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Most reported work on transient ¯uid/structure interaction (FSI) in liquid-
®lled pipes has been carried out in the time domain. When needed, information
in the frequency domain (e.g., frequency responses) has been deduced by
discrete Fourier transforms. In this paper, the analysis is undertaken directly in
the frequency domain and has the advantage of enabling (linear) dispersive
terms to be included in a fully coupled manner. In principle, time-domain
results (e.g., pressure histories) can be obtained by numerical inverse Laplace
transforms. In both domains, the mathematical model has one pair of
equations for each mode of wave propagationÐe.g., pressure waves in the
liquid, ¯exural waves in the pipe. Axial FSI coupling exists in the equations
and also in boundary conditions. The development used herein highlights
common features between analysis in the frequency domain and analysis by the
method of characteristics (MOC) in the time domain. A general formulation,
not restricted to pipe systems, is presented. The method is validated by
comparison with an alternative exact analytical solution, with results obtained
by discrete Fourier transform from an MOC analysis and by comparison with
measured data from a laboratory apparatus.

# 1999 Academic Press

1. INTRODUCTION

Fluid/structure interaction (FSI) in liquid-®lled pipe systems has been
investigated extensively in the time domain [1, 2]. This can lead to a clear
understanding of the underlying physical phenomena and it is a convenient way
to explore the in¯uence of arbitrarily varied boundary conditions. Suitable
methods of numerical integration are widely practised and understood.
Notwithstanding this success, there are important practical advantages to be

gained from considering the behaviour in the frequency domain, the most
obvious being the prediction of natural frequencies. In principle, this
information can be obtained from discrete Fourier transforms of time-domain
results, but this is only partially effective. It does not, for instance, provide mode
shapes for single frequency excitation (except through repeat analyses).
Furthermore, the time-domain analysis must be undertaken in greater detail and
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for longer simulation periods than is usually necessary for the simulation of
transients. More important, the most popular time-domain analysisÐthe method
of characteristics (MOC)Ðdoes not provide the frequency dependent wave
speeds describing oscillatory ¯ow phenomena.
The purpose of this paper is to present a method of analysis in the frequency

domain that can be used with arbitrarily varied linear boundary conditions. The
mathematical development is presented in a form that should be readily
accessible to analysts more familiar with time domain analyses, especially MOC.
Indeed, some of the key matrices are identical in the two cases.

1.1. FLUID/STRUCTURE INTERACTION (FSI)

Three coupling mechanisms determine FSI in straight pipes. Friction coupling
is due to shear stresses resisting relative axial motion between the ¯uid and the
pipe wall. These stresses act at the interface between the ¯uid and the pipe wall.
Poisson coupling is due to normal stresses acting at this same interface. For
example, an increase in ¯uid pressure causes an increase in pipe hoop stress and
hence a change in axial wall stress. Junction coupling takes place at pipe
boundaries that can move, either in response to changes in ¯uid pressure or
because of external excitation.

1.2. PREVIOUS WORK

D'Souza and Oldenburger [3] Laplace transformed the variables, equations
and boundary conditions describing the axial vibration of a liquid-®lled pipe.
Their model included unsteady laminar friction and junction coupling, but not
Poisson coupling. It was validated by comparison with experimental data
obtained from frequency response tests in a steel pipe ®lled with hydraulic oil.
Wilkinson [4] presented transfer matrices for the axial, lateral and torsional

vibration of liquid-®lled pipes. He included junction coupling, but not friction or
Poisson coupling. Experimental results on a 1 m long, L-shaped, water-®lled,
steel pipe completed his work. The 70 mm bore pipes were excited by an external
shaker.
El-Raheb [5] and Nanayakkara and Perreira [6] derived transfer matrices for

straight and curved pipes, including the effects of junction coupling but
excluding those of Poisson and friction coupling. The matrices formed the basis
of a general algorithm to calculate the frequency response of, two-in reference [6]
and three-in reference [5], dimensional unbranched pipe systems. Nanayakkara
and Perreira compared their computational results on a single elbow pipe system
with those obtained from three-dimensional ®nite element modelling and with
experimental data from literature. Secondary acoustic loads resulting from non-
planar wave effects due to bend curvature and straight-pipe imperfection were
investigated theoretically by El-Raheb.
Kuiken [7] derived a transfer matrix for the axial vibration of a straight pipe

including Poisson coupling, but not friction coupling. The effects of Poisson and
junction coupling were studied in one numerical test case.
Lesmez [8, 9], Tentarelli [10, 11], Charley and Caignaert [12], De Jong [13, 14],

Svingen and Kjeldsen [15] and Svingen [16, 17] applied the transfer matrix
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method (TMM) to one-dimensional wave theory in the frequency response
analysis of pipe systems. All incorporated Poisson and junction coupling in
their theoretical models. Also, all presented experimental validation of their
modelsÐin some cases very impressively. The individual pipes were straight, but
strong ¯uid/pipe and axial/lateral/torsional coupling between pipes occurred in
some cases through the use of elbows and sections of curved pipe.
Lesmez [8, 9] performed experiments in a planar pipe system of variable

length. The water-®lled copper pipes had an inner diameter of 26 mm. A U-
shaped test section with 1�8 m long legs was excited by an external shaker.
Tentarelli [10, 11] was the only one to include friction coupling. He allowed

for axial pipe motion in the unsteady laminar friction model of D'Souza and
Oldenburger [3]. He also presented a model for curved tubes. Five separate
experiments on 10 mm inner diameter steel pipes ®lled with hydraulic oil were
reported. Junction and Poisson coupling were investigated in a 1 m long straight
pipe. Bourdon coupling, which occurs in curved pipes of non-circular cross-
section, was predicted and observed in a J-shaped pipe. A planar 1�9 m long L-
shaped system was used for the validation of two different elbow models.
Finally, all FSI coupling mechanisms were combined in a three-dimensional
system with three elbows, one curved section, one T-piece, two dead ends and
one ori®ce. The pipes were excited by internal pressure excitation.
Charley and Caignaert [12] used experimental data obtained in a pump test rig

to demonstrate that transfer matrices with FSI predict much better the measured
pressure spectra than do the classical waterhammer [18, 19] transfer matrices,
even in simple systems.
De Jong [13, 14] conducted experiments on a straight water-®lled steel pipe

(150 mm inner diameter, 1�5 m length) and on two such pipes connected by
either an elbow or rubber bellows. Swept sine excitation of either liquid or pipes
was used. A more comprehensive set-up was used in the experimental
determination of the transfer matrix describing a centrifugal pump. Also, several
models for curved tubes and elbows were compared.
Svingen's [15] TMM approach is based on the ®nite element method (FEM).

