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In a previous series of papers [1–3], a general model based on Hamilton’s
principle and spectral analysis was developed for non-linear free vibrations
occurring at large displacement amplitudes of fully clamped beams and
rectangular homogeneous and composite plates. As an introduction to the
present work, concerned with the forced non-linear response of C–C and S–S
beams, the above model has been derived using spectral analysis, Lagrange’s
equations and the harmonic balance method. Then, the forced case has been
examined and the analysis led to a set of non-linear partial differential equations
which reduces to the classical modal analysis forced response matrix equation
when the non-linear terms are neglected. On the other hand, if only one mode is
assumed, this set reduces to the Duffing equation, very well known in one mode
analyses of non-linear systems having cubic non-linearities. So, it appeared
sensible to consider such a formulation as the multidimensional Duffing
equation.

In order to solve the multidimensional Duffing equation in the case of
harmonic excitation of beam like structures, a method is proposed, based on the
harmonic balance method, and a set of non-linear algebraic equations is
obtained whose numerical solution leads in each case to the basic function
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contribution coefficients to the displacement response function. These
coefficients depend on the excitation frequency and the distribution of the
applied forces. The frequency response curve obtained here exhibits qualitatively
a classical non-linear behaviour, with multivalued regions in which the jump
phenomenon could occur. Quantitatively, the analytical result obtained here,
without assuming any limitation to the scale of the excitation, is identical to that
obtained by the multiple scale method which assumes small values of the scaling
parameter.

Attention was focused on the assumed one mode in order to improve the
results obtained. In the case of free vibrations, the analytical solution obtained
by elliptic functions has been expanded into power series of higher orders using
the symbolic manipulation program ‘‘Maple’’. It has been shown that extreme
care must be taken in the choice of the polynomial approximation which is valid
only in a zone limited by a radius of convergence. The use of Padé approximants
permitted considerable increase in the zone of validity of the solution obtained
for very large vibration amplitudes.

7 1999 Academic Press

1. INTRODUCTION

In modern engineering problems, large vibration amplitudes of beam-like or
plate-like structures very often occur [4] inducing a dynamic behaviour which is
different in many ways from that predicted by linear structural dynamics
theories. Some of these differences, such as the jump phenomenon, the amplitude
dependence of mode shapes, response harmonic distortion and the harmonic
distortion amplitude dependence have been examined experimentally [1–8]. Also,
a considerable amount of published theoretical research is available which shows
some success in the analysis of many aspects of the non-linear dynamic
behaviour described above. However, as pointed out in [4], no general and
systematic approach to non-linear problems is available which allows all or at
least most of the known non-linear effects to be described in a unified manner.
In most of the theoretical studies, a one mode solution is often assumed. This
assumption has been shown both theoretically and experimentally to be
inaccurate for beams in references [5] and [6]. In reference [6], a theoretical model
for large vibration amplitudes of thin elastic structures was developed, based on
Hamilton’s principle and spectral analysis, to obtain numerical results. The
theory effectively reduced a non-linear free vibration problem to a set of
non-linear algebraic equations depending on the classical rigidity and mass
matrices, and a fourth order tensor due to the non-linearity. If the non-linearity
tensor due to finite displacements was neglected, the classical eigenvalue problem
known in the linear theory was obtained. By choosing the convenient basic
function in each case, results have been obtained for various boundary
conditions. The theory has been applied to simply supported and clamped–
clamped beams in reference [1]. In an improved version of the model, the spatial
distribution of the harmonic distortion was also included in the analytical and
numerical formulation and some results were obtained, which are presented in
reference [4]. However, although the above models succeeded well in analysing
via this formulation the effects of large vibration amplitudes on the mode shapes
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of simply supported beams and clamped–clamped beams, they were restricted in
a sense that only the free response problem was considered in the formulation.

In most of the papers concerned with the non-linear dynamic response of
beams, the single mode assumption was made as a tool for investigation of the
effect of the geometric non-linearities on resonant phenomena. This is due to the
simplification it introduces in the theory on one hand and on the other hand
because the error it introduces in the estimation of the non-linear frequency
remains small. Application of Galerkin’s method to the governing equation leads
to the single Duffing equation in time. The latter equation can be treated by
using the elliptical functions as clearly presented in references [9–11]. The
methods which are often used due to their simplicity are the harmonic balance
method and the perturbation method [12–19]. Some authors use the multiple
scale method [20, 21] or the direct numerical integration method [22]. In order to
obtain an ‘‘exact’’ solution of the forced Duffing equation, some possibilities
have been given [23, 24]. In other works, the time variable of the problem is
assumed to be a harmonic function. The resulting non-linear differential equation
in the spatial variables can be solved by the Ritz method [25], by combining the
finite element method and linearising functions [26–29] or by the FEM and
continuation method [30, 31]. Without the above mentioned simplifying
assumptions, various methodological approaches can be used [32, 33]. Some
experimental models can be found in references [34, 35]. Following the same
procedure presented in references [1, 4], a study of non-linear forced vibrations of
beams has been recently done [36].

