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Flutter analysis of sti�ened laminated plates has been performed. The
purpose of this study is to analyze the ¯utter characteristics of sti�ened plates
subject to thermal load. The ®rst order shear deformable plate and Timoshenko
beam theories are used for the ®nite element modelling of a skin panel and
sti�eners respectively. The von Karman non-linear strain±displacement relation
is used to account for large de¯ections. First order piston theory is used for
modelling aerodynamic loads. The Newton±Raphson iteration method and
complex eigenvalue solver with the LUM/NTF approximation method are used
to obtain the postbuckled de¯ection and ¯utter information respectively. The
Guyan reduction method and mode tracing procedure are employed for an
e�cient analysis. The e�ects of various parameters, such as the sti�ening
scheme, lamination angle, boundary conditions, and temperature gradient on
¯utter characteristics are investigated through some numerical examples. From
these examples, it can be shown that the selection of a proper sti�ening scheme
results in great improvements of ¯utter characteristics of laminated panels
without introducing considerable weight penalty.

# 1999 Academic Press

1. INTRODUCTION

The stiffened panel is a useful and popular form of structural component in
various engineering applications. Weight savings are an important consideration
for high-performance structures. By using stiffened panels as primary structural
components, light-weight and ef®cient structures can be obtained without
considerable weight penalty. Also, structural components made of composite
materials have a great potential for their utilization in a wide variety of ef®cient
applications to meet the high-strength, high-stiffness, and minimum-weight
requirement. Composite materials have been extensively used in stiffened
structures of high-performance applications.
Also, thermal effect is important since temperature environment in¯uences

signi®cantly the static and dynamic behaviors of ¯ight structures in supersonic
regime. Thermal buckling is induced by temperature increase due to
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aerodynamic heating and restrained thermal expansion. It is well-known that
thermal buckling does not mean ultimate failure of structures. The postbuckling
load-carrying capacity of stiffened plates is generally very high. Such a
postbuckling concept can be applied to advanced composite laminated structures
in order to reduce structural weight. The results of many studies show that
compressive loads induced by thermal effects could initiate ¯utter of a panel that
would otherwise be stable. Therefore, the ¯utter analysis of stiffened composite
laminated plates subject to thermal loads is necessary from the viewpoint of
checking static and aeroelastic characteristics of structural components in
supersonic regime. However, only a few investigations on panel ¯utter of
stiffened laminated plates have dealt with thermal effects. Most of the published
studies are concerned with ¯utter analysis of unstiffened panels with and without
buckling loads.
An excellent presentation of fundamental theories and physical

understanding of panel ¯utter can be found in two books [1, 2] and a review
article [3] on the topic by Dowell. Linear and non-linear panel ¯utter analyses
have been performed by Han and Yang [4], Hopkins and Dowell [5], Gray et
al. [6], Xue and Mei [7], Zhou et al. [8, 9], Liaw [10], Liaw and Yang [11] and
some other contributors [12±15]. In classical approaches of ¯utter analysis,
Galerkin's method is used for the formulation of governing equations, and
direct time-integration [1, 3], perturbation [13], and harmonic balance methods
[14, 15] are used in the temporal domain analysis. However, these approaches
take a relatively large amount of computation time or require lengthy and
complex mathematical manipulations. The ®nite element method (FEM) is a
powerful numerical tool for ¯utter analysis of isotropic and anisotropic panels
with general geometry, applied loads, and boundary conditions. In several
investigations, ¯utter analyses are performed through the use of the frequency
domain (FD) approach such as the linearized updated mode/nonlinear time
function (LUM/NTF) approximation method [6, 7] and direct time-integration
(TI) method [8, 9]. The FD approach is ef®cient for parameter studies of
panel ¯utter. However, it is very dif®cult to analyze the chaotic and
nonperiodic motion accurately using the FD approach in the non linear ¯utter
regime. In contrast, it is possible to analyze non periodic motions in a non
linear ¯utter regime using the TI method. The TI method is useful for
simulating the dynamic behavior of structures with a modern control system
using adaptive materials such as piezolectric material [9]. However, the TI
method is often too costly for ®nding ¯utter value and is inef®cient for
parameter study. Liao and Sun [16], and Lee and Lee [17] investigated the
¯utter characteristics of stiffened laminated panels. They discussed the effects
of lamination scheme, stiffener size, and ¯ow angle on ¯utter characteristics.
However, in these studies, a thermal effect was not considered and a dynamic
¯utter de¯ection was assumed to be in®nitesimal, that is, a linear ¯utter
analysis without thermal effect was carried out.
In the present study, the ¯utter characteristics of stiffened laminated plates

