orbits for angular misalignment: simulation (a) no misalignment;
(b) Dza =1·0 mm; (c) Dza =2·0 mm; (d) Dya =2·0 mm.

from the experiments, and the minor (major) axes of the elliptic whirling orbits
below (above) the critical speed give the angular misalignment direction. The
simulation results in Figure 7 confirm that, as the angular misalignment increases,
the anisotropic nature in bearing stiffness also increases so that the backward
whirling motions are likely to occur near the critical speed of the well-aligned
rotor. The elliptic whirling motion, which is found to be a typical vibration
characteristic of misalignment, is due to the fact that more resistance to motion
is induced in the misalignment direction than in the well-aligned direction so that
the rotor feels a higher effective bearing stiffness in that direction.

Figures 8 and 9 show the whirling orbits for parallel misalignment. Unlike the
angular misalignment, the whirling orbits tend to remain unchanged, although the
parallel misalignment increases. This is mainly because the coupling element is
very flexible relative to the connected shafts, and thus the coupling reaction forces
and the moments due to the parallel misalignment are negligibly small, compared
with the bearing reaction loads developed by the angular misalignment. This leads
to an insignificant influence on the whirling orbit and the bearing stiffness referred
to in section 3.2.

3.2.   

To further investigate the aforementioned phenomenon associated with the
increase in bearing stiffness along the angular misalignment direction, we
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Figure 8. Whirling orbits for parallel misalignment: experiment (a) no misalignment;
(b) Dyp =0·5 mm; (c) Dyp =1·0 mm.

theoretically calculated the effective linear and moment bearing stiffness [15], using
the relationships between the bearing loads and deformations in equation (2), i.e.,

kbij =
1Fi

1dj
; i, j= xb , yb , zb , uby , ubz , (7)

where Fi is the i-th component of the bearing reaction force and moment, and
xb , yb , zb , uby and ubz are the bearing displacements. For convenience, we then
defined the effective mean bearing stiffness matrix, [K]b , consisting of the effective
mean bearing stiffnesses calculated at an arbitrarily chosen low rotational speed

Figure 9. Whirling orbits for parallel misalignment: simulation (a) no misalignment; (b)
Dyp =0·5 mm; (c) Dyp =1·0 mm.
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Figure 10. Effective mean bearing stiffnesses for y-directional angular misalignment at Brg ( 2.
(a) kbxx ; (b) kbyy (q) kbzz (w); (c) kbuyuy (w), kbuzuz (q).

of 200 r.p.m. Figures 10 and 11 show the calculated effective mean bearing
stiffnesses for the y(z)-directional angular misalignment at Brg( 2, as the angular
misalignment changes. Note that the difference in kbyy and kbzz for the y and z
directional angular misalignment is mainly due to gravity effect. For the
y-directional angular misalignment, the gravity effect decreases (increases) the
reaction force due to the shaft bending on Brg( 1(Brg( 2) and thus the effective
bearing stiffness, kbyy , in Brg( 1(Brg( 2), due to the hardening effect of the
rolling elements. On the other hand, the effective bearing stiffnesses, kbzz , for the
z-directional angular misalignment are free of gravity. As a result, there is a
difference between kbyy and kbzz . The mean bearing stiffness, kbyy and kbuz uz (kbzz and
kbuy uy ), for the misalignment in the y (z) direction increase largely relative to other
bearing stiffnesses, since the increase in the effective bearing linear and moment
stiffnesses occurs in association with the misalignment direction. This is the major
cause of elliptic whirling motions of the angular misaligned rotor system.

3.3.   

In order to investigate the effects of misalignment on the natural frequency of
the misaligned rotor system, we defined the frequency response between the
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Figure 11. Effective mean bearing stiffnesses for z-directional angular misalignment at Brg ( 2.
(a) kbxx ; (b) kbyy (q) kbzz (w); (c) kbuyuy (w), kbuzuz (q).

excitation and response at the disc location, introducing the effective mean bearing
stiffness matrix defined in the previous section. The linear governing equation for
the misaligned rotor system can then be expressed as

[M]{Q� }+[G+C]{Q� }+[K+Kb]{Q}= {F}e , (8)

since the bearing force is defined as

{F}b =−[K]b {Q}. (9)

