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1. INTRODUCTION

The buckling of uniform columns under various loading and boundary
conditions is a well studied topic. As far the columns with variable cross section,
several exact solutions are available, in terms of logarithmic and trigonometric
[1, 2], Bessel [3, 4], and Lommel [5±7] functions. Exact solution in terms of series
for buckling load for variable cross-section columns with variable axial forces
was furnished by Eisenberger [8]. The closed-form solutions are extremely rare.
Two cases will be described as follows. For the column [9] that is simply
supported at both its ends and possesses the following stiffness D(x)

D�x� � 4x�Lÿ x�D0=L
2, �1�

where L is the length, x is the axial co-ordinate, the governing differential
equation reads

�D0�4x�Lÿ x��=L2� d2w=dx2 � Pw � 0, �2�
where w(x) is a displacement. Substitution of the mode

w�x� � A�4x�Lÿ x�=L2� �3�
where A is a constant, in equation (2) results in

A�D04x�Lÿ x�=L2�ÿ8=L2� � P4x�Lÿ x�=L2� � 0: �4�
Since for buckling A 6� 0, one obtains the buckling load

Pcl � 8D0=L
2: �5�

A second example belongs to Duncan [10]. Here the stiffness varies as
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D�x� � �1ÿ 3
7�x=L�2�D0, �6�

so that the governing differential equation is

D0�1ÿ 3
7�x=L�2�

d2w

dx2
� Pw � 0: �7�

The buckling mode is guessed by Duncan [10] as

w�x� � A�7�x=L� ÿ 10�x=L�3 � 3�x=L�5�: �8�
By substitution of equation (8) into equation (7) the classical buckling load
becomes

Pcl � 16
7D0=L

2: �9�
The present writers are unaware of other closed-form solutions for the columns
with variable stiffness. Obtaining such solutions is worthwhile, since closed-form
solutions could serve as benchmark solutions for the purpose of contrasting
various approximate solutions with them. They also can be utilized for
educational purposes. In what follows, one generalizes the above two closed-
form solutions. This note should be viewed as an auxiliary study towards the
authors' general objective to obtain closed-form solutions for vibrating beams in
the presence of axial load [13].

2. FORMULATION OF THE PROBLEM

The column buckling is governed by the differential equation

D�x�d2w=dx2 � Pw � 0, �10�
where D(x) is de®ned as

D � D0r�z�, �11�
where D0 is a constant and z is a non-dimensional co-ordinate de®ned

z � x=L: �12�
The governing differential equation (10) can be rewritten

r d2w=dz2 � k2w � 0, �13�
where k2 is a constant de®ned as

k2 � PL2=D0: �14�
One deduces the buckling load from equation (14):

P � k2D0=L
2: �15�

In this study, r(z) is assumed to be a polynomial of the second degree. Three
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different variations for r(z) are discussed that lead to new closed-form solutions
for the buckling load:

r � bzÿ gz2, r � 1� bzÿ gz2, r � 1ÿ gz2: �16a±c�
In this paper the displacement w is assumed to be a polynomial function that
satis®es the differential equation and all boundary conditions. One ®nds new
closed-form solutions for some particular choices of b and g.

3. UNCOVERED CLOSED-FORM SOLUTIONS

3.1. Case 1: r=bzÿ gz2

The variation of D(x) is given by

D � D0�bzÿ gz2� �17�
and the displacement is a polynomial of degree two

w � az� bz2: �18�
The boundary conditions for a simply supported beam are:

w�0� � 0, D0w
00�0� � 0, w�1� � 0, D0w

00�1� � 0: �19a±d�
Equations (19a) and (19b) are always satis®ed, equations (19c) and (19d) lead to

b � ÿa �20�
and

b � g: �21�
Taking into account the boundary conditions in equation (19), one de®nes