His model includes frequency dependent damping. His laboratory apparatus
[16, 17] consists of an L-shaped, water-®lled, steel pipe placed in a vertical plane.
The system is 20 m long and the 80 mm inner diameter pipes have 1 mm thin
walls. The system is excited by a rotating disk, interrupting out¯ow to the open
atmosphere. GajicÂ et al. [20] included linearized quasi-steady friction in a
simulation of Svingen's experiment. More extensive literature reviews can be
found in the quoted disserations [8, 10, 13, 17].
All of the above investigators applied harmonic excitations to their pipe

systems. This is in contrast with the present paper, in which impact loads are
considered. The immediate purpose is to use impact tests to determine natural
frequencies and mode shapes. A more general aim is to move towards an
analysis in the frequency domain yielding results that can be transformed
numerically into the time domain for arbitrarily varied boundary conditions. For
example, Adachi et al. [21] and Gopalakrishnan et al. [22] have followed this
approach successfully. This will permit more reasonable representations of
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frequency dependent phenomena than is possible in time-domain analyses.
Possible applications of such analyses include unsteady friction, viscoelastic pipe
wall materials and acoustic radiation in rock-bored tunnels [23±25].

1.3. OUTLINE OF PAPER

The general method of calculation is presented in section 2, particular
emphasis being placed on features shared with the time-domain method of
characteristics presented in Appendix A. In section 3, the analysis is applied to
¯exural vibrations of air-®lled and water-®lled pipes and is validated by
comparison with the alternative analytical method of Huang [26] and with new
experimental data. The more demanding case of axial vibrations is studied in
section 4, in which comparisons are made with experimental measurements
described in reference [27] and with discrete Fourier transforms of time-domain
solutions. Section 5 contains the conclusions. A list of notation is given in
Appendix D.

2. ANALYTICAL DEVELOPMENT

Suppose that the acoustic phenomenon under study can be represented in the
time domain by the set of equations

A�@=@t�fff�z, t� � B�@=@z�fff�z, t� � Cfff�z, t� � r�z, t�, �1�
where fff denotes the vector of physical unknowns (velocity, pressure, etc.), and
A, B and C are matrices of constant coef®cients. The vector r describes
environmental sources of excitation. Both fff and r represent dynamic (i.e., time-
dependent) quantities, relative to the initial steady state (i.e., equilibrium)
conditions. In general, there may be any even number of equations; in the
particular applications considered in sections 3 and 4, there are four equations.
For all cases considered herein, the matrices A (or, more general, A*, de®ned

later) and B are regular. The matrix C, which contains terms causing dispersion,
can be singular.
In the time domain, one of the most popular methods of analysis is the

method of characteristics (MOC). It is used to ®nd ordinary differential forms
of equation (1) that are applicable in particular directionsÐsuch as wave paths
(dz/dt= c, where c is a wave speed). This method is given in Appendix A.
An analogous approach is followed herein in the frequency domain. The

Laplace transform of equation (1) can be treated as an ordinary differential
equation and, in general, the solution can be found only for particular wave
numbers k= s/c, where s is the Laplace parameter.
The Laplace transform of equation (1) is

sA��s�~fff�z, s� � B�@=@z�~fff�z, s� � ~r�z, s� � Afff�z, 0�, �2�
where the symbol 0 denotes a transformed variable and the complex parameter
s characterises the particular frequency under consideration. It is treated as a
parameter in the analytical development. The matrix A*, introduced solely for
clarity, is de®ned by
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A��s� � A� �1=s�C: �3�
In the frequency domain, the matrices A, B and C may be complexÐto represent
frequency dependent parameters and damping mechanisms. The last term on the
right side of equation (2) desribes the (known) deviation from equilibrium in the
time domain at some particular time t=0.
One seeks a general solution of equation (2) in the form

~fff�z, s� � S�s�~ZZZ�z, s�: �4�
The objective is to choose S so that equation (2) becomes decoupled; that is,
independent equations will exist for each of the new dependent variables ~Zi. The
role of the variables ~Zi is analogous to that of Riemann invariants in the method
of characteristics.

2.1. DETERMINATION OF S

The ®rst step in the solution process is the choice of the matrix S. Using
equation (4) to eliminate ~fff from equation (2), one obtains

sA��s�S�s�~ZZZ�z, s� � BS�s��@=@z�~ZZZ�z, s� � ~r�z, s� � Afff�z, 0�: �5�
Multiplication throughout by (A*S)ÿ1Ðwhich is equal to Sÿ1A*ÿ1Ðyields

s~ZZZ�z, s� � LLL�s��@=@z�~ZZZ�z, s� � s~ZZZr�z, s�, �6�
in which LLL, important in the following development, is de®ned by

LLL�s� � Sÿ1�s�A�ÿ1�s�BS�s�, �7�
and ~ZZZr, introduced for convenience, is de®ned by

~ZZZr�z, s� � �1=s�Sÿ1�s�A�ÿ1�s�f~r�z, s� � Afff�z, 0�g: �8�
One now seeks to choose S so that LLL becomes a simple diagonal matrix, thereby
decoupling equation (6) into a set of independent equations, one for each of the
dependent variables ~Zi. By inspection of the right side of equation (7), it will be
possible to make such a choice if the product A*ÿ1 B has real and distinct
eigenvalues or if some eigenvalues occur in complex conjugate pairs [28; p. 309].
This will usually be the case with wave-like problems such as those considered
herein. The diagonal elements of LLL will be the eigenvalues of A*ÿ1 B, namely the
solution of the eigenvalue (dispersion, characteristic) equation

det�Bÿ l�s�A��s�� � 0: �9�
After having determined LLL, the matrix S consists of the eigenvectors xi belonging
to each li. That is

S�s� � �xxx1�s�xxx2�s� � � � xxxN�s��: �10�
For non-dispersive systemsÐi.e., C=OÐthe matrices LLL and S are exactly the
same as those found in the time-domain MOC analysis in Appendix A. For
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future reference, note that the matrix S is not unique: many valid
transformations exist.

2.2. DETERMINATION OF ~ZZZ

The next step in the solution process is the determination of ~ZZZ. Since LLL is
diagonal, equation (6) is a set of independent equations, each of the form

s~Zi�z, s� � li�s�@~Zi�z, s�=@z � s~Zri�z, s�, i � 1, 2, . . . , N, �11�
where li denotes the ith diagonal element of the matrix LLL.
Consider the homogeneous form of this equation (i.e., ~Zri � 0�. By inspection,

the solution must be exponential because no other function is proportional to its
own derivative. The general solution of the complete equation may therefore be
written as

~Zi�z, s� � ~Z0i�s� eÿsz=li�s� � ~Z�ri�z, s�, i � 1, 2, . . . , N, �12�
in which ~Z0i is determined from the boundary conditions (see section 2.4) and ~Z�ri
denotes the particular solution

~Z�ri�z, s� �
s eÿsz=li�s�

li�s�
�z

~Zri�z�, s� esz
�=li�s� dz�, i � 1, 2, . . . , N: �13�

Note that if ~Zri is independent of z: ~Z�ri�z, s� simply equals ~Zri�s�.
The vector ~ZZZ may now be written as

~ZZZ�z, s� � E�z, s�~ZZZ0�s� � ~ZZZ�r �z, s�, �14�
in which E is a diagonal matrix, namely

E�z, s� �
eÿsz=l1�s� 0 0 �

0 eÿsz=l2�s� 0 �
0 0 eÿsz=l3�s� �
� � � etc:

0BB@
1CCA: �15�

2.3. GENERAL SOLUTION

To summarize, the general solution of equation (2) can be expressed as

~fff�z, s� � S�s�E�z, s�~ZZZ0�s� � S�s�~ZZZ�r �z, s�, �16�
in which S, E and ~ZZZ�r are determined as described in sections 2.1 and 2.2, and ~ZZZ0

is determined from boundary conditions in section 2.4.

