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The problem of suppressing the vibrations of a structure that is subjected to
a principal parametric excitation is tackled. The vibration amplitudes resulting
from such resonance cannot be fully controlled by conventional techniques,
such as the addition of linear damping through velocity feedback or by the
implementation of conventional mass absorbers. However, it has been shown
that the growth of the response is limited by non-linearities. In this work, this
fact is capitalized on and a simple non-linear feedback law is devised to
suppress the vibrations of the ®rst mode of a cantilever beam when subjected
to a principal parametric resonance. The dynamics of the beam are modelled
with a second-order non-linear ordinary-di�erential equation. The model
accounts for viscous damping, air drag, and inertia and geometric non-
linearities. A control law based on cubic velocity feedback is proposed. The
method of multiple scales is used to derive two ®rst-order ordinary-di�erential
equations that govern the time variation of the amplitude and phase of the
response. A stability study is conducted and the open- and closed-loop response
of the system is analyzed. Furthermore, results are presented of experiments
conducted to control the vibrations of a cantilever steel beam ®tted with
piezoceramic actuators. The theoretical and experimental ®ndings indicate that
the control law leads to e�ective vibration suppression and bifurcation control.

# 1999 Academic Press

1. INTRODUCTION

Parametric resonance was ®rst observed by Faraday [1]. He noted that a ¯uid in
a vertically oscillating container develops horizontal surface waves. This
resonance is peculiar because it occurs when the forcing frequency is close to
twice of one of the natural frequencies of the excited system, and it leads to
high-amplitude motions. Researchers have since given it considerable attention.
The ®rst model exhibiting such a behavior is due to Mathieu [2]. The analysis of
this model reveals that, unlike systems subjected to a primary external excitation,
viscous damping does not limit the amplitude of the response. The linear
damping, however, delays the onset of the instability [3].
In a realistic situation, such as the case of structural vibrations, the growth of

the response is limited by non-linearities that are not accounted for by any
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Mathieu-type model. Zavodney et al. [4] studied the response of a model that
includes quadratic and cubic geometric non-linearities. They found that stable
limit cycles can exist. They also showed that the system can exhibit quasi-

periodic and chaotic motions. Zavodney and Nayfeh [5] investigated the
dynamics of a cantilever beam carrying a lumped mass. They modelled the
structure with cubic geometric and inertia non-linearities. They conducted

experiments and reported results that were in general agreement with the theory.
Anderson et al. [6] improved the model proposed by Zavodney and Nayfeh [5]
and considered the effect of quadratic damping on the response of the system.

Their theoretical results agreed very well with the experiments.
Interesting dynamics have also been investigated in parametrically excited

multi-degree-of-freedom systems. Miles [7] analyzed the response of a system of

two quadratically coupled oscillators under the condition of exact
autoparametric (two-to-one) resonance when the lower mode is excited at twice
its natural frequency. Nayfeh [8] extended the work of Miles and found that, for

certain detunings, the response of the system is bounded. He also derived
conditions under which the system undergoes Hopf bifurcations. Nayfeh and
Jebril [9] studied a similar system but included cubic non-linearities. They

considered the cases of principal, additive, and simultaneous resonances. More
recently, Chin et al. [10] analyzed the dynamics of a buckled beam possessing a
two-to-one internal resonance when the higher mode is subjected to a principal

parametric excitation. They reported the occurrences of Hopf and period-
doubling bifurcations, type I intermittency, chaos, and crises.
Asfar and Masoud [11] implemented a Lanchester-type damper to suppress

the vibrations of a single-degree-of-freedom system subjected to a principal
parametric resonance. They conducted numerical studies and demonstrated
effective suppression and bifurcation control. Thomsen [12] considered a string

under similar conditions and used a sliding-mass non-linear absorber. His studies
reveal that, for moderate forcing amplitudes, successful suppression is possible.
For high forcing amplitudes or a large slider mass, the system exhibits

modulated responses.
In this paper, the problem of suppressing the vibrations of a cantilever beam

when subjected to a principal parametric resonance is considered. The dynamics

of the ®rst mode are modelled with a second-order non-linear ordinary-
differential equation and a control law based on cubic velocity feedback is
introduced. The addition of linear velocity feedback is mathematically equivalent

to adding viscous damping and, therefore, will not be effective in reducing the
vibration amplitude due to the resonance. However, cubic velocity feedback is
equivalent to cubic non-linearities that are known to limit the amplitude of the

parametric resonance. The method of multiple scales is used to obtain an
approximate solution to the differential equation and the stability of the
response is investigated. Then, the results of the perturbation solution are

veri®ed through numerical simulations. Additionally, the performance of the
control law is investigated through experiments. A cantilever beam ®tted with
piezoceramic actuators is mounted vertically on a shaker, and a parametric study
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is performed to examine the effects of varying the control gain on the closed-
loop response of the system.