are analyzed with thermal effects. First order shear deformable plate theory
(FSDT) and Timoshenko beam theory are used for the ®nite element
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modelling of a skin panel and blade-type stiffeners respectively. For an
ef®cient parametric study, the ¯utter analysis is performed using a frequency
domain approach referred to as LUM/NTF. The von Karman non-linear
strain±displacement relation is applied to account for a large de¯ection due to
thermal loads. The ®rst order piston theory is used for modeling aerodynamic
loads. The Newton±Raphson iteration method is used to obtain statically
deformed shape due to aerodynamic and thermal loads. The temperature
change is assumed to be steady state. The degradation of material properties
due to thermal effect is neglected.

2. MODELLING STIFFENED LAMINATED PLATE AND DERIVATION OF
EQUATION OF MOTION

2.1. SKIN PLATE MODEL AND EQUATION OF MOTION

The strain±displacement relations in FSDT are given as

feg � feg � zfkg � femg � feyg � zfkg, fgg � fgyz gxzgT, �1�
where

femg � fu,x �,y u,y � �,xgT, feyg � 1
2 fw,2x w,2y 2w,xw,ygT,

fkg � ffx,x
fy,y

fx,x
� fy,x

gT, fgg � fw,y � fy w,x � fxgT;

u, v, and w are the displacements in the x, y, and z directions respectively; fx

and fy are rotation in the xz- and yz-planes respectively. The comma and
subscript denote the partial derivative with respect to the subscript.
For an anisotropic plate subjected to any temperature change DT(x, y, z), the

well-known constitutive relations can be obtained by integrating the stress±
strain relation through the thickness of plates as:

N
M

� �
� A B

B D

� �
e
k

� �
ÿ NDT

MDT

� �
, fQg � Qyz

Qxz

� �
� A44 A45

A45 A55

� �
fgg, �2�

where {N} {M}, and {Q} are in-plane load, moment, and transverse load vectors
respectively; the thermal in-plane load and moment vectors are given as:

�fNDTg, fMDTg� �
Xn
k�1

�zk
kÿ1
�Q�kf�agk�1, z�DT dz:

The calculations of stiffness matrices [A], [B], [D] and transverse shear stiffness
Aij can be easily found in the literature on laminated composite structures.
The element matrices and equations of motion are derived using the principle

of virtual work:

dW � dWint ÿ dWext � 0 �3�
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The virtual work of the internal and external forces are given as:

dWint �
�
fdegTfsg dV �

�
A

�fdegTfNg � fdkgTfMg � fdggTfQg� dA

� fddgT�e� �K� ÿ �KT� � 1
2 �N1� � 1

3 �N2�� �
�e�fdg�e� ÿ fddgT�e�fPDTg�e�,

dWext �
�
A

�ÿI0��udu� ��d� � �wdw� ÿ I2��fxdfx � �fydfy� � pdw� dA

� ÿfddgT�e��M��e�f�dg�e� � fddgT�e�ffg�e�, �4�

where d denotes variation; (e) represents elementary form; {d}(e) is the
displacement vector of the element, {d}(e)= {u, v, w, fx, fy}

T; [K] and [KT] are
linear elastic stiffness and linear thermal stiffness respectively; [N1] and [N2] are
the ®rst and second order non-linear stiffness due to large de¯ection, {f} and
{PDT} are external force and thermal load vector, mass properties are de®ned as
follows:

�I0, I2� �
�c=2
ÿc=2

r�1, z2� dz

where c and r are the thickness and material density of a panel. The detailed
derivation and expression of the matrices in equation (4) can be found in
reference 18.
By substituting equation (4) into (3) and assembling the element matrix

and vectors, the equation of motion for a plate can be obtained in global
coordinates:

�M �f�dg � ��K � ÿ �KT � � 1
2 �N1� � 1

3 �N2��fdg � ffg � fPDTg: �5�

2.2. STIFFENER MODEL

Anisotropic stiffeners along the x-axis are modelled using Timoshenko beam
elements to maintain the compatibility between the skin plate and stiffeners (see
Figure 1). The displacement ®eld of the stiffeners is assumed to be

ub � u0 ÿ efx � zfx, vb � v0 � zfy, wb � w0 ÿ yfy �6�
where e is the eccentricity of the stiffener and the subscript 0 denotes the
midplane value of the skin plate. The strain±displacement relations can be given
as:

febg � femg � feng � ferg, gbxy � �0, x � zfy, x, �7�
where

femg � fu0, x ÿ efx, x fx � w0, xgT, feng � 1
2 f�w0, x�2 0g,

ferg � fzfx, x ÿ yfy, xgT,
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and ,x denotes the partial derivative with respect to x, and the superscript b
means stiffener. When the widths and heights of stiffeners are much smaller than
their lengths, one assumes sy 1 0 and sz1 0 in the stiffeners. Taking the co-
ordinates of the laminated stiffener into account (Figure 1), the constitutive
equations for a stiffener are:

sbx
tbxz

� �
� C11 C16

C16 C66

� �
ebx
gbxz

� �
ÿ abx

abxz

� �
DT

� �
, tbxy � C55gbxy, �8�

where the stiffness coef®cients Cij are called modi®ed reduced stiffnesses and the
relation between the stiffness coef®cients can be found in reference [19].
To derive the stiffness, mass matrices and thermal load vector for stiffeners,

one can use the variational form of strain energy dU and kinetic energy dK as:

dU �
�
x

�
A

�dfebgT�C�febg � dgbxyC55gbxy ÿ dfebgT�C�fabgDT� dA dx,

dK �
�
x

�
A

� _ubd _ub � _vbd _vb � _wbd _wb� dA dx: �9�

Figure 1. Schematic diagram of stiffened panel subject to aero±thermal load.
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The derivation of linear stiffness and mass matrices can be found in reference
[19] and the derivation procedure of non-linear stiffness is similar to that of
linear stiffness. Using the same shape functions as the plate element, the element
matrices and vector of a stiffener can be obtained from equation (9). The whole
matrices and vector for a stiffened plate are given as:

�Ktot� � �Kp
tot� � �Kb

tot�, �M� � �Mp� � �Mb�, fPDTg � fPp
DTg � fPb

DTg �10�
where [Ktot] is total stiffness including linear and non-linear terms, and
superscripts p and b denote skin plate and stiffener respectively. Substituting
equation (10) into (5), one can obtain the equation of motion for a stiffened
laminated plate which is of identical form to equation (5) as:

�M�f�dg � ��K � ÿ �KT � � 1
2 �N1� � 1

3 �N2��fdg � ffg � fPDTg: �11�

2.3. AERODYNAMIC LOAD MODEL

The aerodynamic force and damping matrices can be derived using virtual
work done by the aerodynamic load p as:�

A

pdw dA �
�
A

ÿb @w
@x
ÿ g

@w

@t

� �
dw dA �12�

where b and g are the aerodynamic pressure parameter and damping parameter;
w is the transverse de¯ection of skin panel. b and g are referred to in reference 4.
Applying a F.E.M. shape function to equation (12), one obtains the nodal force
vector with respect to the transverse de¯ection, w as:

ffg � ÿb�Af�fwg ÿ g�Ad�f _wg: �13�
By substituting equation (13) into equation (11), one obtains the following
equation of motion for a stiffened panel subject to aerodynamic and thermal
loads:

�M �f�dg � g�AD�f _dg � ��K � ÿ �KT � � b�AF � � 1
2 �N1� � 1

3 �N2��fdg � fPDTg �14�
where

�AF � �
�0�m �0� �0�
�0� �Af�b �0�
�0� �0� �0�p

24 35, �AD� � �0�m �0� �0�
�0� �Ad�b �0�
�0� �0� �0�p

24 35
where subscripts m, b, and p denote values with respect to in-plane, transverse,
and rotational displacements respectively. In Equation (14), [AF] and [AD] are
named as aerodynamic force and damping matrices.

3. SCHEME FOR POSTBUCKLING AND FLUTTER ANALYSIS

To analyze the ¯utter of buckled plates due to thermal load, the solution of a
governing equation (14) is assumed to be the sum of a time-dependent solution



FLUTTER OF LAMINATED PLATES 55

and a time-independent solution such as {d}={dt}+{ds}, where {dt} is the
time-dependent solution and {ds} is the statically trimmed solution. Substituting
this assumed solution into the equation of motion, two coupled equations can be
obtained as [18]:

��K � ÿ �KT � � b�AF � � 1
2 �N1�s � 1

3 �N2�s�fdsg � fPDTg, �15�

�M �f�dtg � g�AD�f _dtg � ��K � � �KT � � b�AF � � �N1�s � �N2�s
� �N2�st � 1

2 �N1�t � 1
3 �N2�t�fdtg � f0g �16�

where subscripts s and t denote static and dynamic values, respectively.