2.4. BOUNDARY CONDITIONS

Suppose that the Laplace transformed boundary conditions are linear (in ~fi�
and are known at the locations z=0 and z=L of the domain 0E zEL.
Then, upon assuming a total of N equations in N unknowns, there will generally
be N/2 relationships at each end, namely

dj1�s�~f1�0, s� � dj2�s�~f2�0, s� � � � � � djN�s�~fN�0, s� � ~qj�s�, j � 1, 2, . . . , N=2,
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dj1�s�~f1�L, s� � dj2�s�~f2�L, s� � � � � � djN�s�~fN�L, s� � ~qj�s�,

j � N=2� 1, N=2� 2, . . . , N, �17�
in which ~qj de®nes the Laplace transformed boundary excitation and the various
dji are simple coef®cients (or functions of s). These may be collected in the
matrix D,

D�s� � �d1�s� d2�s� � � � dN�s��T, �18�
with

dj�s� � �dj1�s� dj2�s� � � � djN�s��T: �19�
The substitution of the general solution (16) into the boundary conditions (17)
yields a linear system of N simultaneous equations for the N constants of
integration ~Z0i. The solution of this system is

~ZZZ0�s� � D�ÿ1�s�~q��s�, �20�
in which the matrix D* is de®ned by

D��s� � �d�1�s� d�2�s� � � � d�N�s��T, �21�
with

d�j �s� � E�0, s�ST�s�dj�s�, j � 1, 2, . . . , N=2,

d�j �s� � E�L, s�ST�s�dj�s�, j � N=2� 1, N=2� 2, . . . , N, �22�
and the vector ~q� is de®ned by

~q��s� � �~q�1�s� ~q�2�s� � � � ~q�N�s��T, �23�
with

~q�j �s� � ~qj�s� ÿ dTj �s�S�s�~ZZZ�r �0, s�, j � 1, 2, . . . , N=2,

~q�j �s� � ~qj�s� ÿ dTj �s�S�s�~ZZZ�r �L, s�, j � N=2� 1, N=2� 2, . . . , N: �24�

2.5. COMPLETE SOLUTION

After having deduced ~ZZZ0 from the linear boundary conditions, the complete
solution may be expressed as (substitution of equation (20) into equation (16)),

~fff�z, s� � S�s�E�z, s�D�ÿ1�s�~q��s� � S�s�~ZZZ�r �z, s�, �25�
in which S, E, D*, ~q� and ~ZZZ�r are de®ned by equations (10), (15), (21±22), (23±24)
and (13) respectively.
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Equation (25) is valid for any values of s (s 6� 0) and z (0E zEL). When it is
evaluated with constant z and varying s, the frequency spectrum of the quantity
fi is found at the location z. Alternatively, by evaluating it with constant s and
varying z, one obtains the ``mode shape'' of quantity fi at the frequency s.
Green functions can be derived by taking spatial Dirac delta functions for

r(z, t); see e.g., reference [29]. In many practical applications, however, there is
no spatially distributed excitation r(z, t) and, moreover, it is acceptable to
neglect any initial disturbance fff(z, 0)Ðexcept when deliberately introduced as in
snap-back tests, for example. In such cases, ~ZZZr de®ned in (8) is 0Ðso that ~ZZZ�r � 0
and ~q� � ~qÐand equation (25) simpli®es to

~fff�z, s� � S�s�E�z, s�D�ÿ1�s�~q�s�: �26�
This equation is used in the examples presented in sections 3 and 4. The system
is excited only at the boundaries through the vector ~q. The boundary conditions
can be changed through the matrix D and consequently D*. The matrices E and
S de®ne the acoustic properties of the system (see section 2.6).

2.6. TRANSFER MATRIX

The vibrational characteristics of the system, without any in¯uences of
boundary conditions, are best described by the transfer matrix M,

M�z, s� � S�s�E�z, s�Sÿ1�s�, �27�
which is obtained from equation (26) by expressing ~fff�z, s� in terms of ~fff�0, s�
through

~fff�z, s� �M�z, s�~fff�0, s�, �28�
upon noting that E(0, s)= I.
An alternative method of calculation, not used herein, is to solve the

boundary conditions (17) and the transfer equation (27), with z=L,
simultaneously for ~fff�0, s� and ~fff�L, s�.

3. APPLICATION A: FLEXURAL VIBRATION OF A FLUID-FILLED PIPE

The use of the analysis is illustrated ®rst for the case of a ¯uid-®lled pipe,
closed at both ends and subjected to lateral excitation. The pipe is straight and
has linearly elastic walls. The excitation sources are at the ends and act
perpendicularly to the pipe axis. By restricting consideration to small de¯ections,
one can neglect axial movement of the ¯uid and the pipe [30]. Thus the only
effect of the contained ¯uid is to increase the mass in comparison with that for
an empty pipe. With this adjustment, the physical conditions are identical to
those for Timoshenko beams.
The equations of motion can be found elsewhere (see, e.g., references [31, 32]).

In the notation of equation (1), they may be written as
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A �
1 0 0 0
0 1=k2GAs 0 0
0 0 1 0
0 0 0 1=EIs

0BB@
1CCA, B �

0 c2S=k
2GAs 0 0

1 0 0 0
0 0 0 c2B=EIs
0 0 1 0

0BB@
1CCA,

C �
0 0 0 0
0 0 1 0
0 ÿc2B=EIs 0 0
0 0 0 0

0BB@
1CCA, fff �

V
Q
c
M

0BB@
1CCA and r � 0, �29�

in which the dependent variables are the lateral velocity V, the lateral shear force
Q, the angular velocity c and the bending moment M. The properties of the
¯uid and the pipe are de®ned in the Nomenclature (Appendix D) and the
uncoupled (|s|=1) shear and bending wave speeds satisfy

c2S � k2GAs=�rsAs � rfAf� and c2B � E=rs: �30�
Following the sequence outlined in section 2, one can ®rst solve equation (9),
which, in this instance, is the dispersion relation for lateral wave propagation:

�1� k2GAs=rsIss
2�l4�s� ÿ �c2S � c2B�l2�s� � c2Sc

2
B � 0: �31�

The solution of this equation, expressed in real frequencies f by taking s=2p f i,
is

l21,2� f � �
�c2S � c2B� ÿ f�c2S ÿ c2B�2 � 4� fc= f �2c2Sc2Bg1=2

2f1ÿ � fc=f �2g
,

l23,4� f � �
�c2S � c2B� � f�c2S ÿ c2B�2 � 4� fc= f �2c2Sc2Bg1=2

2f1ÿ � fc=f �2g
, �32�

where

f 2
c � k2GAs=4p2rsIs: �33�

Note that fc is independent of the contained ¯uid. The special case f = fc gives

l21,2� fc� � �1=c2S � 1=c2B�ÿ1: �34�
The eigenvalues l1,2 are the frequency dependent (dispersive) wave speeds (phase
velocities) in a Timoshenko beam. The eigenvalues l3,4 are imaginary numbers
when f < fc; they represent a second mode of vibration that exists only at
frequencies higher than the cut-on frequency fc. Such high frequencies are not
considered herein. It is noted that at very high frequencies ( f !1), l1,2 tend to
2cS and l3,4 tend to 2cB, which are the speeds of propagation of discontinuities
in Q (and V ) and in M (and c) respectively [31±33].
The matrix S, consisting of the eigenvectors xxxi belonging to li, is obtained by

solving equation (7). This matrix is given in Appendix B.
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An important feature of the frequency domain analysis is that the matrix S is
a full(y-coupling) matrix. This contrasts with the approach taken in MOC
analyses, where Cfff (in equation (1)) has to be treated (numerically) as a ``right
side'' term in the governing equations. That is, it contributes to the compatibility
relationships, but not to the paths along which these relationships are regarded
as applicable.
Hysteretic damping is introduced in the analysis through a complex-valued

modulus of elasticity [34, see pp. 195±204].

3.1. FLUID AND SOLID PROPERTIES

In the following particular examples, the ¯uid and solid properties are as listed
in Table 1. They are those of a laboratory apparatus described by Vardy and
Fan [35]. In that apparatus, a 4�5 m long pipe of 60 mm outer diameter is closed
at both ends and hangs horizontally on two long, steel wires. In some
experiments, it is ®lled with water; in others, it contains only air. The pipe can be
struck axially or laterally by a 5 m long steel rod moving horizontally in the
direction of its own axisÐsee Figures 1(a), and 3(a) of section 4.1.
Damping, introduced in the calculations by taking a loss factor Z=0�01 in the

complex modulus E=168 (1+ Zi) GPa, reduces the amplitudes of vibration
near resonance.

3.2. EXAMPLE A1: DISCRETE IMPACT

In example A1, which is a numerical simulation of the physical experiment,
the pipe is supported freely in a horizontal plane. An assumed constant lateral
force Q(0, t)=Frod exists at one end for a ®nite duration 0< t<T, causing

TABLE 1

Geometrical and material properties of Dundee
single pipe apparatus [35]

Steel pipe End caps

L=4502 mm L0=60 mm
R=26�01 mm m0=1�312 kg
e=3�945 mm LL=5 mm
E=168 GPa mL=0�3258 kg
rs=7985 kg/m3

n=0�29 Air
k2=0�53
Af=2125 mm2 Ka=P5E
As=694 mm2 ra=1�2 kg/m3

Is=272900 mm4

Z=0�01 Water
x=0�002

K=2�14 GPa
rf=999 kg/m3

m=0�001 Pas
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¯exural waves to propagate along the pipe. The remaining boundary conditions
at the ends z=0 and z=L are Q(L, t)=0, M(0, t)=0 and M(L, t)=0. The
Laplace transformed applied load is then

~Q�0, s� � �Frod=s��eÿsT ÿ 1�: �35�
The magnitude and duration of the applied pulse are Frod1 80 kN and
T1 2 ms. With these boundary conditions, the matrix of boundary coef®cients
D and the excitation vector ~q are

D �
0 1 0 0
0 0 0 1
0 1 0 0
0 0 0 1

0BB@
1CCA and ~q�s� �

~Q�0, s�
0
0
0

0BB@
1CCA: �36�

z=0

Q=Frod (e–sT–1) /s

z=L

~

M=0
~

M=0
~

M=0
~

Q=0
~

M=0
~

(a)

(b) (c)

10–4

10–2

100

102

L
a

te
ra

l 
v

el
o

ci
ty

((
m

/s
)/

H
z)

10–2

100

102

S
h

ea
r 

fo
rc

e
((

N
)/

H
z)

10–4

10–2

100

102

A
n

g
u

la
r 

v
el

o
ci

ty
((

ra
d

/s
)/

H
z)

10–2

100

102

10005000 10005000

Frequency (Hz)

B
en

d
in

g 
m

om
en

t
((

N
m

)/
H

z)

Figure 1. Discrete lateral impact of free hanging pipe: (a) boundary conditions in frequency
domain; (b) frequency response of air-®lled pipe; (c) frequency response of water-®lled pipe.
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The ®rst two rows of D apply at z=0 and the last two apply at z=L. This
convention is used in all four examples herein.

3.2.1. Solution

Predicted frequency spectra, i.e., mod(~fi�0, s�� for i=1, 2, 3 and 4, are shown
in Figures 1(b) and 1(c) for air-®lled and water-®lled pipes respectively. The
frequency is f = s/(2pi) and the frequency resolution Df is 1 Hz in Figures 1±3.
The cut-on frequency fc is 17 kHz.
The bending moment and shear force curves are included for completeness;

these are prescribed quantities at z=0. The two downward peaks in the shear
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Figure 2. Biharmonic lateral vibration of hinged supports: (a) boundary conditions in fre-
quency domain; (b) frequency response of air-®lled pipe; (c) frequency response of water-®lled
pipe.
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force correspond to the basic frequency 1/T=500 Hz representing the ®nite

duration of the square pulse excitation.

The upward peaks in the velocities represent the natural frequencies of the

system. Because there is no excitation around 500 and 1000 Hz frequencies, any

natural frequencies close to these values cannot be detected.

The natural frequencies of the water-®lled pipe are about 15% lower than

those of the air-®lled pipe. This is due to the extra mass of the water, the square

root of the ratio of the two masses being {(rsAs+raAf )/(rsAs+ rf Af )}
1/2=

0�85.
The calculated natural frequencies in Table 2 are equal to those derived from

Huang's [26, equation (36)] analytical solutions for a freely vibrating

Timoshenko beam.

The measured natural frequencies in Table 2 are obtained from discrete

Fourier transformations applied to axial-strain histories of 1�5 s duration and

consisting of 15 000 samples. The measured values are close to those derived

theoretically.

The impact end of the Dundee test pipe is sealed with a solid plug of length

L0=60 mm. The results in Table 2 indicate that long (low frequency) waves

re¯ect from the free end of the plug, whereas short (high frequency) waves re¯ect

from the plug itself (that is the plug±pipe junction).

It is noted that the nth natural frequency fn of a free Timoshenko beam is

associated with the wavelength 4L/(2n+1). A good approximation of fn can be
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Figure 3. Discrete axial impact of free hanging pipe: (a) boundary conditions in frequency
domain; (b) frequency response of air-®lled pipe; (c) frequency response of water-®lled pipe.
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found by replacing the wave speeds l1,2 in equation (32) by the product of
wavelength and frequencyÐ(4L/(2n+1)) fÐand then solving for f.