2. SYSTEM MODEL AND PERTURBATION SOLUTION

A cantilever beam mounted on a shaker and actuated with piezoceramic
patches is considered. In non-dimensional form, the dynamics of the ®rst mode
of the structure are modelled by

�u� u� 2em1 _u� em̂2j _uj _u� ea1u3 � ea2u2�u� ea3u _u2 � euF cos�Ot� � T, �1�
where u is the generalized co-ordinate, m1 is the viscous damping coef®cient, m̂2 is
the air drag coef®cient, the ai are constants, F and O are the forcing amplitude
and frequency, respectively, T is a control input, and e is a non-dimensional
bookeeping parameter. The term a1u3 is due to non-linear curvature, and the
terms a2u2uÈ and a3u _u2 are due to non-linear inertia [5].
The case of principal parametric resonance (i.e., O1 2) is considered and a

control law given by

T � ÿeGv _u3; �2�
is proposed, where Gv is a positive constant.
To analyze the solutions of equations (1) and (2), the method of multiple

scales is used [13] and u is expanded as

u�T0;T1� � u0�T0;T1� � eu1�T0;T1� � � � � , �3�
where T0 is a fast time scale and T1 is a slow time scale describing variations in
the amplitude and phase of the response. The time derivatives are recast in terms
of the new time scales as

d

dt
� D0 � eD1 � � � � and

d2

dt2
� D2

0 � 2eD0D1 � � � � , �4�

where Dk � @=@Tk. Substituting equations (3) and (4) into equations (1) and (2)
and equating coef®cients of like power of e yields

O�1� :

D2
0u0 � u0 � 0, �5�

O�e� :

D2
0u1 � u1 � ÿ2D0D1u0 ÿ 2m1D0u0 ÿ m̂2jD0u0jD0u0 ÿ a1u30

ÿ a2u20D
2
0u0 ÿ a3u0�D0u0�2 ÿ Gv�D0u0�3 � u0F cos�OT0�: �6�

The solution of equation (5) can be expressed as

u0 � A�T1� eiT0
� � �A�T1� eÿiT0 , �7�
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where A(T1) is a complex-valued quantity that will be determined by imposing
the solvability condition at the next level of approximation.
To express the nearness of O to 2, a detuning parameter s such that

O � 2� es: �8�
Substituting equations (7) and (8) into equation (6) and eliminating the terms
that produce secular term leads to

2i�D1A� m1A� �
m̂2
2p

�2p
0

D0u0jD0u0j eÿiT0 dT0 � 8�ae � im3�A2 �Aÿ 2�Af eisT1 � 0,

�9�
where

ae � 1

8
�3a1 ÿ 3a2 � a3�; m3 �

3Gv

8
; and f � F

4
:

Next, A is expressed in the polar form

A � 1
2 a�T1� eib�T1�: �10�

Inserting equation (10) into equation (9), performing the integration, and
separating real and imaginary parts yields

a 0 � ÿm1aÿ m2a
2 ÿ m3a

3 � af sin y, �11�

ay 0 � saÿ 2aea3 � 2af cos y, �12�
where the prime denotes differentiation with respect to T1,

y � sT1 ÿ 2b and m2 �
4m̂2
3p

:

3. PERFORMANCE OF THE CONTROL LAW

The performance of the control technique is evaluated by calculating the
equilibrium solutions (®xed points) of equations (11) and (12) and examining
their stability as a function of the parameters f and s and the gain Gv(m3). Setting
a 0 � 0 and y 0 � 0 yields

af sin y � m1a� m2a
2 � m3a

3, �13�

ÿaf cos y � 1
2 saÿ aea3: �14�

There are two possibilities: a� 0 and a 6� 0. The non-trivial ®xed points are given
by the roots of