3.1. REDUCED GOVERNING EQUATION OF POSTBUCKLING BEHAVIOR

Using the Newton±Raphson iteration method, the incremental form of the
non-linear equation can be derived from equation (15) as:

� �K � ÿ �KT � � b�AF � � �N1�s � �N2�s�ifDdsgi�1 � fDf gi, �17�

where the incremental force vector and updated displacement vector are:

fDfgf � fPDTg ÿ ��K� ÿ �KT� � b�AF� � 1
2 �N1�s � 1

3 �N2�s�fdsgi,
fdsgi�1 � fdsgi � fDdsgi�1:

For ef®ciency of numerical analysis, equation (17) is reduced by applying static
condensation to:

�RK0�fDwsgi�1 � fDRgi, �18�

where

�RKO� � �Kb� ÿ �KDT� � b�Af� � �N1b�s � �N2b�s

ÿ �N1mb�
�Kpb �N1pb�
� �T �Km� �Kmp�

�Kpm� �Kp�
� �ÿ1 �N1mb�

�Kpb �N1pb�
� �

and [KDT] is the reduced thermal stiffness matrix for [KT]. The reduced vector of
incremental force and updated transverse displacement are:

fDRgi � fDfbg ÿ
�N1mb�

�Kpb �N1pb�
� �T �Km� �Kmp�

�Kpm� �Kp�
� �ÿ1 fDfmg

fDfpg
� �( )

,

fwsgi�1 � fwsgi � fDwsgi�1:
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For recovery of deleted DOFs, the following equation is used:

fDug
fDfg

� �
i

� ÿ �Km� �Kmp�
�Kpm �Kp�
� �ÿ1 �N1mb�

�Kpb �N1pb�
� �

fDwgi

� �Km� �Kmp

�Kpm �Kp�
� �ÿ1 fDfmg

fDfpg
� �

i

,

�19�

where {u}, {w}, and {f} are in-plane, transverse, and rotational displacements
respectively.

3.2. REDUCED FLUTTER EQUATION

For numerical ef®ciency of ¯utter analysis, equation (16) is reduced by
applying the Guyan reduction method with respect to in-plane and rotation
DOFs as shown in the previous section to:

�RM�f�wtg � g�Ad�f _wtg � � �RK0� � �RK1� � �RK2� �tfwtg � f0g, �20
where the details of reduced matrices and recovery DOFs are given in the
Appendix. In the above, [RK0], [RK1], and [RK2] are constant stiffness, ®rst
order, and second order non-linear stiffness matrices dependent on
displacements. An iterative method in the frequency domain based on LUM/
NTF approximation by Xue and Mei [7] is applied in this study. In this
approximation, dynamic displacements are assumed to be harmonic oscillation
as follows:

fwtg � lf�wg cosot �21�
where {�w} is a normalized complex vector whose maximum value is unity. l
represents the maximum amplitude of transverse de¯ection. By substituting
equation (21) into equation (20) and applying LUM/NTF to equation (20), the
following equation for ¯utter analysis can be obtained:

��RK0� � �l=
���
2
p
��RK1� � 3l2=4�RK2� � o2�RM��f�wg � f0g, �22�

where [ � ] denotes stiffness matrix dependent on an eigenvector {�w} and the
aerodynamic damping term is assumed to be negligible. The details of the
LUM/NTF can be found in references [6] and [7]. Linear ¯utter equation is
obtained by eliminating the non-linear terms in equation (22).
For simple presentation of analysis results, the following non-dimensional

parameters are introduced [4].

b� � ba3=D, o� � oi

����������������
a4rc=D

q
�23�

where b* and o* are non-dimensional dynamic pressure and frequency, a and c
are side length and thickness of skin panel; D is rigidity of panel (D=Ec3/
12(1ÿ �2) for isotropic material and D=E2c

3 for anisotropic material).
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3.3. MODE TRACING SCHEME