The purpose of the present work was to extend the formulation presented in
reference [4] to the non-linear dynamic forced response and to give some
immediate and interesting applications of this semi-analytical approach. The
formulation has been established using Lagrange’s equations and the harmonic
balance method. The mathematical formulation of the multimode approach has
been presented for free and forced vibration of beams. A set of non-linear
algebraic equations is obtained whose numerical solution leads in each case to
the basic function contribution coefficients to the displacement response
function. When the coupling effect of the normal co-ordinates can reasonably be
neglected, as in the case of S–S beams, the one assumed mode represents the
resonant response with good accuracy. Various solutions based on the single
mode assumption obtained from this model for the forced case are examined.
For the free case, the exact solution given by elliptic functions is presented.
Attention is focussed on the amplitude frequency dependence, i.e., backbone
curves, obtained using various modelling techniques and solutions. The adequacy
of the results obtained has been carefully examined in the present work. It has
been shown that, the first approximation solution obtained by the harmonic
balance method is identical to the exact solution of the Duffing equation
obtained in terms of elliptic functions. It has been established that increasing the
number of terms in the approximate solution by using perturbation techniques
does not improve the results. The solution remains valid only in the zone of
convergence of the power series expansion which is limited by the radius of
convergence which is generally small. A mathematical technique, based on Padé
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approximants is proposed in order to increase the range of amplitudes in which
power series expansion can be used. Formulations of the frequency–amplitude
relation are presented. These approximants permitted considerable improvement
of the zone of validity. The results given by this technique match very well with
those obtained by various authors in the case of free and forced vibration of
beams.

2. GENERAL MULTIDIMENSIONAL THEORY

2.1.      ’ 

Before giving the new formulation of the non-linear forced response problem,
corresponding to large vibration amplitudes of thin beams, it is shown first that
the numerical model obtained in reference [1] by applying Hamilton’s principle to
the free response problem can also be derived using Lagrange’s equations and the
harmonic balance method. This preliminary result will make formulation easier
and clearer for the non-linear forced response case.

It is well known that Lagrange’s equations, for a conservative system, having
n degrees of freedom corresponding to n parameters qr (t), r=1 to n can be
written, if no forcing term is considered, as [37]

(d/dt)(1T/1q̇r )+ 1T/1qr − 1V/1qr =0, r=1 to n. (1)

In the above equation, T is the kinetic energy, V is the total strain energy (which
may include or not the non-linear terms depending on the problem considered)
and q̇i the derivatives of qi with respect to time.

The non-linear strain–displacement relationships of a uniform beam
undergoing large deflections are

ex = 1u/1x+ 1
2(1W/1x)2, Kx = 12W/1x2 (2)

where u and W are the axial and transverse displacements respectively. ex is the
axial strain and Kx is the curvature. Using Hooke’s law, one can write the
following relationships for the axial resultant force Nx and the bending moment
M.

Nx =EAex , M=EIKx , (3)

where E, A and I are Young’s modulus, the area, and the second moment of area
of the cross-section of the beam. The elastic strain energy V of the beam is

V=
1
2 g

L

0

(Nxex +MKx ) dx. (4)

The inertia in the in-plane direction u is expected to be small compared to the
inertia in the transverse direction W and hence it is neglected. The in-plane
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equation of motion is then given by [28, 31]

1

1x$EA01u
1x

+
1
2

12W
1x2 1%=0 or Nx =EA01u

1x
+

1
201W

1x 1
2

1=constant.

(5.1, 2)

Nx represents the non-linear stretching force. Integrating (5.2) between the limits
0 and L and applying the boundary conditions u(0)= u(L)=0 gives

Nx =
EA
2L g

L

0 01W
1x 1

2

dx. (6)

For immovable ends, if one neglects the in-plane inertia, the non-linear resultant
axial force Nx can be written in terms of the transverse displacement W alone.
The total strain energy of the beam is given by

V=
EA
8L$g

L

0 01W
1x 1

2

dx%
2

+
EI
2 g

L

0 01
2W
1x2 1

2

dx. (7)

The kinetic energy is given by

T= 1
2rA g

L

0 01W
1t 1

2

dx. (8)

Using a generalised parameterisation and the usual summation convention
defined in [1], one can put

W(x, t)= qi (t)wi (x), (9)

where wi (x) are the basic functions. Using these equations, the discretisation of
the kinetic energy T and the total strain energy V leads to:

T= 1
2q̇iq̇jmij , V= 1

2qiqjkij + 1
2qiqjqkqlbijkl , (10.1, 2)

where the terms mij , kij , and bijkl are as given in references [1, 4], by:

mij = rA g
L

0

wi (x)wj (x) dx, kij =EI g
L

0

d2wi (x)
dx2

d2wj (x)
dx2 dx, (11.1, 2)

bijkl =
EA
4L g

L

0

dwi (x)
dx

dwj (x)
dx

dx g
L

0

dwk (x)
dx

dwl (x)
dx

dx (11.3)

Substituting equations (10) in (1) leads to the following set of non-linear partial
differential equations:

q̈imir + qikir +2qiqjqkbijkr =0, r=1, . . . , n, (12)
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which can be written in matrix form as

[M]{q̈}+[K]{q}+2[B(q)]{q}= {0}, (13)

where [M], [K], [B] and {q} and are the mass tensor, the linear rigidity tensor, the
non-linear rigidity tensor and the column vector of generalised parameters
{q}t =[q1, q2, . . . , qn ] respectively. If the non-linear term [B(q)]{q} is neglected in
equation (13), the classical linear modal analysis free vibration equation is
obtained:

[M]{q̈}+[K]{q}= {0}. (14)
Now, by considering the non-linear equation (13) and assuming harmonic
motion, one can put

qi (t)= ai cos (vt). (15)

Substituting equation (15) into equation (13) leads to

−v2[M]{A} cos (vt)+ [K]{A} cos (vt)+2[B(A)]{A} cos3 (vt)= {0}, (16)

where {A} is the column vector {A}t =[a1, a2, . . . , an ]. Expanding the
trigonometric function cos3 (vt) as

cos3 (vt)= 3
4 cos (vt)− 1

4 cos (3vt), (17)

substituting it into (16) and applying the harmonic balance method leads to

2([K]−v2[M]){A}+3[B(A)]{A}= {0}. (18)