r � zgÿ z2g �22�
and

w � azÿ az2: �23�
w has to satisfy the differential equation (13) for any z. This problem is solvable
with the aid of Mathematica1 command SolveAlways [11, 12]. Whereas for
solving the problem the use of symbolic algebra is not absolutely necessary, it is
an extremely convenient tool. SolveAlways yields parameter values for which the
given equation or system of equations which depend on a set of parameters is
valid for all variable values. The result of SolveAlways is given in the form of a
list of all possible sets of values. SolveAlways works primarily with linear and
polynomial equations.
For this case two sets are obtained. The ®rst one leads to a trivial solution

with a=0. The second set leads to

k2 � 2g: �24�
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Finally, using equation (15) one deduces the buckling load,

P � 2gD0=L
2: �25�

The buckling mode reads

w � a�zÿ z2�, �26�
that corresponds to the following de®nition of the stiffness

D � D0g�zÿ z2�: �27�
One can now relate to the ®rst example described in the introduction for g=4
(see equation (1)). One uncovers the same buckling load,

P � 8D0=L
2: �28�

For a=4, the same buckling mode

w � 4�zÿ z2� �29�
is found as in equation (3). Equation (25) allows one to optimize the column in
the presence of the buckling constraint

PcleP̂: �30�
This yields the admissible region of variation of the parameter g,

geP̂L2=2D0, �31�
so that the buckling load of the column will satisfy the inequality (30).
If one assumes the displacement is a polynomial of higher degree, one can ®nd

higher buckling loads. The method proposed below is the base of the algorithm
of the Mathematica1 function SolveAlways. One assumes that the displacement
is the form

w � w0

XN
j�1

ajz
j: �32�

This displacement equals zero at z=0 so one satis®es the ®rst boundary
condition. The second derivative of w reads

w00 � w0

XN
j�2

aj j� jÿ 1�zjÿ2: �33�

One de®nes the stiffness as

D � D0g�zÿ z2�: �34�
This de®nition is very interesting because the stiffness equals zero at both ends.
So the bending moment Dw 0 0 equals zero at the ends identically, irrespective of
the de®nition of the displacement. The differential equation becomes
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g�zÿ z2�w00 � k2w � 0 �35�
and taking into account equations (32) and (33), one obtains

g�zÿ z2�
XN
j�2

aj j� jÿ 1�zjÿ2 � k2
XN
j�1

aj z
j � 0: �36�

One expands the relationXN
j�2

gaj j� jÿ 1�zjÿ1 ÿ
XN
j�2

gaj j� jÿ 1�zj �
XN
j�1

k2aj z � 0: �37�

Now the equation is modi®ed to have only zj terms:XNÿ1
j�1

gaj�1 j� j� 1�zj ÿ
XN
j�2

gaj j� jÿ 1�zj �
XN
j�1

k2aj z
j � 0, �38�

so that one writes the sum from j=2 to j=Nÿ 1:

2ga2z�
XNÿ1
j�2

gaj�1 j� j� 1�zj ÿ
XNÿ1
j�2

gaj j� jÿ 1�zj ÿ gaNN�Nÿ 1�zN

� k2a1z�
XN
j�1

k2aj z
j � k2aNz

N � 0: �39�

Regrouping the terms of the same degree yields

�k2a1 � 2ga2�z�
XNÿ1
j�2
�gaj�1 j� j� 1� ÿ gaj j� jÿ 1� � k2aj�zj

� �k2 ÿ gN�Nÿ 1��aNzN � 0: �40�
This equation must equal zero for any z. For zN,

k2 � gN�Nÿ 1�: �41�
One deduces

P � gN�Nÿ 1�D0=L
2: �42�

The ®rst buckling load is for N=2,

Pcl � 2gD0=L
2: �43�

As a result, a polynomial of degree N leads to the mth buckling load with

N � m� 1: �44�
The other terms of the polynomial lead to the global de®nition of the
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coef®cients. For z in the ®rst power, one obtains