For clear and precise computation of linear and non-linear ¯utter problems, a
mode tracing scheme is used at every step in the increment of dynamic pressure
b. By using this scheme, the correlation of modes between previous and present
steps can be found. The tracing scheme is performed using scalar product of
eigenvectors between previous and present steps as:

f�w
�i�
kÿ1gT �f�w

�i�
k g � Tij, �24�

where {�w
�i�
kÿ1} represents the ith eigenvector at the calculation step kÿ 1. When

the value of Tij is maximised or is near unity, the ith eigenvector in the previous
step is correlated with the jth in the present step. The change of frequencies
versus aerodynamic pressure is very complicated without a mode tracing scheme
as shown in Figure 2(a). By using a mode tracing scheme, mode histories are
clear and the coalescence of ¯utter modes is distinct as shown in Figure 2(b).
Additionally, precise application of mode to non-linear stiffness is important
because non-linear stiffness is a function of a speci®c mode. By using the tracing
scheme, the precise application of mode can be achieved. Moreover, ¯utter
analysis with a mode tracing scheme is very ef®cient because ¯utter calculation
related to only the ¯utter mode can be performed in the limit-cycle ¯utter
problem.

3.4. TEMPERATURE DISTRIBUTION

The distribution of temperature change is assumed to be uniform in the x±y
plane and linear in the z direction as follows (Figure 1):

DTp � DT0�1� gradp�z=c��, DTb � DT1�1� gradb��z� e�=h��, �25�
where grad is temperature gradient in the z direction; DT0 and DT1 are mean
temperature changes; superscripts p and b denote skin panel and stiffener and e
and h are eccentricity and height of stiffener. Temperatures at the junction
between the skin plate and stiffeners are identical. Temperature values in this
study are non-dimensionalized as DT*=DT0/DTcr. Here, DTcr is determined

Figure 2. Mode tracing process in ¯utter analysis of stiffened plate (DT*=1�25, a/b=1,
?a/c=150, t/c=1, h/c=3, [02/902]s): (a) without mode tracing; (b) with mode tracing.
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from the thermal Euler buckling analysis of a stiffened composite plate in the
state of unit uniform (0 gradient) temperature distribution.

4. RESULTS AND DISCUSSION

Material properties of graphite-epoxy laminar in this study are: E1=155�0
Gpa, E2=8�07 Gpa, G12=G13=4�55 Gpa, G23=3�25 Gpa, �12=0�22,
a1(6 10ÿ6 m/m/�C)=ÿ0�07, a2(6 10ÿ6 m/m/�C)=30�1.
The dimensions and temperature gradients of a typical stiffened plate are

given as: a/b=1�5, a/c=300, t/c=1�0, h/c=3�0; lamination scheme= [02/902]s
for skin panel and stiffeners; grad=10% and 2% for skin panel and stiffeners,
respectively; the boundary condition (simply supported in all edges) is

S:S: on x-axis: u � v � w � fx � 0 and fy 6� 0;

S:S: on y-axis: u � v � w � fy � 0 and fx 6� 0: �26�
In the above, t and h are thickness and height of a stiffener respectively. Every
stiffener is attached to the skin panel with equivalent spacing. The air¯ow
direction is assumed to be parallel to stiffeners.

4.1. VERIFICATION OF ANALYSIS CODE

The well-known numerical integration results by Dowell [1±3] and FD results
by Xue and Mei [7] are used as a reference to prove the accuracy of the present
®nite element code for ¯utter analysis. The isotropic plate (�=0�3) is subject to
uniform temperature in all directions and boundary conditions are simply
supported. The ®nite element solutions by Xue and Mei are obtained using the
24-DOF rectangular element based on classical plate theory (36 8 half-plate
mesh). The present ®nite element solutions are obtained using 56 5 nine-noded

Figure 3. Limit-cycle amplitude versus dynamic pressure in isotropic square plate with simply-
supported boundary conditions (�=0�3). Key: Ð*Ð, present; ± ± ±, Dowell (time integration
using six modes; Ð - Ð, Xue and Mei (66 8 ftm).
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quadrilateral elements based on FSDT (full-plate mesh). Figures 3 and 4 show
good agreements between the results referred to and the present ones for limit-
cycle ¯utter values and stability boundaries of the isotropic plate.

4.2. AERO±THERMAL POSTBUCKLING BEHAVIOR

Figure 5 shows maximum static de¯ections of stiffened and unstiffened
laminated plates with and without temperature gradient. The bifurcation
buckling does not occur under the existence of temperature gradient or
eccentrically attached stiffeners. In the stiffened panel, the static de¯ection at
¯utter onset point does not become zero due to bending moment induced by
eccentricity of stiffener at any temperature gradient. Flutter points are obtained
from the linear ¯utter analysis. Figure 6 shows the postbuckling de¯ection of a
stiffened plate with three stiffeners at various dynamic pressures and at
DT*=2�0. The maximum de¯ection occurs at 75% of the length of the skin
panel near ¯utter point (b*=1000). The increase of thermal load causes the
maximum buckled de¯ections to become larger and the increase of dynamic
pressure reduces the de¯ections as shown in Figure 7.