�m1 � m2a� m3a
2�2 � �12sÿ aea2�2 ÿ f 2 � 0, �15�
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and

tan y � 2�m1 � m2a� m2a
2�

2aea2 ÿ s
: �16�

The stability of the non-trivial ®xed points is investigated by evaluating the
eigenvalues of the Jacobian matrix of equations (11) and (12). In the case of the
trivial solution, the form of these equations is not suitable for the stability
analysis. Therefore, A is expressed in the Cartesian form

A � 1
2� pÿ iq� e�T1 , �17�

where p and q are real and � � 1
2 s. Substituting equation (17) into equation (9)

yields

p 0 � ÿm1pÿ m2p
���������������
p2 � q2

p
ÿ m3 p� p2 � q2� ÿ �q� aeq� p2 � q2� � q f, �18�

q 0 � ÿm1qÿ m2q
���������������
p2 � q2

p
ÿ m3q� p2 � q2� � �pÿ ae p� p2 � q2� � p f: �19�

The stability of the trivial solution ( p� q� 0) to a disturbance proportional to
elT1 is ascertained by the roots of

ÿm1 ÿ l ÿ� � f
� � f ÿm1 ÿ l

���� ���� � 0, �20�

whose solution is

l � ÿm12
���������������
f 2 ÿ �2

p
: �21�

The trivial solution is stable if

fE
���������������
m21 � �2

q
, �22�

when f is the control parameter, or if

jsje2
���������������
f 2 ÿ m21

q
, �23�

when s is the control parameter.
Due to the complexity in obtaining a closed-form solution to equation (15),

numerical methods are used to investigate the stability of the non-trivial
solutions. In the next three sections, the stability analysis is performed and the
control law is evaluated.

3.1. FREQUENCY±RESPONSE CURVES

Figure 1 shows the frequency±response curves of the open- and closed-loop
system. The amplitude of the response depends on the value of s and the
system's initial conditions.
First, the open-loop response (i.e., Gv� 0) is considered. When s> sB , only

the trivial solution exists. As s is decreased from point A, the trivial solution
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looses stability at point B through a transcritical bifurcation. The response
amplitude increases as s is decreased. The solution loses stability through a
saddle-node bifurcation at point C, and the response amplitude jumps down to
point D where only the trivial solution exists thereafter. In the case where s is
increased, there are two possible paths for the solution. If the initial conditions
are small, the system does not oscillate initially, and the response traces the
curve DE. When point E is reached, the trivial solution loses stability through a
transcritical bifurcation, and the resulting non-trivial solution quickly encounters
a saddle-node bifurcation, leading to a jump to point F. Upon further increasing
s, the amplitude traces the curve FBA, where the trivial solution is reached
through a supercritical pitchfork bifurcation at point B. If the initial conditions
are large, a high-amplitude response is sustained initially. Here, a jump
phenomenon does not occur, and the response traces portions of or all the curve
CFBA. Note that the overhang region FC exhibits high-amplitude responses.
Next, the response of the closed-loop system (i.e., Gv 6� 0) is analyzed. Two

cases are considered, Gv� 0�05 and Gv� 0�5. In the ®rst case, the response
undergoes bifurcations similar to those of the open-loop system. However, the
response amplitude is decreased, and the saddle-node bifurcation is shifted from
point C to point G. In the second case, superior results are achieved. The saddle-
node bifurcation is replaced with one transcritical bifurcation at point E. The
overhang region and the jump phenomenon are eliminated, and the response is
suppressed further.
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Figure 1. Theoretical frequency±response curves when f� 0�025, m1� 0�01, m2� 0�01, and
ae�ÿ0�05; (Ð) stable solution (± ±) unstable solution.
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3.2. FORCE±RESPONSE CURVES

Figure 2 shows the open- and closed-loop force±response curves. Since an
exact resonance (s� 0) is dif®cult to achieve realistically, a response curve is
shown that exhibits the more interesting hysteretic effect when s5 0.
First, the open-loop response is considered. If f< fE , only the trivial solution

exists. In the absence of large disturbances, it is maintained as f is increased
along the curve AB. When f reaches the value at point B, the trivial solution
loses stability through a transcritical bifurcation, and the resulting non-trivial
solution quickly encounters a saddle-node bifurcation, leading to a jump to
point C. A further increase in f leads to higher response amplitudes tracing the
curve CD. When f is decreased, the amplitude traces the curve DE. At point E,
the solution undergoes a saddle-node bifurcation, leading to a jump down where
only the trivial solution exists thereafter.
Second, the response for two values of the feedback gain is analyzed. When