For obtaining non-dimensional parameters one puts as in reference [1]:

wi (x)= hw*i (x/L)= hw*i (x*), v2/v*2 =EI/rAL4,

kij /k*ij =EIh2/L3, mij /m*ij = rAh2L, bijkl /b*ijkl =EIh2/L3, (19)

where k*ij , m*ij , b*ijkl and v* are the non-dimensional generalised parameters. By
substituting these notations in equation (18) one obtains the following non-linear
algebraic equation [1]:

([K*]−v*2[M*]){A}+ 3
2[B*(A)]{A}= {0}. (20)

Equation (20) is identical to that obtained in reference [1] for the non-linear free
vibration of beams and plates using Hamilton’s principle and integration over
the range [0, 2p/v]. Numerical results obtained from equation (20) applied to
beams in reference [1], have shown higher increase of curvatures near to the
clamps at large deflections, compared with that predicted by the linear theory.
This was in good agreement with experimental measurements reported in
reference [3].

2.2.  

By consideration of generalised forces, the model developed above is extended
in this subsection to the forced case. Then, the expressions for the generalised
forces are given in the case of a harmonic excitation force applied to the middle
point of the beam or distributed over the whole beam length.
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2.2.1. General formulation

Consider now the forced vibration case and assume that the structure is excited
by the force F(x, t) distributed over the range S (S is the length of the beam or
a part of it). The physical force F(x, t) excites the modes of the structures via a
set of generalised forces Fi (t) which depend on the expression for F, the
excitation point for concentrated forces, the excitation length for distributed
forces, and the mode considered. The generalised forces Fi (t) are given by [34]:

Fi (t)=gS

F(x, t)wi (x) dx, (21)

in which wi is the ith mode of the structure considered. Adding the forcing term
{F(t)} to the right side of equation (13) leads to

[M]{q̈}+[K]{q}+2[B(q)]{q}= {F(t)}. (22)

Equation (22) represents a set of differential equations in which {F(t)} is a
column vector of generalised forces. This equation appears as a generalisation to
the non-linear case of the forced response equation, very well known in linear
modal analysis theory [34] i.e.,

[M]{q̈}+[K]{q}= {F(t)}, (23)

to which the term 2[B(q)]{q} corresponding to the non-linear geometrical rigidity
is added. On the other hand, if only one mode is assumed, as will be considered
in the next section, equation (22) reduces to

m11q̈1+k11q1 +2b1111q3
1 =F1(t), (24)

in which m11, k11 and b1111 are the mass, rigidity and non-linearity terms
corresponding to the first mode respectively. Putting

v2
L = k11/m11, (25)

equation (24) can be written as

q̈1 +v2
Lq1 =−2(b1111/m11)q3

1 +F1(t)/m11. (26)

This equation is identical to that obained for the forced oscillation of a particle
attached to a non-linear spring and is well known as the Duffing equation. For
the solution of such an equation, many perturbation techniques are available
which will be discussed in the next section.

It appears that the model developed above and summarised in equation (22)
can be considered as a multidimensional form of the Duffing equation which is
very often encountered in non-linear vibration analysis of structures having cubic
non-linearities such as these considered here i.e., S–S and C–C beams [21]. The
present non-linear model reduces to the classical linear modal analysis model for
forced vibrations when the non-linear terms are neglected. It is also worth
noticing here that the theory presented in [4] provides a means of calculating the
cubic non-linearity coefficient of the approximate one-dimensional Duffing



(a)

F c

xo

(b) Fd

.   .190

equation (2b1111/m11) for beams with various boundary conditions. This could
allow numerical solutions to be obtained for engineering purposes, as will be
shown later, which would be valid as far as the single mode assumption is valid.

2.2.2. Solution based on the harmonic balance method

Consider now the beam shown in Figure 1(a), excited by the concentrated
harmonic force Fc applied at the point x0, and the beam shown in Figure 1(b)
excited by the distributed harmonic uniform force Fd, Fc and Fd are given by

Fc(x, t)=Fc cos (vt)d(x− x0), Fd(x, t)=Fd cos (vt) (27.1, 2)

in which d is the Dirac function. The corresponding generalised forces Fc
i (t) and

Fd
i (t) to be implemented in equation (24) for each case are given by

Fc
i (t)=Fc cos (vt)wi (x0)= fc

i cos (vt), (28.1)

Fd
i (t)=Fd

0 cos (vt) g
L

0

wi (x) dx= fd
i cos (vt). (28.2)

Assuming a harmonic response qi = ai cos (vt) for i=1 to n, substituting
equation (28) in equation (22) and applying the harmonic balance method as in
equations (16) and (17), one obtains

([K]−v2[M]){A}+ 3
2[B(A)]{A}= {f}. (29)

Using non-dimensional parameters, equation (29) can be written in non-dimen-
sional form as:

([K*]−v*2[M*]){A}+ 3
2[B*(A)]{A}= {f*}. (30)

The dimensionless generalised forces f*c
i and f*d

i corresponding to the
concentrated force at x0 and the uniformly distributed force on the whole beam
respectively are given by:

f*c
i =Fc L3

EIh
w*i (x0), f*d

i =Fd L4

EIh g
1

0

w*i (x*) dx* (31.1, 2)

Expressions (31.1, 2) are used below for numerical calculation of the non-linear
dynamic response of S–S and C–C beams and for comparison with previous
results.