Figure 4. Stability boundaries of isotropic square plate. Key: Ð, present; &, Xue and Mei.

Figure 5. Maximum static de¯ections of laminated panels subject to aero-thermal load
(DT*=2�0). (a) unstiffened panel; (b) stiffened panel. Key: Ð*Ð, grad=10%; Ð&Ð,
grad=0%.
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4.3. MODE COALESCENCE IN STIFFENED PANEL

It is well-known that the ®rst and the second mode, or the ®rst and the third
mode coalesce ®rst in an unstiffened laminated panel. However, in a stiffened
panel, the ®rst coalescence of natural frequencies may occur in the higher modes
than the above-mentioned modes as shown in Figure 8. The dimensions of
stiffened plates are given in Equation (26). The attached stiffeners result in
signi®cant changes of natural frequencies of panel according to the increase of
dynamic pressure as shown in Figure 8.

Figure 6. Static de¯ections of stiffened laminated panel (lamination 02/902)s at y/b=0�5,
DT*=2�0, a/b=1�5, a/c=300, t/c=1, h/c=3.

Figure 7. Maximum static de¯ections of panel (02/902)s with three stiffeners subject to aero-
thermal load: a/b=1�5, a/c=300, t/c=1, h/c=3.
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4.4. EFFECT OF ATTACHED STIFFENERS ON FLUTTER BOUNDARY

Two kinds of stiffened plates are considered as examples: stiffened plates with
three stiffeners (added mass=4�5% of skin panel mass) and seven stiffeners
(added mass=10�5% of skin panel mass). The dimensions of the stiffened plates
are given in equation (26). The dimensions of the unstiffened plate are equal to
those of the skin panel of stiffened plates. Also, the unstiffened plate with
equivalent mass to the stiffened plate with seven stiffeners (EUP) is considered.
Figure 9 shows the ¯utter boundaries of these four kinds of panels. Every non-
dimensional value is calculated using the values of the unstiffened plate.
Compared with the ¯utter boundary of the EUP, that of the stiffened plates rises
conspicuously. The increase in the number of stiffeners results in the direct
increase of ¯utter onset points as shown in Figure 9.

Figure 8. Mode coalescence in ¯utter analysis of stiffened plates when DT*=1�5: lamination
and dimensions as for Figure 6. (a) Three stiffeners; (b) seven stiffeners.

Figure 9. Comparison of ¯utter boundaries between unstiffened and stiffened graphite±epoxy
(02/902)s plates (a/b=1�5, a/c=300, t/c=1, h/c=3), DTcr is value of unstiffened plate.
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4.5. LIMIT-CYCLE DEFLECTION VERSUS DYNAMIC PRESSURE

Figure 10 shows the typical limit-cycle de¯ection shapes of the stiffened panel
with three stiffeners. The stiffened plate is subject to thermal load at DT*=1�2
and various dynamic pressures. The maximum de¯ections occur at 75% of the
panel length. Under the existence of thermal load, the postbuckled static
de¯ection of the stiffened plate does not completely vanish in the limit-cycle
¯utter range. As the dynamic pressure increases, the corresponding limit-cycle
amplitudes and frequencies become higher as shown in Figure 10.

4.6. EFFECT OF TEMPERATURE GRADIENT

The dimensions of the stiffened plate are equal to those of Equation (26). The
value of grad in stiffeners is constantly 2%, but those in the skin panel are 0%,
10%, 30%, and 50%. Table 1 shows the ¯utter onset values, the corresponding
maximum static de¯ections, and ¯utter frequencies for the stiffened plate with
three stiffeners for various temperature gradients in the skin panel. Though the
temperature gradient becomes higher, there are little changes in the ¯utter onset
values and corresponding frequencies. Accordingly, the effect of temperature
gradient on ¯utter boundary is insigni®cant as shown in Table 1.

Figure 10. Aerodynamic load and ¯utter amplitude/frequency for stiffened plate (02/902)s. (a)
DT*=0�0, no static de¯ection: key for o* values; ± ± ±, 68�07; Ð - Ð, 69�19; ÐÐÐÐ, 70�90.
(b) DT*=2�0: key; ± ± ±, o*=58�80, (wmax/c)stat=0�0329; Ð - Ð, o*=60�28,
(wmax/c)stat=0�0324; ÐÐÐÐ, o*=62�55, (wmax/c)stat=0�311.