3.3. EXAMPLE A2: HARMONIC EXCITATION

The physical con®guration used for example A2, which is a numerical
test case, is the same as for example A1, but the boundary conditions
are different. The ends of the pipe are hinged to supports that are vibrating
harmonically, but with different frequencies. That is, ~M�0, s� � 0, ~M�L, s� � 0,
~V�0, s� � V0Lfsin�O0t�g � V0O0=�s2 � O2

0� and ~V�L, s� � VLLfsin�OLt�g �
VLOL=�s2 � O2

L� where V0=5�0 m/s, VL=0�5 m/s, O0=2p � 40 Hz and
OL=2p � 400 Hz or, in matrix notation,

D �
1 0 0 0
0 0 0 1
1 0 0 0
0 0 0 1

0BB@
1CCA and ~q�s� �

V0O0=�s2 � O2
0�

0
VLOL=�s2 � O2

L�
0

0BB@
1CCA: �37�

TABLE 2

Natural frequencies (in Hz) of lateral vibration of pipe with free ends

Air-filled pipe Water-filled pipez���������������������������������������}|���������������������������������������{ z���������������������������������������}|���������������������������������������{
Measurement

Calculation
with length L

Calculation
with length
L+L0 Measurement

Calculation
with length L

Calculation
with length
L+L0

15 16 16 13 14 13

41 44 43 36 37 36

81 86 84 70 73 71

135 141 138 116 120 117

202 210 205 173 179 174

281 291 284 241 248 242

373 385 375 320 328 320

478 491 478 411 418 408

595 607 592 510 518 505

723 735 717 619 627 611

859 872 851 737 744 726

1008 1019 995 864 870 849

1170 1175 1147 999 1003 979



FSI ANALYSIS OF PIPES 83

This example has been chosen to demonstrate the method's ability to handle
arbitrary linear boundary excitations. In purely harmonic analyses, the boundary
excitation is assumed to have a constant amplitude, independent of f . The
excitation is then white noise, which corresponds to a Dirac pulse in the time
domain. In the present method, instead of the Dirac pulse or the white noise, an
actual (i.e., measured) excitation of the system is used. This means that the
amplitude of the excitation is frequency dependent. Also, the calculated
frequency spectra include the transient response to impact at t=0 (start-up
phenomena), so that, in principle, early time histories can be obtained from
(numerical) inverse Fourier and Laplace transformations.

3.3.1. Solution

Predicted frequency spectra (z=0) are shown in Figures 2(b) and 2(c) for air-
®lled and water-®lled pipes respectively. The imposed 40 and 400 Hz peaks are
clearly visible as well as the natural frequencies of the system itself.
The natural frequencies in Table 3 are the same as those obtained from

Huang's [26, equation (35)] analytical expression for a hinged Timoshenko
beam. Again, the natural frequencies are about 15% lower in the water-®lled
pipe than in the air-®lled pipe.

TABLE 3

Natural frequencies (in Hz) of lateral vibration of
pipe with hinged ends

Air-filled pipe
(calculated)

Water-filled pipe
(calculated)

7 6

28 24

63 54

112 95

174 148

249 212

336 287

436 371

547 466

669 570

801 683

943 804
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It is noted that the nth natural frequency fn of a hinged Timoshenko beam is
associated with the wavelength 2L/n. Values of fn can be found by replacing the
wave speeds l1,2 in equation (32) by the product of wavelength and frequencyÐ
(2L/n) fÐand then solving for f.

4. APPLICATION B: AXIAL VIBRATION OF A FLUID-FILLED PIPE

The use of the analysis is now illustrated for the case of a ¯uid-®lled pipe
subjected to axial excitation. Once again, the pipe is straight and has linearly
elastic walls. In one example, it is closed at both ends; in the other,
waterhammer and pipe vibration in a reservoir±pipe±valve system is considered.
The excitation sources are at the ends and act axially. No lateral de¯ections
exist, but strong interactions occur between the liquid and the pipe. The
principal interactions occur at the ends, but there is also Poisson coupling and
friction coupling along the pipe.
The equations of motion have been given elsewhere [36±40]. In the notation of

equation (1), they may be written as

A �
1 0 0 0
0 1=rf c

2
f 0 0

0 0 1 0
0 �n=E��R=e� 0 ÿ1=rsc2s

0BB@
1CCA, B �

0 1=rf 0 0
1 0 ÿ2n 0
0 0 0 ÿ1=rs
0 0 1 0

0BB@
1CCA,

C �
ff 0 ÿff 0
0 0 0 0
ÿfs 0 fs �Ds 0
0 0 0 0

0BB@
1CCA, fff �

Uf

P
Us

s

0BB@
1CCA and r � 0, �38�

in which the dependent variables are the axial velocities Uf and Us, the ¯uid
pressure P and the axial stress s in the ¯uid ( f ) and solid (s) respectively. The
properties of the ¯uid and the pipe are de®ned in the Nomenclature (Appendix
D) and the uncoupled axial wave speeds in the two media satisfy

c2f � �K=rf�=f1� �1ÿ n2�2KR=Eeg and c2s � E=rs: �39�

Matrix C contains the coef®cients for linear friction coupling and for viscous
structural damping. It is noted that fs={(Rrf)/(2ers)} ff for thin-walled circular
pipes.
Following the same sequence as before, one can ®rst solve equation (9), which

in this case is the dispersion equation for axial wave propagation:

a�s�l4�s� � b�s�l2�s� � c � 0: �40�
Here

a�s� � 1� � ff � fs �Ds��1=s� � ffDs=s
2, �40a�
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b�s� � ÿg2 ÿ c2s ÿ n�1ÿ 2n�R
e

rf
rs

c2f

� �
ff � �1ÿ 2n�c2f fs � c2f Ds

� �
1

s
, �40b�

c � c2f c
2
s �40c�

and

g2 � �1� 2n2�rf=rs��R=e��c2f � c2s : �41�

The system is non-dispersive when C=O, because the wave speeds li are then
independent of s:

l21,2 � 1
2fg2 ÿ �g4 ÿ 4c2f c

2
s �1=2g, l23,4 � 1

2fg2 � �g4 ÿ 4c2f c
2
s �1=2g: �42�

The pressure wave speed l1,2 in equation (42) is smaller than the classical value
cf, because the latter does not allow for the axial inertia of the pipe wall. The
axial stress wave speed l3,4 in equation (42) is larger than the classical value cs,
because the latter does not account for pressure changes provoked by axial
stresses.
The matrix S obtained from equation (7) is given in Appendix C.