a2 � ÿm�m� 1�a1=2, �45�
whereas for z in power j,

aj�1 � f� j� jÿ 1� ÿm�m� 1��=j� j� 1�gaj: �46�
One notices that for j=1, equation (46) reduces equation (45). Hence equation
(46) is valid for any aj. One chooses a1=1. One can verify via Mathematica1

that the sum of the coef®cients aj equals zero, and thus the boundary condition
of the displacement at the end z=1, is satis®ed.
Now, one can consider that one has a column clamped beam at z=0 and it

has arbitrary boundary conditions at z=1. If one assumes w is a polynomial, as
in equation (32), then the coef®cient a1 must vanish to have a slope equal to zero
at z=0. One has to take into account equations (46) and (45). These relations
impose that all aj must equal zero. Finally one arrives at a trivial solution. One
concludes that the present method is inef®cient for the column that has a
clamped end at z=0.

3.2. Case 2: r=1+bzÿ gz2

In this case, the stiffness is given by

D � D0�1� bzÿ gz2� �47�
and the displacement is a polynomial of degree ®ve,

w � az� bz2 � cz3 � dz4 � ez5: �48�
After simpli®cations, the boundary conditions (19) lead to the conditions

b � 0, a� c� d� e � 0, �3c� 6d� 10e��1� bÿ g� � 0: �49a±c�
Mathematica1, leads to three different sets of solutions which respect the
differential equation. The second and the third one yield the same buckling
mode. Hence, one has to consider two sets which correspond to different
buckling loads and modes. The ®rst set is de®ned as

k2 � 12b2, g � b2, d � b3a, c � ÿ2b2a, e � 0: �50�
This set of solutions implies the following de®nition of the stiffness:

D � D0�1� bzÿ b2z2�; �51�
with attendant buckling load

P � 12b2D0=L
2 �52�

and the buckling mode

w � a�zÿ 2b2z3 � b3z4�: �53�
These coef®cients have to satisfy the boundary conditions (49). From there one



178 LETTERS TO THE EDITOR

®nds three values of b that satisfy the above conditions:

b � 1, b � �1ÿ
���
5
p
�=2 and b � �1�

���
5
p
�=2: �54�

For the particular case b=1, the stiffness is de®ned by

D � D0�1� zÿ z2�, �55�
so that the buckling load equals

P � 12D0=L
2: �56�

The buckling mode is

w � a�zÿ 2z3 � z4�: �57�
One notices that this function is a Duncan polynomial [10]. For the particular
case b= �1ÿ ���

5
p �=2, the stiffness is de®ned by

D � D0�1� �1ÿ
���
5
p
�z=2ÿ �1ÿ

���
5
p
�2z2=4�: �58�

The buckling load equals

P � 3�
���
5
p
ÿ 1�2D0=L

2: �59�
The buckling mode is

w � afzÿ ��1ÿ
���
5
p
�2=2�z3 � ��1ÿ

���
5
p
�3=8�z4g: �60�

For the particular case b=�1� ���
5
p �=2, the stiffness is de®ned by

D � D0f1� ��1�
���
5
p
�=2�zÿ ��1�

���
5
p
�2=4�z2g, �61�

so that the buckling load equals

P � 3�
���
5
p
� 1�2D0=L

2 �62�
and the buckling mode is

w � afzÿ ��1�
���
5
p
�2=2�z3 � ��1�

���
5
p
�3=8�z4g: �63�

The second set is de®ned as

k2 � 20g, b � ÿ
�����
3g

p
, d � ÿ�5g3=2=

���
3
p
�a, c � ÿ�10g=3�a, e � �2g2=3�a:

�64�
This set of solutions implies the de®nition of the stiffness

D � D0�1ÿ
�����
3g

p
zÿ gz2�, �65�

with the buckling load

P � 20gD0=L
2 �66�

and the buckling mode
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w � d�zÿ �10g=3�z3 ÿ �5g3=2=
���
3
p
�z4 � �2g2=3�z5�: �67�

These coef®cients have to satisfy the boundary conditions (39). From there one
®nds a single value of g that satis®es these equations: g= �5ÿ �����

21
p �=2. Then

stiffness becomes

D � D0f1ÿ z

�����������������������������
�3�5ÿ

�����
21
p

=2�
q

ÿ ��5ÿ
�����
21
p
�=2�z2g: �68�

The buckling load equals

P � 10�5ÿ
�����
21
p
�D0=L

2 �69�
and the buckling mode becomes

w � afzÿ �5�5ÿ
�����
21
p
�=3�z3 ÿ �5�5ÿ

�����
21
p
�3=2=2

���
6
p
�z4 � ��5ÿ

�����
21
p
�2=6�z5g: �70�

3.3. Case 3: r=1ÿ gz2

In this last part, one has

D � D0�1ÿ gz2�: �71�
The displacement is a polynomial of degree 5 which is utilized to search for the
buckling mode:

w � az� bz2 � cz3 � dz4 � ez5: �72�
After simpli®cations, the boundary conditions (19) lead to the conditions

b � 0, a� c� d� e � 0, �3c� 6d� 10e��1ÿ g� � 0: �73a±c�
The solution of the governing differential equation (13) by Mathematica1 leads
to two different sets of solution which correspond to different buckling load and
mode. The ®rst set is given by

k2 � 6g, c � ÿga, d � e � 0: �74�
This set of solutions implies the following de®nition of the buckling load:

P � 6gD0=L
2, �75�

and the buckling mode is a polynomial of degree 3,

w � a�zÿ gz3�: �76�
These coef®cients have to satisfy the boundary conditions (39). Thus one ®nds
one value of g that satis®es these equations: g=1. Therefore, the stiffness is
de®ned by

D � D0�1ÿ z2�: �77�
The buckling is given by
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P � 6D0=L
2: �78�

The buckling mode reads

w � a�zÿ z3�: �79�
The second set is given by

k2 � 20g, c � ÿ�10g=3�a, e � �7g2=3�a, d � 0: �80�
This set of solutions implies the following de®nition of the buckling load:

P � 20gD0=L
2, �81�

whereas the buckling mode is

w � a�zÿ �10g=3�z3 � �7g2=3�z5�: �82�
These coef®cients have to satisfy the boundary conditions (73). This allows us to
®nd two values of g that satisfy these equations: g=3

7 or g=1. For the
particular case g=1, the stiffness is de®ned by

D � D0�1ÿ z2�, �83�
so the buckling load equals

P � 20D0=L
2 �84�

and the buckling mode is

w � a�zÿ �10=3�z3 ÿ �7=3�z5�: �85�
It is noticeable that this stiffness is the same as that for the ®rst set of the third
case (equations (78)±(80)), but a greater buckling load has been found implying
that one determines the higher buckling loads by increasing the degree of
freedom of the displacement. For the particular case g=3/7, the stiffness is
de®ned by equation (6), so that the expression for buckling load in equation (82)
reduces to that in equation (9) and the buckling mode is

w � a�zÿ �10=7�z3 � �3=7�z5�: �86�
By choosing a=7 A, the displacement reduces to equation (8). This result and
the buckling load match with the Duncan example presented in reference [10].

4. CONCLUSION AND SUMMARY

In this study example (1) is ®rst generalized to a family of beams with a
variable moment of inertia. Using the proposed approach, one also determines
new closed-form solutions of columns with variable stiffness, including
generalization of Duncan's solution [10]. Then a design criterion is discussed, so
that the buckling load exceeds any prescribed value. Note that if one uses
polynomials of higher degree, more degrees of freedom are allowed for the
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displacement. In such circumstances, the method leads to higher buckling loads.
It appears remarkable that the closed-form solutions obtained are simpler than
exact solutions for many problems involving uniform columns. The summary of
uncovered new solutions is given in Table 1.
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