Gv� 0�05, the response curve is similar to the uncontrolled response curve. The
bifurcations are identical, however; the location of the saddle-node bifurcation
point is shifted from point E to point H, resulting in a smaller hysteretic region.
Furthermore, the response amplitude is reduced from the curve ECD to the
curve HFG. When Gv� 0�5, the saddle-node bifurcations are replaced with one
transcritical bifurcation at point B. Additionally, the amplitude of the response
is further reduced.
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Figure 2. Theoretical force±response curves when s�ÿ0�1, m1� 0�01, m2 � 0�01, and
ae�ÿ0�05; Ð, stable solution; ± ±, unstable solution.
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3.3. NUMERICAL SIMULATIONS

To validate the perturbation results, the equation

�u� u� 2m1 _u� 3
4 pm2j _uj _u� 8

3 a1u
3 � Fu cos�Ot� ÿ Gv _u3; �24�

was integrated numerically, where m1� 0�01, m2� 0�01, a1�ÿ0�05, a2� a3� 0,
and F� 0�1 for different values of the forcing frequency O and the velocity
feedback gain Gv. Figure 3 shows time responses when O� 2 (i.e., s� 0) for
Gv� 0�05 and Gv� 0�5. Comparing Figures 1 and 3, it is noted that the open-
and closed-loop response amplitudes predicted by the perturbation solution are
in agreement with the results of the numerical simulations. Figure 4 shows
results when O � 1�9 (i.e., s�ÿ0�1) for Gv� 0�05 and Gv� 0�5. In this case, the
system possesses two stable states: the trivial solution and a high-amplitude
limit-cycle solution (the system is operating in the overhang region CF shown in
Figure 1). Thus, the initial conditions for this simulation are chosen to insure
that the system is attracted to the non-trivial solution. Here, the addition of
velocity feedback eliminates the high-amplitude motion. Since only the trivial
solution exists, the amplitude of the closed-loop response is not in¯uenced by the
magnitude of the gain Gv. However, the gain affects the transient behavior. The
higher the gain is, the faster is the approach to the trivial solution.

4. EXPERIMENTS

The theoretical analysis is veri®ed by implementing the control strategy on a
cantilever beam ®tted with piezoceramic actuators and a strain gage. The beam
is excited vertically by a shaker subjecting its ®rst mode to a principal parametric
resonance.

4.1. SETUP

The properties of the beam and the actuators are listed in Table 1. The natural
frequency of the ®rst mode was approximately 7 Hz. The clamping ®xture and
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Figure 3. Numerical simulations of the time response when O� 2: (a) Gv� 0�05 and
(b) Gv� 0�05.
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the con®guration of the actuators and the strain gage are shown in Figure 5. An
accelerometer is positioned on the shaker head to measure the forcing amplitude.
The set-up for the experiment is shown in Figure 6. The beam and clamping
®xture are attached to a 100 lb permanent-magnet shaker that is driven through
a signal generator and a power ampli®er. The signal from the strain gage is
®ltered and sampled by a digital computer using the software LabView. The
signal is manipulated, and the cubic velocity signal is generated, ampli®ed, and
then sent to the actuators.

4.2. FREQUENCY±RESPONSE CURVES

The beam was forced at 1�2 g and forward and reverse frequency sweeps were
conducted. The acceleration of the shaker head was monitored, and the input
voltage driving the shaker was adjusted to maintain a constant forcing
amplitude. Figure 7 exhibits the open- and closed-loop frequency±response
curves.
First, the open-loop case is presented. Initially, as the forcing frequency was

increased, the amplitude remained at zero. When the frequency reached a value
close to 13�9 Hz, the response jumped up to a value of 0�3 V. Further increases
in the frequency led to a decrease in the amplitude. When the frequency was
approximately 14�1 Hz, the beam stopped oscillating. Subsequently, the response
remained at zero. In the reverse sweep, the response was similar to the one
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Figure 4. Numerical simulations of the time response when O� 1�9: (a) Gv� 0�05 and (b)
Gv� 0�5.