Figure 1. Details of applied forces: (a) concentrated; (b) distributed.
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3. 1-D NON-LINEAR FREQUENCY RESPONSE FUNCTIONS

The single mode assumption, denoted in the present paper as the 1-D mode,
consists of neglecting all the co-ordinates except a single ‘‘resonant’’ co-ordinate.
Thus, it reduces the multi-degree-of-freedom system to a single one. It has been
shown in previous studies that such an assumption may not be very accurate,
with regard to some effects in nonlinear vibration of structures such as the
increase of curvature near the clamps of a C–C beam for example [1]. In spite of
this, the single mode approach still remains very often used in the literature
[9–19]. This is due to the great simplification it introduces in the theory on one
hand, and on the other hand because the error it introduces in the estimation of
the non-linear frequency remains small, as will be shown later. By assuming one
mode, one obtains the forced Duffing equation (24). The exact solution of this
equation exists only when the excitation force has a specified form of an elliptic
function [9]. In the case of harmonic excitation, very often considered in the
literature, various techniques such as approximation with elliptic functions [9],
the multiple scale method [20, 21, 32] or the harmonic balance method
[10, 11, 14] have been used.

In this section, various solutions based on the single mode assumption,
obtained from the model presented above and from other methods based on
different perturbation procedures for the forced case, and on the exact elliptic
solution in the free case are examined and compared. The objective is to analyse
and to improve the accuracy of the amplitude–frequency relationships available
for both free and forced simply supported and clamped–clamped beams.

3.1. -  

As has been shown above, the model developed in the present work, rep-
resented by the multidimensional Duffing equation (22) reduces to the classical
Duffing equation (26) when only one mode is considered. If the HBM is applied
to equation (22), it leads to the non-linear algebraic system (30). Applying the
single mode assumption to equation (30) (a1 $ 0, ai =0 for iq 1), leads to

(v*/v*L )2 =1+ 3
2(b*1111/k*11)a2

1 − (1/k*11)f*1 /a1, (32)

in which v*2
L = k*11/m*11.

Equation (32) can also be obtained by applying the HBM to the one mode
Duffing equation (26). In the remainder of this paper, equation (32) will be
referred to as the 1-D non-linear frequency response function (1-D NFRF) and
will be compared with published results. In order to make a quantitative
comparison with results obtained in reference [21], based on the multiple scale
method, equation (32) can be transformed by putting ea=2b*1111/m*11, ek= f*1 /m*11.
Developing the expression obtained for v*/v*L and neglecting the e2 terms
leads to

v*=v*L + 3
8(ea/v*L )a2

1 − ek/2a1v*L . (33)

This equation is identical to (4.1.19, m=0) obtained in reference [21]. Specifying
the parameters m*11, k*11, b*1111 and f*1 for a given structure, gives the analytical
frequency–amplitude relationship for each set of boundary conditions. For a S–S
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Figure 2. Forced vibration of a S–S beam (equation (34)).

beam, the coefficients b*1111 and k*11 can be analytically computed. (Appendix A.1.)
Equation (32) becomes

(v*/v*L )2 =1+ 9
4 a2

1 − (2/p4)f*1 /a1. (34)

For a C–C beam, the coefficients of equation (32) are numerically computed
(Appendix A.2.), which leads to:

(v*/v*L )2 =1+1·36065a2
1 − (1/k*11)f*1 /a1. (35)

Equations (34) and (35) corresponding to the 1-D NFRF for S–S and C–C
beams respectively are represented in Figures 2 and 3 for various values of the
dimensionless excitation amplitude f*1 . The corresponding numerical values are

T 1

Forced vibration frequency ratio v/vL for a simply supported beam under a uniform
harmonic distributed force Fd =2

Elliptic
AG = Multi-D present A= 1-D present solution F.E.M.+

z12aiw*i (1/2) model† (30) a1z12 model (40) [9, 29] linearisation [29]

−1·000048 1·7889745 −1 1·7853571 1·7852 1·7856
2·000017 0·87122632 2 0·8660254 0·8472 0·8460

−2·000019 1·6578010 −2 1·6583124 1·6557 1·6512
3·000032 1·4247162 3 1·4215602 1·4003 1·3760

−3·000027 1·8298262 −3 1·8314384 1·8217 1·8002
4·000007 1·8734095 4 1·8708287 1·8413 1·7846

−4·000012 2·1194099 −4 2·1213203 2·1013 2·0495
5·000003 2·3016790 5 2·2994565 2·2606 2·1619

−5·000042 2·4654062 −5 2·4672859 2·4361 2·3432

† f*1 s are given in Appendix A.
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Figure 3. Forced vibration of a C–C beam (equation (35)).

summarised in Tables 1–3 and compared with published results as will be
discussed later. The qualitative behaviour obtained in Figures 2 and 3 is
characteristic for non-linear frequency response functions of systems with a cubic
non-linearity. It includes multivalued regions corresponding to the jump
phenomena occurring in non-linear frequency response testing. This behaviour
has been investigated both theoretically and experimentally by many authors.

3.1.1. Comparison with numerical results

Published numerical results for the non-linear forced response of beams
subjected to a harmonic excitation are quite rare. In this subsection, the cases of
harmonic uniform distributed and concentrated force are considered and a
comparison is made between numerical results available, based on the FEM [29]
and on an elliptic solution [9]. In the works mentioned above, the deflection was
written in the form

W(x, t)=RAw(x)q(t), (36)

in which A is the maximum amplitude parameter, R is the radius of gyration,
R=zI/A, w(x) and q(t) are spatial and time functions normalised in such a
manner that wmax = qmax =1. According to these notations, the dimensional
maximum amplitude wmax , obtained in the middle of the beam, is given by:
wmax =AR. In the present work, according to the notation developed in refer-
ence [1], W(x, t)= haiw*i (x*) cos (vt). So, when only symmetric modes are
excited, wmax is obtained at the middle of the beam and is given by
wmax = haiw*i (1/2). If only one mode is considered wmax = ha1w*1 (1/2). The com-
parison of these equations leads to AR= haiw*i (1/2).