4.1. EXAMPLE B1: DISCRETE IMPACT

In example B1, which is a numerical simulation of the physical experiment of
Vardy and Fan [35], the pipe of example A is freely supported in a horizontal
plane (see Figure 3(a)). A constant force Frod 1 9�4 kN is suddenly applied
axially at one end (z=0) and persists for a duration T=2L/cs1 2 ms, causing
axial waves to propagate along the pipe. At the other end of the pipe, there is no
restraint except for inertia of the end cap, and so the stipulated force is zero.
Both ends of the pipe are closed so ~Uf�0, s� � ~Us�0, s� and ~Uf�L, s� � ~Us�L, s�.
With these boundary conditions, the matrix D and vector ~q are

D �
1 0 ÿ1 0
0 Af sm0 ÿAs

1 0 ÿ1 0
0 Af ÿsmL ÿAs

0BB@
1CCA and ~q�s� �

0
�Frod=s��eÿsT ÿ 1�

0
0

0BB@
1CCA: �43�

Damping is introduced in the calculations by taking ff=0�12 Hz, fs=0�05 Hz
and Ds=18 Hz in matrix C. The ¯uid friction coef®cient ff is taken ten times
larger than 8m/(rf R2), which is its value in steady laminar ¯ow, to allow for
unsteady turbulent friction losses [43]. The structural damping coef®cient Ds

equals 2xcs (per m) after Budny et al. [38]. However, the value of the damping
ratio x is taken ten times smaller than in reference [38], because damping is much
smaller in the freely suspended pipe considered herein than in Budny's pipe
system. The in¯uence of damping is visible in the results near (anti)resonance
and at frequencies below 5 Hz.
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4.1.1. Solution

Predicted frequency spectra, i.e., mod(~fi�0, 2pi f �� for i=3 and 4, are shown
in Figures 3(b) and 3(c) for air-®lled and water-®lled pipes respectively. The
curves of the air-®lled pipe show resonance frequencies at 478 and 957 Hz. Due
to the masses m0 and mL of the end caps, these values differ from the theoretical
values cs/(2L)=509 Hz and cs/L=1019 Hz. The curves of the water-®lled pipe
show many more resonance frequencies (approximately cf/(2L)=151 Hz+
higher harmonics), because the pulsating water column interacts strongly with
the vibrating pipe. Note that the velocity spectra at the pipe ends are the same
for the ¯uid and the pipeÐbecause of the no-separation condition.
The resonance frequencies observed from Figure 3(c) are listed in Table 4,

where, as an experimental validation of the present method, they are compared
with data measured in impact tests [27]. The measured frequencies were obtained
from a discrete Fourier transformation applied to a 1 s pressure history
consisting of 10 000 samples. It is seen that the analysis picks up all the
resonance frequencies in the system. The lumped end masses in the calculation

(c)

102

104

106

100 2000

Frequency (Hz)

P
re

ss
u

re
 (

(P
a

)/
H

z)

(b)

(a)

10–5

10–3

10–1

Frequency (Hz)

P
ip

e 
v

el
o

ci
ty

 (
(m

/s
)/

H
z)

z=0 z=L

P=0
~

Us=0
~

AfP=As
~ ~

Uf–Us=–1/s
~ ~
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boundary conditions in frequency domain; (b±c) calculated frequency spectra at valve of (b) axial
pipe velocity and (c) pressure, (Ð) with FSI, (- - -) classical waterhammer.
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have little in¯uence on the ¯uid modes, but they signi®cantly lower the structural
modes (the 485 Hz and 968 Hz modes in the measurements). The agreement
between theory and experiment is good (differences less than 3%).

4.2. EXAMPLE B2: WATERHAMMER WITH FSI

In example B2, the pipe is ®xed to an immovable, constant pressure reservoir
at its upstream end and has a valve at its unrestrained downstream end (see
Figure 4(a)). For convenience, the pipe is assumed to have the same properties
as those in previous work (numerical benchmark problem of Lavooij and
Tijsseling [39, Figure 7]) (see Table 5). It is noted that the cut-on frequency of the
pipe's ®rst lobar mode (``ovalizing'') is 18 Hz [13, p. 23; 41, p. 418], but that the
in¯uence of lobar modes on axial vibration is small at low frequencies [13, p. 24].
At the time t=0, the liquid and pipe wall at the valve (z=L) are suddenly

excited by an imposed relative velocity Uf (L, t)ÿUs(L, t) equal to ÿ1 m/s. This
corresponds to an instantaneous closure of an unrestrained valve, thereby
providing FSI junction coupling.
After Laplace transformation, the kinematic boundary condition at the valve

is

~Uf�L, s� ÿ ~Us�L, s� � ÿ1=s �44�
and the equilibrium condition is

Af
~P�L, s� � As~s�L, s� � smL

~Us�L, s�, �45�
where mL is the mass of the valve.

TABLE 4

Natural frequencies (in Hz) of axial vibration of water-filled pipe with free ends

Measurement

Calculation
without end

masses Difference (%)

Calculation
with end
masses Difference (%)

173 172 ÿ0�6 171 ÿ1�2
289 286 ÿ1�0 285 ÿ1�4
459 453 ÿ1�3 453 ÿ1�3
485 493 +1�6 472 ÿ2�7
636 633 ÿ0�5 626 ÿ1�6
750 741 ÿ1�2 740 ÿ1�3
918 907 ÿ1�2 906 ÿ1�3
968 980 +1�2 944 ÿ2�5
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At the other end of the pipe, the constant pressure boundary condition is

~P�0, s� � 0 �46�
and the pipe is assumed to remain stationary at its connection with the reservoir:
i.e.,

~Us�0, s� � 0: �47�
Damping is introduced in the calculations by taking ff=0�0005 Hz,
fs=0�002 Hz and Ds=21 Hz in matrix C. For reasons given in example B1, the
¯uid friction coef®cient ff is ten times larger than its value in steady laminar
¯ow and the value of the damping ratio x in Ds=2xcs (per m) is taken ten times
smaller than in reference [38]. Damping diminishes the resonance peaks and the
anti-resonance dips.

4.2.1. Solution

Predicted frequency spectra for the pipe velocity and the pressure at the valve
are shown in Figures 4(b) and 4(c) respectively. Figure 4(c) (solid line) is
representative for both liquid and pipe, because the pressure at the valve is
proportional to the pipe stress at the valve through equation (45), with mL=0.
The broken line in Figure 4(c) is the classical waterhammer solution obtained
from uncoupled equations (38) (with n=0 and fs=0) and boundary conditions
(44) (with ~Us � 0� and (46). The frequency resolution Df in Figure 4 is 0�25 Hz.
For veri®cation, the present results have been compared with results of the

MOC±FFT method (see, e.g., references [35, 42]). The latter results have been
obtained by the straight-forward application of a discrete Fourier transform to a
time history calculated by the MOC. The duration of the time history was 2 s
and the numerical time step was Dt=0�5 ms. The MOC±FFT method yields the
same resonant frequencies as the method presented herein.

TABLE 5

Geometrical and material properties of reservoir±
pipe±valve system [39, Figure 7]

Steel pipe Water

L=20 m K=2�1 GPa
R=398�5 mm rf=1000 kg/m3

e=8 mm m=0�001 Pas
E=210 GPa ±
rs=7900 kg/m3 ±
n=0�30 ±
mL=0 kg ±
x=0�002 ±
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These FSI frequencies are listed in Table 6 together with the natural

frequencies given by classical waterhammer and beam theories. Roughly, the

waterhammer frequency cf /(4L)= (1049 m/s)/(80 m)=13 Hz and the beam

frequency cs/(4L)= (5156 m/s)/(80 m)=64 Hz and their odd higher harmonics

dominate the spectrum. The pressure wave speed cf given by equation (39) is

used in conventional waterhammer analyses when the pipeline is anchored

against axial motion (zero axial strain). When the pipeline has expansion joints

throughout its length (zero axial stress) Poisson's ratio is taken as zero in

equation (39) so that cf=1026 m/s. Natural frequencies based on this latter

value of cf are given in the third column of Table 6. The FSI (Poisson-coupled)

wave speeds are found from equations (42) as l1=1025 m/s and l3=5281 m/s.