TABLE 1

Effect of temperature gradient on flutter values of stiffened plate

DT* gradsk (%) (w/c)a o�cr b�cr merging mode

0�5 0 0�0093 64�95 1402�6
10 0�0107 64�96 1402�8
30 0�0142 64�98 1403�3
50 0�0184 64�99 1403�8 1 and 3

1�5 0 0�0394 56�54 1251�3 modes
10 0�0452 56�60 1252�4
30 0�0613 56�74 1254�8
50 0�0810 56�92 1257�4

( )a denotes static de¯ection in ¯utter onset point.
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4.7. EFFECT OF STIFFENING SCHEME

Total added mass due to attached stiffeners is constant in any stiffened plate
in this section. Added mass is 4�5% of the mass of the skin panel. The
dimensions of the skin panel are like those of equation (26). Those of the
stiffeners are given in the inset of Figure 11. Figure 12 shows the ¯utter mode
shapes of various stiffened laminated plates. The stiffener in stiffened plates with
single stiffener and double stiffeners functions nearly as a rigid boundary as
shown in Figure 12. However, the ¯utter boundaries of stiffened plates with
three or more stiffeners are higher than those of stiffened plates with a single or

Figure 11. Effect of stiffening scheme on ¯utter dynamic pressure of stiffened plates (a/b=1�5,
a/c=150, lamination= [02/902]s, simply-supported). Key: ÐÐ, t/c=1, h/c=3; ± ± ±, t/c=0�6,
h/c=3; - - - -, t/c=0�43, h/c=3; ���������, t/c=1�125, h/c=4; Ð � Ð, t/c=1�8, h/c=5.

Figure 12. Flutter mode shape of various stiffened plates. (a) Single stiffeners; (b) double
stiffener; (c) three or more stiffeners.
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double stiffeners. Figure 11 shows that the stiffened plate with three stiffeners
produces the best ¯utter characteristics. The stiffening scheme directly in¯uences
the ¯utter characteristics as shown in Figure 11. Therefore, the proper stiffening
scheme should be selected to obtain the optimum ¯utter boundary.

4.8. EFFECT OF BOUNDARY CONDITION

The dimensions of the stiffened panel in this example are the same as those of
equation (26). Non-dimensional temperature is calculated using the critical
temperature of the simply supported panel. Figure 13 shows the ¯utter boundary
for two different boundary conditions: simply supported and clamped at all
edges. The stiffened plate with more restrained boundary condition is more
stable as expected. The clamped panel has a much higher ¯utter boundary than
the simply supported panel as shown in Figure 13.

Figure 13. Flutter boundaries of stiffened plates ((02/902)s with three stiffeners) with simply-
supported and clamped. Added mass=4�5% of skin panel mass; a/b=1�5; a/c=300; t/c=1;
h/c=3.

Figure 14. Effect of ®ber orientation on ¯utter boundary and static de¯ections at ¯utter onset
point for stiffened plates with 3 stiffeners and simply-supported (a/b=1�5, a/c=150, t/c=1,
h/c=3, lamination= (0/90/2y)s). (a) Flutter boundaries; (b) maximum static de¯ections. Key
for orientation y�: ÐÐ, 0; Ð Ð, 30; ± ± ±, 45; - - - -, 60; ���������, 90.



FLUTTER OF LAMINATED PLATES 65

4.9. EFFECT OF LAMINATION SCHEME

The effect of ®ber orientation y on ¯utter values is investigated in this
example. The range of ®ber orientation is taken between 0� and 90�. The
dimensions of stiffened plates are also equal to those of equation (26). The
lamination scheme of the skin panel and stiffeners of the plates is [0/90/2y]s.
The non-dimensional thermal load is calculated using the values of case y=0.
Figure 14 shows the ¯utter boundaries and maximum static de¯ections at ¯utter
onset points at various temperatures and dynamic pressures. As the ®ber
orientation angle changes from 0� to 90�, the stable region reduces
monotonically and static de¯ection at the ¯utter onset point increases due to
lower critical dynamic pressure as shown in Figure 14. Flutter mode shapes of
these various stiffened plates are similar to those of [02/902]s stiffened plate with
three stiffeners in Figure 12.