For a beam with a rectangular cross-section, (h2A/I=12), the amplitude A is
given in the 1-D case by

A=(h/R)a1w*1 (1/2)=z12a1w*1 (1/2) (37)
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Substituting the expressions for a1 and f*1 given in equations (37) and (31) into
the 1-D NFRF (32) leads to

(v*/v*L )2 =1+ 1
8(b*1111/k*11)A2/[w*1 (1/2)]2 −F/A (38)

where F is defined in the case of a distributed and a concentrated harmonic
force respectively by:

Fd =Fd 1
k*11

L4

EIR
w*1 (1/2) g

1

0

w*1 (x*) dx*, Fc =Fc 1
k*11

L3

EIR
w*1 (1/2)w*1 (x0),

(39.1, 2)

in which Fd and Fc are related to the numerical non-dimensional excitation
parameters f*c

i and f*d
i by equations (31.1, 2). Computing the coefficients of

equation (38) and equation (39) (for x*0 =1/2) for each boundary condition case
leads to analytical formulations as:

simply supported beam

0v*
v*L 1

2

=1+ 3
16 A2 −

F
A

, Fd =
4
p5

L4

EIR
Fd, Fc =

2
p4

L3

EIR
Fc. (40)

clamped–clamped beam

0v*
v*L 1

2

=1+0·0449558A2 −F/A,

Fd =0·00263608(L4/EIR)Fd, Fc =0·0053873(L3/EIR)Fc. (41)

Equation (40) is identical to that generally obtained [14]. However, for equation
(41), there are small discrepancies with some authors. This is due to the different
choices of the spatial function. For example, Dumir and Bhaskar [14] used
a transverse displacement function w(x)=A sin2 (px/L) for a C–C beam
and obtained (v*/v*L )2 =1+0·046875A2 −F/A, Fd =0·002566(L4/EIR)Fd,
Fc =0·005133(L3/EIR)Fc.

Tables 1 and 2 show the frequency ratios for a S–S beam under a harmonic
distribution force and a harmonic concentrated force at the centre respectively.
Comparison is made between results obtained by the multidimensional model
presented in section 2 using six basic functions, results obtained using the 1-D
NFRF given by equation (40) and results obtained in references [9] and [29]
using an elliptic solution and the finite element method respectively.

Table 3 shows the frequency ratios for a C–C beam under a harmonic
distributed force. It is seen clearly that there are small discrepancies between
numerical results obtained by the multidimensional model and the 1-D solution
(41) at the maximum of amplitude. This is due to the contributions of higher
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modes for which more details will be given and discussed in part II of this series
of papers.

3.2. -  

In this subsection, non-linear free vibration of beams with various boundary
conditions is considered. Attention is focused on the amplitude frequency
dependence, i.e., the backbone curve, obtained using different techniques of
modelling and solution. The validity of the solutions obtained is discussed. A
mathematical technique, based on the Padé approximants is proposed in order to
increase the range of amplitude in which the power series expansion obtained
from the exact elliptical solution can be used. Then, a survey is made for
comparison purposes of the numerical results available in the literature for S–S
and C–C beams.

3.2.1. Exact solution and first approximation

Applying the one mode assumption to equation (12) and putting vt= t, leads
to

m11v
2q1,tt + k11q1 +2b1111q3

1 =0. (42)

This equation can be written as:

q1,tt +(vL /v)2[q1 + bq3
1 ]=0, (43)

where b=2b1111/k11.
One assumes that the amplitude of q1(t) is equal to a1 at t=0 and q1,t (0)=0.

It is well known [9–11] that the exact mathematical solution of (43) can be given
in term of the Jacobean elliptic function Cn. The exact form of this solution is:

q1(t)= a1 Cn (gt, k), g2 = (vL /v)2[1+ ba2
1 ], k2 = (vL /v)2(b/2g2)a2

1 ,

(44.1–3)

in which k is the modulus of the elliptic function and g may be taken as the
‘‘circular frequency’’. The elliptic function Cn is periodic with a period of 4K(k),

T 2

Forced vibration frequency ratio v/vL for a simply supported beam under a
concentrated harmonic force at the centre, Fc =0·5p

Multi-D 1-D Elliptic F.E.M.+
AG = present A= present solution linearisation‡

z12aiw*i (1/2) model† (30) a1z12 model (40) [9, 29] [29]

−1·00002 1·6529432 −1 1·6608119 1·6607 1·6425
3·000025 1·4623273 3 1·4710205 1·4519 1·2717

−3·000003 1·7974729 −3 1·7921954 1·7815 1·6326
5·000023 2·3112625 5 2·3180467 2·2801 2·9621

−5·000015 2·4559827 −5 2·4498284 2·4179 2·1165

† f*i is given in Appendix A3; ‡ the effects of longitudinal and rotary inertia are considered.
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where K is the complete elliptic integral of the first kind. The period on t of q1(t)
is T=(4/g)K(k) with

K(k)=g
p/2

0

du

z1− k2 sin2 u
. (45)

The assumption that the solution q1(t) is periodic with a period of 2p gives
g=(2/p)K(k). The final form of the exact solution of (43) is

q1(t)= a1 Cn (gt, k), (v/vL )2 = (p2/4)(1+ ba2
1 )1/[K(k)]2, (46.1, 2)

k2 = ba2
1/(2+2ba2

1 ) where b=2b1111/k11, g=(vL /v)z1+ ba2
1 . (46.3, 4)

In contrast to the harmonic balance method the computations presented in
this section are exact. However, these formulations are intractable and
unenlightening. Using a perturbation method these formulations will be replaced
by more useful equations.