From equation (8), we can readily derive the frequency response between {F}e and
{Q}. Figure 12 shows the typical measured frequency response functions of the
test rotor at rest. Note that, as misalignment is absent, the fundamental natural
frequencies, in the y and z directions, of the rotor system are 50·1 and 49·6 Hz,
respectively. As the angular misalignment increases, the y-directional natural
frequency is increased significantly as shown in Figure 12(a). On the other hand,
the natural frequencies remained almost unchanged for the parallel misalignment
as shown in Figure 12(b). The change in natural frequency for the angular and
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Figure 12. Frequency response function: experiment (a) angular misalignment:—, Dya =0·0; – – –,
Dya =0·5; –-–, Dya =1·0; –--–, Dya =1·5; ...., Dya =2·0; (b) parellel misalignment: —, Dyp =0·0;
– – –, Dyp =0·5; –-–, Dyp =0·8; –--–, Dyp =1·0.

parallel misalignments is summarized in Table 2, where the experimental and
simulation results were taken from the rotor systems at rest. Note that the
y(z)-directional angular misalignment tends to largely increase the y(z)-directional
natural frequency, vny (vnz ), due to the large increase in bearing stiffnesses, kbyy and
kbuz uz (kbzz and kbuy uy ), as cited in the previous section. Also, the small increase in
the natural frequency, vnz (vny ), is due to the small cross-effect of the ball bearing.
As a result, the natural frequencies in the y and z directions are separated. The
unbalance responses are largely increased near two critical speeds, and the
backward whirling motions are generated between the critical speeds, as shown
in Figures 7(c and d). However, for the parallel misalignment as given in
Table 2(c), the natural frequencies are nearly unchanged, mainly because the
coupling element in use is very flexible in bending.

3.4.  

As mentioned above, the angular misalignment increases the natural frequency
associated with the misalignment direction, due to the increase in the effective
bearing stiffness. In order to identify which stiffness most affects the natural
frequency of the misaligned rotor systems, we performed the sensitivity analysis
using Taguchi’s method [17]. Here, we chose the effective bearing linear and
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T 2

Fundamental natural frequencies of the misaligned rotor system

Experiment Simulation
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

vny (Hz) vnz (Hz) vny (Hz) vnz (Hz)

(a) y-directional angular misalignment
Dya (mm):

0·0 50·1 49·6 49·8 49·4
0·5 50·4 49·6 49·8 49·4
1·0 51·0 49·8 50·6 49·5
1·5 52·4 50·3 52·2 49·6
2·0 53·6 50·8 54·3 49·8

(b) z-directional angular misalignment
Dza (mm):

0·0 50·1 49·6 49·8 49·4
0·5 50·3 49·9 49·8 49·4
1·0 50·3 50·9 49·9 50·1
1·5 50·6 52·3 50·1 51·8
2·0 51·3 53·6 50·4 54·2
2·5 51·6 55·4 50·8 57·3

(c) y-directional parallel misalignment
Dyp (mm):

0·0 50·1 49·6 49·8 49·4
0·5 50·6 49·6 49·8 49·4
0·8 50·7 49·5 49·8 49·4
1·0 50·9 49·5 49·8 49·4

moment stiffnesses as the control factors and the natural frequency associated with
the misaligned direction as the performance index (response) for each three-level
experiment combination. The three levels for each factor were set to the values
corresponding to −10 %, 0, and +10 % of the corresponding effective mean
bearing stiffness. Figure 13 shows that the moment stiffness associated with the
misalignment direction, kbuy uy , gives the most significant influence on the natural
frequency of the misaligned rotor system, which is followed by the cross coupled
bearing stiffness, kbyuy . Note that the two bearings play an identical role in the
sensitivity analysis because the flexible coupling element has little influence on the
dynamics.

4. CONCLUSIONS

The theoretical model for the coupling-rotor-ball bearing systems with
misalignment was derived, including the loads and deformations of the bearings
as well as the flexible coupling as the misalignment effects. Throughout the
extensive experimental and simulation works, the validity of the model was
successfully verified and the rotor dynamic characteristics related to misalignment
were investigated.
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Figure 13. Sensitivity analysis for bearing stiffness using Taguchi method; Dza =2·0 mm.

The experimental and simulation results suggest that the whirling orbits tend
to collapse toward a straight line, and the natural frequency associated with the
misalignment direction increases largely, as angular misalignment increases, due
to the increase in the effective moment stiffness of bearing. On the other hand, for
parallel misalignment, the whirling orbit and natural frequency are not changed,
when very flexible coupling is used. These phenomena have not been fully reported
in the literature where the bearing was normally assumed to be isotropic in
stiffness.
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