There is a tendency of the coupled values (left column in Table 6) to deviate

from the uncoupled values (right three columns in Table 6), when the natural

frequencies of liquid and pipe are close to each other. This is the case for the

third and eighth ¯uid harmonics, which have frequencies very close to those of

the ®rst and second pipe harmonics, respectively. Figure 4(c) shows that the

TABLE 6

Natural frequencies (in Hz) in reservoir±pipe±valve system with instantaneously closed,
unrestrained valve

FSI calculation
Fluid cf(n=0�30)/
(4L) odd harmonics

Fluid cf(n=0)/(4L)
odd harmonics

Pipe cs/(4L) odd
harmonics

12 13 13 ±

32 39 38 ±

56 66 64 ±

73 ± ± 64

97 92 90 ±

116 118 115 ±

141 144 141 (129 even)

161 171 167 ±

185 197 192 ±

202 ± ± 193

226 223 218 ±

245 249 244 ±
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classical pressure spectrum (broken line) changes completely in the vicinity of the
structural frequencies 64 Hz and 193 Hz as a result of FSI (solid line).
In a classical waterhammer calculation [18, 19], the valve is assumed to be

immovable and any liquid±pipe coupling is ignored. In that case, after valve
closure, the liquid column comprises an open±closed hydraulic system with a
fundamental frequency of cf=�4L�. The pipe is ®xed±®xed (theoretically), which
gives a fundamental frequency of cs=�2L� (with even harmonics).
If the valve is able to move, calculations with FSI (junction coupling) are

required. Liquid and pipe variables are coupled at the valve through hybrid
boundary conditions in which both displacements (or velocities) and forces (or
pressures and stresses) are described.
It is interesting to see that, despite FSI, the liquid column still resembles an

open±closed system, whereas, due to unrestraining the valve, the pipe becomes
nearly ®xed±free (with odd harmonics). Apparently, the valve displacements are
relatively small for the vibration of the liquid column, whereas they are relatively
large for the vibration of the pipe.

5. CONCLUSIONS

1. An analytical model of the frequency response of liquid-®lled pipes has
been presented, account being taken of ¯uid/structure interactions due to linear
friction, Poisson and junction coupling.
2. Close analogies have been drawn with the time-domain method of

characteristics (MOC). The same eigenvalues, eigenvectors and transformation
matrices apply in both methods, in non-dispersive systems.
3. The frequency domain model permits a more accurate representation of

frequency-dependent terms and dispersive terms than is possible with MOC.
4. The model is more accurate and, for some purposes, more convenient than

the MOC±FFT approach in which results are obtained by MOC in the time
domain and transformed into the frequency domain by FFT.
5. The model has been validated by comparison with analytical, experimental

and MOC±FFT evidence for lateral and axial vibrations of a ¯uid-®lled straight
pipe excited by instantaneous impact and biharmonic support vibration.
6. The model includes transient excitation spectra and so has the potential for

numerical transformation into the time domain for arbitrarily varied, linear (in
the dependent variables), boundary conditions.
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APPENDIX A: MOC TIME-DOMAIN ANALYSIS

The basic equations (1) are solved in the time domain by the method of
characteristics (MOC). A new set of dependent variables is introduced through

ZZZ�z, t� � Sÿ1fff�z, t� or fff�z, t� � SZZZ�z, t�, �A1�
so that each Zi is a linear combination of the original variables fi. Substitution
of (A1) into equation (1) gives

AS�@=@t�ZZZ�z, t� � BS�@=@z�ZZZ�z, t� � r�z, t� ÿ CSZZZ�z, t�: �A2�
Multiplication by Sÿ1Aÿ1 gives

�@=@t�ZZZ�z, t� � LLL�@=@z�ZZZ�z, t� � ZZZr�z, t�, �A3�
in which

LLL � Sÿ1Aÿ1BS �A4�
and

ZZZr�z, t� � Sÿ1Aÿ1fr�z, t� ÿ CSZZZ�z, t�g: �A5�
A set of equations with a decoupled left side is obtained when LLL is a diagonal
matrix:

LLL �
l1 0 0 �
0 l2 0 �
0 0 l3 �
� � � etc:

0BB@
1CCA: �A6�

Substitution of equation (A6) into equation (A4) and solving for S reveals that a
non-trivial solution exists only when the diagonal elements of LLL are eigenvalues
satisfying the characteristic equation

det�Bÿ lA� � 0, �A7�
in which case S consists of the eigenvectors xxxi belonging to li:
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S � �xxx1 xxx2 � � � xxxN�: �A8�
The ``decoupled'' equations (A3),

@Zi�z, t�=@t� li@Zi�z, t�=@z � Zri�z, t�, i � 1, 2, . . . , N, �A9�
transform to

dZi�z, t�=dt � Zri�z, t�, i � 1, 2, . . . , N, �A10�
when they are considered along characteristic lines in the z-t plane de®ned by

dz=dt � li, i � 1, 2, . . . , N: �A11�
The solution of the ordinary differential equations (A10) and (A11) is

Zi�z, t� � Zi�zÿ liDt, tÿ Dt� �
��z, t�
�zÿliDt, tÿDt�

Zri�z, t� dt, i � 1, 2, . . . , N, �A12�

when a numerical time step Dt is used, or, with reference to Figure A1,

Zi�P� � Zi�Ai� �
�P
Ai

Zri�z, t� dt, i � 1, 2, . . . , N: �A13�

Note that, according to de®nition (A5), Zri depends on Zj ( j=1, 2, . . . , N) if
C 6�O.
The unknown variables Zi at any point P in the interior z-t plane can now be

expressed in their values at ``earlier'' points Ai. A time-marching procedure in
combination with a (numerical) integration scheme will give solutions ZZZ(P)
provided that appropriate initial and boundary conditions are given. The
original unknowns fff are obtained from ZZZ through equation (A1).

L0

P

A3

A1 A2

A4

z

t

Figure A1. Characteristic lines through point P in the distance-time (z-t) plane. (N=4). Point
Ai can be arbitrarily chosen along the characteristic line with slope 1/li.
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For the special case that ZZZr is 0, the following analytical solution is derived
from equations (A13) and (A1),

fff�P� �
XN
i�1

SRiS
ÿ1fff�Ai�, �A14�

where in the matrix Ri the ith diagonal element is 1 and all other elements are 0.

Boundary conditions
At the (pipe) ends, the equations (A12) or (A13) provide only N/2 relations

(see Figure A2). To ®nd the N unknowns Zi(P) at the end z0=0 (or z0=L), N/2
additional relations are required. These are given by the linear boundary
conditions

D�t�fff�z0, t� � q�t� or D�t�SZZZ�z0, t� � q�t�, �A15�
where D is an N/2 �N matrix and the N-vector q is the boundary excitation.