For small values of a1, the modulus k is also small. Cn (gt, k) can be
approximated by [38]

Cn (gt, k)= cos (pgt/2K)= cos (t)= cos (vt). (47)

Expanding the elliptic function K(k) as a power series of a1 equation (46.2) gives

(v/vL )2 =1+ 3
4 ba2

1 − 3
128 b2a4

1 +O(a6
1 ) (48)

Finally, the first approximation of the exact solution, obtained by truncating the
above series at the second order is given by

q1(t)= a1 cos (vt), (v/vL )2 =1+ 3
2(b1111/k11)a2

1 (49.1, 2)

It appears that the solution obtained in the present subsection from the first
approximation of the elliptic function solution, i.e., equation (49.2), is identical
to that obtained in the present work in equation (32), based on the harmonic
balance method applied to the 1-D free vibrations.

3.2.2. Improvement of the solution based on the Padé approximants

There are various methods for increasing the accuracy of the frequency–ampli-
tude relationship (49.2). For example the multiscale method [20, 21], the intrinsic
balance harmonic technique [15] or the iterative method proposed in [13] may be
used. These methods give the frequency in the form of a power series expansion
of a perturbed parameter related to the amplitude of vibration. The objective of
the present subsection is to use a power series expansion of the exact solution
(46.2) in order to show that one must be extremely careful in the choice of the
polynomial approximation because of the divergence of the solution obtained
outside the zone of convergence. The power series expansion of the exact solution
(46.2) at higher orders can be easily done using the symbolic manipulation
programs ‘‘Maple’’. But the validity of this expansion is limited by the radius of
convergence (R=1/zb) due to the existence of the singularity at va1v=1/zb.
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Thus, the solution obtained is valid only in the zone of convergence. In the
remainder of this section, the power series expansion of the exact solution is
given up to the order 22. The limitation due to the divergence of the series
outside the zone of convergence is discussed. The power series expansion of the
exact solution (46.2) given by the symbolic manipulation program up to the
order 22 is:

0v

vL1
2

=1+ 3
4 ba2

1 − 3
128 b2a4

1 + 9
512 b3a6

1 − 1779
131072 b4a8

1 + 5643
524288 b5a10

1

− 146661
16777216 b6a12

1 + 486603
67108864 b7a14

1 − 841910643
137438953472 b8a16

1 + 2890461807
549755813888 b9a18

1

− 80479468611
17592186044416 b10a20

1 + 283412131281
70368744177664 b11a22

1 +O(a24
1 ). (50)

This result is the same as that obtained by Ben Saadi [39] using the Poincaré–
Lindstedt method. The latter method necessitated the solution of a differential
equation at each order of a1.

Representation at a higher order of (46.2) can be easily achieved and the
approximation at lower orders is given by truncation of (50) at the desired order.
For numerical tests, it is necessary to specify the parameter b. This parameter
depends on the type of structure and boundary conditions considered. In
Figure 4, is presented a comparison of the exact solution (46.2) computed
numerically and different truncated solutions of equation (50) in the case of a
S–S beam (b=3). (For clarity, only the orders 2, 4, 6, 20 and 22 are rep-
resented.)

It can be seen clearly that, increasing the order of the series does not increase
the validity of the solution because of the divergence beyond the radius of
convergence. It appears also in this case that, the second order approximated
solution (49.2) is the best one because it remains very close to the exact solution
over a large range of amplitudes.

This test shows that the users of perturbation methods have to be careful
concerning the divergence of the solution obtained at higher orders. Fortunately,
there are some powerful mathematical methods for recovering a more accurate
approximation of the exact solution using only a few terms of the expansion
series. These methods are crucial since they justify the use of perturbation
methods, which otherwise would be effective only for local analyses. For this
purpose, the so called Padé approximants [40, 41] are used in this subsection.
These approximants have been tested for increasing the range of validity of the
solution obtained by the Asymptotic–Numerical Method [42, 43]. They have
been also used for improving the perturbed solution obtained by the Poincaré–
Lindstedt method for Duffing and Van der Pol equations [39]. Other procedures,
like the projection technique and Euler’s transformation have been tested and
gave a very large zone of validity of the solution [39]. All of the above mentioned
studies showed the effectiveness of this technique in increasing the zone of
validity of solutions obtained by perturbation methods. The Padé approximant,
denoted P[M, N], is the quotient of two polynomials of degree M and N
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respectively. The coefficients of these polynomials are chosen, so that the first
(M+N+1) terms in the Taylor series expansion of P[M, N](a1) match the first
(M+N+1) terms of the power series (50). The construction of P[M, N]
involves only algebraic operations or a simple sequence of matrix operations
[39–43]. Each choice of M, degree of the numerator and N, degree of the
denominator, leads to an approximant. The major difficulty in applying this
technique is how to direct the choice in order to obtain the best approximants.
This needs the use of a criterion for the choice depending on the shape of the
solution. A criterion which has worked well here is the choice of P[M, N] such
that M−N=2. Presented here are just two approximants giving a very good
accuracy, as will be shown later, from comparison with the exact solution at
large amplitudes.