TABLE 1

Properties of beam and actuators

Beam Actuators

Length (m) 0�26 0�03
Width (m) 1�3610ÿ2

Thickness (m) 6�0610ÿ4 1�9610ÿ4

Elastic modulus (GPa) 208 6�20
Strain coefficient (m/V) N/A ÿ190610ÿ12
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observed during the forward sweep. However, the response amplitude did not
experience a jump down at 13�9 Hz. Instead, a growth rate was observed,
leading to a very high response amplitude reaching 2�9 V. A jump down to zero
occurred at 13�6 Hz. Thereafter, the response remained at zero.
Second, the closed-loop case is considered. As the frequency was increased, the

response remained at zero until a gradual increase was observed at 13�9 Hz.
Further increases in the frequency resulted in a decrease in the response
amplitude leading to a zero response at 14�1 Hz. During the reverse sweep, the
response amplitude traced the same path observed during the closed-loop
forward sweep. The high-amplitude motion attained in the open-loop system was
eliminated.

4.3. FORCE±RESPONSE CURVES

The beam was forced at a constant frequency of 13�88 Hz and forward and
reverse force sweeps were conducted. Figure 8 shows the open- and closed-loop
force±response curves.
First, the open-loop response is described. As the force was increased, the

beam did not oscillate initially. When the forcing amplitude reached
approximately 1�5 g, the response experienced a jump to a high amplitude

Strain gage

Piezoceramic
actuators

Shaker head

Accelerometer

Figure 5. Beam ®xture and instrumentation.
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Figure 7. Experimental open- and closed-loop frequency±response curves. Open-loop: &, for-
ward sweep; 4, reverse sweep. Closed-loop: 5, forward sweep; }, reverse sweep.
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44 S. S. OUEINI AND A. H. NAYFEH

(0�5 V). Further increases in the force led to an increase in the response. During
the reverse sweep, the response amplitude decreased until a jump down to zero
was observed at approximately 1�2 g. The response remained at zero as the
forcing was further decreased.
Second, the closed-loop response is examined. As the forcing increased, the

beam remained motionless until the forcing amplitude reached 1�5 g.
Subsequently, the response amplitude gradually increased, but the amplitude was
signi®cantly smaller than in the open-loop case. In the reverse sweep, the
amplitude of the response traced identically the response observed in the
forward-sweep. However, a very small hysteresis area was observed around
1�5 g.

4.4. EFFECT OF VARYING THE FEEDBACK GAIN

Figures 9±11 compare the response curves and time traces for two feedback
gains that differ by an order of magnitude. The gain K shown in the ®gures is
proportional to the gain Gv. The curves labelled ``K� 10'' in Figures 9 and 10
correspond to the ones labelled ``Closed-loop'' in Figures 7 and 8, respectively.
In both ®gures, increasing the gain resulted in a decrease in the response
amplitudes. In the case of the force±response curves, increasing the gain led to a
more noticeable reduction in the hysteretic region.
In order to examine the transient characteristics of the control law, the beam

was subjected to a forcing of 1�2 g at 13�8 Hz. Since the system was operating in
the overhang region, the closed-loop response amplitude was expected to be
zero. Figure 11 illustrates two time traces for K� 1 and K� 10. Clearly,
increasing the feedback gain resulted in better transient performance.
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Figure 8. Experimental open- and closed-loop force±response curves. Open-loop: &, forward
sweep; 4, reverse sweep. Closed-loop: 5, forward sweep; }, reverse sweep.
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5. CONCLUSIONS

A non-linear control law is proposed to suppress the vibrations of the ®rst
mode of a cantilever beam when subjected to a principal parametric excitation.
The dynamics of the ®rst ¯exural mode are modelled by a second-order non-
linear ordinary-differential equation, and a control law based on cubic velocity
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Figure 9. Effect of varying the feedback gain on the frequency±response curve: 4, forward
sweep; }, reverse sweep
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feedback is introduced. The method of multiple scales is used to derive two ®rst-
order differential equations governing the time evolution of the amplitude and
phase of the response. Then, a bifurcation analysis is conducted to examine the
stability of the closed-loop system and investigate the performance of the control
law.
The analysis reveals that cubic velocity feedback reduces the amplitude of the

response. Furthermore, it leads to the elimination of the saddle-node
bifurcations in the frequency± and force±response curves. These undesirable
bifurcations are replaced with transcritical bifurcations. It is further shown that
increasing the velocity feedback gain results in better transient performance.
The theoretical analysis is veri®ed experimentally. A cantilever steel beam is

®tted with piezoceramic actuators and subjected to a parametric excitation
having a frequency equal to twice the natural frequency of its ®rst mode. A
computer and a series of analog ®lters are utilized to generate the cubic velocity
feedback signal. The experimental frequency± and force±response curves are in
excellent qualitative agreement with the theoretical results.
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