5. CONCLUSION

A supersonic ¯utter analysis of stiffened laminated plates has been performed
using the ®nite element method, developed on the basis of ®rst order shear
deformable theory, Timoshenko beam theory, the von Karman strain±
displacement relation, and ®rst order piston theory. Numerical results were
obtained using the Newton±Raphson iteration method for an aero±thermal
postbuckling analysis and complex eigenvalue solution procedure with
application of LUM/NTF for a ¯utter analysis. The Guyan reduction method is
employed to reduce the problem size and computational time. Using the mode
tracing procedure, an ef®cient and precise computation in linear and non-linear
¯utter analysis can be carried out. Limit-cycle ¯utter results and stability
boundaries for unstiffened isotropic plates were compared with those published
and good agreement between them was found.
The present investigations were mainly focused on the effect of attached

stiffeners on ¯utter characteristics. The present results illustrated quantitatively
the effects of number of stiffeners, stiffening scheme, ®ber orientation, boundary
conditions, and temperature gradient on ¯utter boundary. From these results, it
can be easily found that the ¯utter characteristics of panels can be improved
remarkably by using the proper stiffening scheme without increase in mass. The
¯utter characteristics of stiffened panels are sensitive to the stiffening scheme,
magnitude of thermal load, ®ber orientation, and boundary conditions.
However, temperature gradient has a minor effect on ¯utter bounds of stiffened
panels.
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APPENDIX

The detailed expression of equation of motion can be written from
equation (16) as follows:

�Mm� �0� �0�
�0� �Mb� �0�
�0� �0� �Mp�

264
375 f�ug
f�wg
f�fg
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9>=>;� g
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where

�K1� � �Km�, �K2� � �N1mb�s � 1
2 �N1mb�t, �K3� � �Kmp�,

�K4� � �Kb� ÿ �KDT� � b�Af� � �N1b�s � �N2b�s � �N2b�st � 1
2 �N1b� � 1

3 �N2b�t,
�K5� � �Kbp� � �N1bp�s � 1

2 �N1bp�t, �K6� � �Kp�:
Applying Guyan reduction to equation (A1), the following reduced equation is
obtained.

�RM�f�wtg � g�Ad�f _wtg � � �RKO� � �RK1� � �RK2��tfwtg � f0g, �A2�
where

�RM� � �Mb� �
�K2�
�K5�T
" #T �K1� �K3�

�K3�T �K6�

" #ÿT �Mm� �0�
�0� �Mp

� � �K1� �K3�
�K3�T �K6

" # �K2�
�K5�T
" #
�A3�

and [RM]1 [Mb] because the second term on the right side of equation (A3) has
values of 10ÿ3' 10ÿ6 order of [Mb] in a plate with a/ce 100. [RK0], [RK1] and
[RK2] are given as follows:

�RK0� � �Kb� ÿ �KDT� � b�Af� � �N1b�s � �N2b�s ÿ �N1bm�s� ~K1��N1mb�s
ÿ � �Kbp� � �N1bp�s�� ~K3��N1bm�s ÿ �N1bm�s� ~K3�� �Kpb� � �N1pb�s�
ÿ � �Kbp� � �N1bp�s�� ~K6�� �Kpb� � �N1bp�s�,

�RK1� � 1
2 �N1b� � �N2b�st ÿ 1

2 �N1bm�s� ~K1��N1mb�t ÿ 1
2 �N1bm�t� ~K1��N1mb�s

ÿ 1
2 � �Kbp� � �N1bp�s�� ~K3�T�N1mb�t ÿ 1

2 �N1bm�s� ~K3�� �Kpb� � �N1pb�s�

ÿ 1
2 �N1bm�s� ~K3��N1pb�t ÿ 1

2 �N1bp�t� ~K3�T�N1mb�s
ÿ 1

2 � �Kbp� � �N1bp�s�� ~K6��N1pb�t ÿ 1
2 �N1bp�t� ~K6�� �Kpb� � �N1pb�s�

�RK2� � 1
3 �N2b�t ÿ 1

4 �N1bm�t� ~K1��N1mb�t ÿ 1
4 �N1bp�t� ~K3�T�N1mb�t

ÿ 1
4 �N1bm�t� ~K3��N1pb�t ÿ 1

4 �N1pb�t� ~K6��N1pb�t �A4�
where

� ~K1� � ~K3�
� ~K3�T � ~K6�

" #
�

�K1� �K3�
�K3�T �K6�

" #ÿ1
: �A5�

The recovery of deleted DOF is carried out using the relationship:

futg
fftg

� �
� ÿ

�K1� �K3�
�K3�T �K6�

" #ÿ1 �K2�
�K5�T
" #

fwtg: �A6�
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