(v/vL )2 =P[4, 2](a1)= 1
32(128+192ba2

1 +69b2a4
1 )/(4+3ba2

1 ), (51.1)

(v/vL )2 =P[6, 4](a1)=
1
4

4096+9216ba2
1 +6748b2a4

1 +1605b3a6
1

1024+1536ba2
1 +559b2a4

1
. (51.2)

These relationships can be used for determining the amplitude–frequency depen-
dence at large vibration amplitudes for various beam boundary conditions. The
parameter b, which depends on the case considered, has to be computed and
replaced in equations (51.1) and (51.2). These frequency–amplitude relationships
can be easily incorporated in various computing programes for large vibration
amplitudes.

3.2.3. Numerical results for free vibrations

Simply supported beam

For the application of equations (51.1, 2) to a given structure, one has to
specify the parameter b. For S–S beams b=3, which gives:

(v/vL )2 =P[4, 2](a1)= (1+ 9
2 a2

1 + 621
128 a4

1)/(1+ 9
4 a2

1 ), (52.1)

Figure 4. Comparison of the exact solution (46.2) and the power series expansion of the assumed
one mode solution of free vibration of a simply supported beam, b=3.
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(v/vL )2 =P[6, 4](a1)=
1+ 27

4 a2
1 + 15183

1024 a4
1 + 43335

4096 a6
1

1+ 9
2 a2

1 + 5031
1024 a4

1
. (52.2)

It has been shown in Figure 4, that the series expansion (50) diverges from the
exact solution for values of a1 greater than the radius of convergence, R=1/z3,
except if the series is truncated at the second order. It will be demonstrated here
that, even with P[4, 2], which needs only the coefficients of (50) up to a6

1 , the
approximated solution practically coincides with the exact solution very far from
this limit. In order to show the very small discrepancies, the numerical results are
summarised in Table 4. It appears that, for an amplitude up to 10, the difference
between the exact solution and the approximations does not exceed 0·07% for
P[4, 2], and 0·003% for P[6, 4].

The formulae (51.1) and (51.2) can be used to approximate the non-linear
amplitude frequency dependence of free vibrations with a very good agreement
with the exact 1-D solution expressed in terms of elliptic integrals. This technique
appears to be very useful in increasing the zone of validity of the perturbed series
approximations.

Now, in order to make comparisons with results obtained by various authors,
one has to adapt the usual notations of the maximum amplitude ratio as was
done in the forced case. For a simply supported beam A2 =12a2

1 and b=3,
equations (46) become:

v/vL =(p/2)z1+A2/4(1/K(k)), k2 =0·A2/(4+A2). (53)

(v/vL )2 =1+ 3
16 A2, (v/vL )2 =P[4, 2](A)= (1+ 3

8 A2 + 69
2048 A4)/1+ 3

16 A2,

(54.1, 2)

T 4

Comparison of the forced vibration frequency ratio v/vL for the exact elliptic
solution (46.2) with the improved approximate solutions obtained by Padé

approximants P[4, 2] and P[6, 4]. Case of a S–S beam, b=3

Exact solution Padé approx. Padé approx. Order 2
a1 (46.2) P[4, 2] (52.1) P[6, 4] (52.2) (49.2)

0·2 1·043882323178 1·0438824 1·0438823 1·0440307
0·4 1·164483218851 1·1644868 1·1644832 1·1661904
0·6 1·339703729830 1·3397374 1·3397039 1·3453624
0·8 1·550554296213 1·5506741 1·5505555 1·5620499
1 1·784419122151 1·7846838 1·7844228 1·8027756
1·5 2·425402399966 2·4261814 2·4254185 2·4622145
2 3·107093328080 3·1084562 3·1071263 3·1622777
2·5 3·807969392722 3·8099164 3·8080203 3·8810437
3 4·519202506028 4·5217205 4·5192713 4·6097722
3·5 5·236606555137 5·2396823 5·2366928 5·3443896
4 5·957966013310 5·9615888 5·9580694 6·0827625
4·5 6·682005983284 6·6861674 6·6821262 6·8236720
5 7·407943518308 7·4126371 7·4080803 7·5663730

10 14·70974280983 14·719595 14·710038 15·033296
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T 5

Frequency ratios (v/vL ) of the non-linear free vibration of a S–S beam at various
amplitudes

A

1 2 3

Elliptic solution (53) 1·089158179 1·317776064 1·625676616
Padé approx. P[6, 4] (54.3) 1·089158179 1·317776212 1·625678474
Padé approx. P[4, 2] (54.2) 1·0891586 1·3178039 1·6258383
Order 2 (54.1) 1·089724736 1·322875656 1·639359631
Ritz method [25] 1·0897 1·3229 1·6394
F.E.M.+D.N.I.M. [22] 1·0892 1·3178 1·6257
F.E.M.+ linearization [27] 1·0888 1·3119 1·6022
F.E.M.+ linearization [16] 1·0889 1·3183 1·6260

(v/vL )2 =P[6, 4](A)= (1+ 9
16 A2 + 1687

16384 A4 + 1605
262144 A6)/(1+ 3

8 A2 + 559
16384 A4)

(54.3)

In the case of simply supported beams, the numerical resolution of the non-linear
algebraic system (20) developed in section 2 of the present paper gives exactly the
same results as that obtained by order 2 (54.1). In Table 5, comparison is made
with the present results and those obtained by various authors. It appears that,
the agreement with these results is excellent.

Clamped–clamped beams

In the case of a clamped–clamped beam,

0vL

v 1
2

=
p2

4 01+
bA2

12w*1 (1/2)21 1
K(k)2 , k2 =

bA2

24w*1 (1/2)2 +2bA2 (55.1, 2)

In this case, b=1·81420731 and w*1 (1/2)=1·588146262. The Padé approximants
(51.1, 2) lead to

(v/vL )2 =1+0·0449558213A2, (56.1)

(vL /v)2 =P[4, 2](A)=
1+0·0899116426A2 +0·0019368164A4

1+0·0449558213A2 (56.2)

(vL /v)2 =P[6, 4](A)=
1+0·13486746A2 +0·00591922A4 +0·000084389A6

1+0·08991164A2 +0·001961377A4 .