APPENDIX B: TRANSFORMATION MATRIX S FOR THE FREQUENCY
DOMAIN ANALYSIS OF THE LATERAL VIBRATION OF A LIQUID-FILLED

PIPE MODELLED AS A TIMOSHENKO BEAM

To maintain the analogy with the MOC analysis in references [44, pp. 38±42]
and [32, pp. 97±98], it is helpful to write the transformation matrix S in the form

S�s� � �T�s�A��s��ÿ1 or S�s� � �T�s�B�ÿ1, �B1�
which are two equally valid formulations.
The transformation matrix T used in the frequency domain analysis herein is

given below. With |s|=1, this matrix is also valid for the MOC time domain
analysis presented in Appendix A. The elements of T, derived from

LLL�s� � T�s�BA�ÿ1�s�Tÿ1�s�, �B2�
are

A2 A4

t

P

z

Figure A2. Point P at an end. (N=4).
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t11�s� � 1, t12�s� � l1�s�, t21�s� � t11�s�, t22�s� � ÿt12�s�,

t13�s� � l31�s�sÿ1=�c2B ÿ l21�s��, t14�s� � �c2B=l1�s��t13�s�, t23�s� ÿ t13�s�,

t24�s� � t14�s�, t31�s� � ac2Bl3�s�sÿ1=�l23�s� ÿ c2S�, t32�s� � l3�s�t31�s�,

t41�s� � ÿt31�s�, t42�s� � t32�s�, t33�s� � 1,

t34�s� � c2B=l3�s�, t43�s� � t33�s�, t44�s� � ÿt34�s�, �B3�
where a=k2GAs/EIs and the eigenvalues li are obtained from equation (31).

APPENDIX C: TRANSFORMATION MATRIX S FOR THE FREQUENCY
DOMAIN ANALYSIS OF THE LONGITUDINAL VIBRATION OF A LIQUID-
FILLED PIPE WITH POISSON AND LINEAR FRICTION COUPLING AND

WITH VISCOUS STRUCTURAL DAMPING

To maintain the analogy with the MOC analysis in references [44, pp. 38±42]
and [32, pp. 78±81], it is helpful to write the transformation matrix S in the form
(B1).
The transformation matrix T used in the frequency domain analysis herein is

given below. Without friction and damping effects, that is ff= fs=Ds=0, this
matrix is also valid for the MOC time domain analysis presented in Appendix A.
The elements of T, derived from equation (B2), are

t11�s� � 1� 2n
a1�s�

fs
s

� ��
1� ff

s
� 1

a1�s�
ff fs
s2

� �
, t12�s� � l1�s�, t21�s� � t11�s�,

t22�s� � ÿt12�s�, t13�s� � 2n
a1�s� ÿ

t11�s�
a1�s�

ff
s
, t14�s� � �c2s=l1�s��t13�s�,

t23�s� � t13�s�, t24�s� � ÿt14�s�, t31�s� � rf
n
E

R

e
l23�s� �

l3�s�
c2f

t32�s�,

t32�s� � rf
n
E

R

e
c2f
l3�s�
a3�s� � rf

n
E

R

e
c2f
l3�s�
a3�s� ff ÿ

c2f
c2s

l3�s�
a3�s� fs

 !
1

s
,

t41�s� � t31�s�, t42�s� � ÿt32�s�, t33�s� � l23�s�=c2s ,

t34�s� � l3�s�, t43�s� � t33�s�, t44�s� � ÿt34�s�, �C1�
where
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a1�s� � �c2s ÿ l21�s��=l21�s� ÿ � fs �Ds�=s, a3�s� � �c2f ÿ l23�s��=l23�s� ÿ ff =s,

and the eigenvalues li are obtained from equation (40).

APPENDIX D: NOMENCLATURE

Scalars
A cross-sectional area, m2

c wave speed, m/s
D damping (per unit length) coef®cient, sÿ1

det determinant
E Young modulus of the pipe wall material, Pa
e pipe wall thickness, m
F force, N
f frequency, friction coef®cient, sÿ1

FSI ¯uid/structure interaction
G shear modulus of the pipe wall material, Pa
g gravitational acceleration, m/s2

I second moment of area, m4

i imaginary unit
K ¯uid bulk modulus, Pa
k wave number (s/c), mÿ1

L length, m
L Laplace transform
M bending moment, Nm
m lumped mass, kg
MOC method of characteristics
MOC-FFT method of characteristics followed by fast Fourier transform
mod modulus
N number of dependent variables
P pressure, Pa
Q shear force, N
R inner radius of pipe, m
s Laplace parameter (complex frequency), sÿ1

T duration of applied action, s
t time, s
U axial velocity, m/s
V lateral velocity, m/s
z axial co-ordinate, m
g constant, m/sÐsee equation (41)
D numerical step size
Z loss factor in lateral vibration
k2 shear coef®cient of the pipe wall material
l eigenvalue, m/s
m dynamic viscosity, Pas
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n Poisson ratio
x damping ratio in axial vibration
r mass density, kg/m3

s axial stress, Pa
c rotational velocity of pipe, sÿ1

O circular frequency of external excitation, rad/s

Matrices and vectors
A coef®cientsÐsee equation (1)
A* coef®cientsÐsee equation (3)
B coef®cientsÐsee equation (1)
C coef®cientsÐsee equation (1)
D boundary condition coef®cientsÐsee equations (17), (A15)
D* modi®ed DÐsee equation (21)
E diagonal matrix of exponential coef®cientsÐsee equation (15)
I identity matrix
M transfer matrixÐsee equation (27)
O zero matrix
~q, q boundary condition coef®cients (external excitation)Ðsee equations

(17), (A15)
~q� modi®ed ~qÐsee equation (23)
R matrixÐsee equation (A14)
r environmental termsÐsee equation (1)
S transformation matrix (eigenvectors)Ðsee equations (4), (10),

(A1), (A8), (B1)
T transformation matrix (eigenvectors) in time-domain analysis in

references [32] and [44]Ðsee equations (B3), (C1)
LLL diagonal matrix of coef®cients (eigenvalues)Ðsee equations (7),

(A4), (B2)
~ZZZ, ZZZ composite dependent variablesÐsee equations (4), (A1)
~ZZZr, ZZZr right side in equations (6), (A3)Ðsee equations (8), (A5)
~ZZZ�r particular solution of equation (11)Ðsee equation (13)
~ZZZ0 constants of integrationÐsee equations (16), (20)
xxx eigenvectorÐsee equation (10)
fff dependent variablesÐsee equation (1)
0 zero vector

Subscripts
a air
B bending (wave speed)
c cut-on
f ¯uid, ¯ow
i element of vector or matrix
j element of vector or matrix
L position z=L
n nth natural frequency
rod impact rod (in experimental con®guration)
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S shear (wave speed)
s structure, solid
z axial co-ordinate
0 position z=0

Superscripts
0 Laplace transformed
T transposed
ÿ1 inverted
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