(56.3)

In Table 6 the frequency ratios are given at various amplitudes for a clamped–
clamped beam. It may be noticed from this table that the results obtained by
using the present method match very well with those obtained by the Ritz
method [25] and by the finite element method and a direct integration method
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[22]. All of these results agree very well with each other except those obtained in
[17] which are overestimated.

4. CONCLUSIONS

A semi-analytical approach to the non-linear dynamic response problem has
been developed, based on Lagrange’s principle and the harmonic balance
method. The theory effectively reduces the dynamic problem to a set of non-
linear algebraic equations depending on classical rigidity and mass matrices, and
a fourth order tensor due to the non-linearity. A mathematical formulation has
been presented for free and forced vibration of beams. By choosing the con-
venient basic functions in each case, numerical results can be obtained for
various forcing systems and boundary conditions. This approach has been
applied to determine the amplitude–frequency dependence (i.e., the backbone
curve) for non-linear free and forced vibration of S–S and C–C beams. The
effectiveness of this method will be extensively presented for various forcing and
boundary conditions of beams in part II.

It is well known that when the non-linear coupling is weak, it is possible to
obtain quite accurate response curves by neglecting the non-linear coupling terms
and considering each mode individually for response prediction. For that, the
1-D analysis is largely presented here for free and forced cases. The dynamic
problem is reduced to a 1-D Duffing equation which has been extensively studied
in the literature. However, many authors use perturbation methods to increase
the accuracy of their results. These techniques must be used with some caution
because the validity of the solution is limited by a radius of convergence. A
mathematical technique based on Padé approximants is proposed in order to
increase the range of amplitudes in which power series expansion can be used.
Some formulations of the non-linear frequency response functions are given for
S–S and C–C beams. It is shown that the numerical results obtained by the
formulations presented here coincide perfectly with the exact solution obtained
by elliptic functions in the free case. This concept is very helpful when the higher
order of accuracy is needed for very large amplitudes.
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general orthogonal polynomials.
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APPENDIX A
A.1.   

The linear mode shapes of a simply supported beam are given by:
wi (x)= h sin (ipx/L)= h sin (ipx*)= hw*i (x*). Using equations (11) and (19)
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one can easily obtain [6]

m*ij = dij/2, k*ij = i2j2p4 dij/2, b*ijkl = aijklp
4 dij dkl/4,

where a=Ah2/4I and dij is Kronecker’s symbol (a=3 for a beam of rectangular
cross-section).

A.2. – 

As presented in references [1, 4], the chosen basic functions wi (x) were the
linear clamped–clamped functions.

wi (x)=
cosh (vix/L)− cos (vix/L)

cosh (vi )− cos (vi )
−

sinh (vix/L)− sin (vix/L)
sinh (vi )− sin (vi )

,

where the constants vi are the eigenvalue parameters for a C–C beam given by
solving numerically the equation cosh (vi ) cos (vi )=1. The functions wi (x) were
normalised in such a manner that

m*ij =g
1

0

w*i (x)w*j (x) dx= dij .

In this case the coefficients of equation (32) are given numerically by:

m*11 =1, k*11 =500·5639, b*1111 =454·06334, w*1 (1/2)=1·588146262, (a=3).

A.3.     , f*i
For numerical resolution of equation (30) and comparisons with the work of

various authors, the dimensionless generalised forces f*i are

f*c
i =Fc(k*11/z12w*1 (1/2)w*1 (x0))w*i (x0),

f*d
i =Fd(k*11/z12w*1 (1/2) g

1

0

w*1 (x) dx) g
1

0

w*i (x) dx,

where Fc and Fd are given.

APPENDIX B: NOTATION

u(x, t), W(x, t) axial and transverse displacements at point x on the beam
ex , Kx axial strain, curvature
Nx , M axial resultant force, bending moment
E, h Young’s modulus of a beam, the thickness of the beam
r mass per unit length of the beam
L, A, I length, area and second moment of area of cross-section of the beam
W(x, t) transverse displacement at point x on the beam
Vb , Va , V bending, axial and total strain energy respectively, V=Vb +Va

T kinetic energy
qi generalised co-ordinate qi (t)= ai cos (vt)
wi (x) ith mode of the beam
{A} column matrix of basic function contributions to the forced response

{A}T = {a1, . . . , an}
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vL linear natural frequency corresponding to the one mode assumed
kij , mij , bijkl general term of the rigidity tensor, the mass tensor and the

non-linearity tensor, respectively
k11, m11, b1111 rigidity, mass and non-linearity parameters corresponding to the one

mode assumed, respectively
[K], [M], [B] rigidity, mass and non-linearity matrices, respectively
k*ij , m*ij , b*ijkl , f*i general term of the non-dimensional rigidity tensor, mass tensor,

non-linearity tensor and excitation, respectively
v, v* frequency and non-dimensional frequency parameter respectively
F(x, t), S exciting force, range of application of the exciting force
{F(t)} column matrix of generalised forces Fi (t)
{f} column matrix of generalised force amplitudes in the harmonic

excitation case: {F(t)}= {f} cos (vt) in the one point x excitation
case: {f}=Fc{wi (x)} in the distributed excitation case:
{f}=Fd{wi (x)}

A maximum amplitude parameter
R radius of gyration
Fd, Fc distributed force and the concentrated force at x0, respectively
Cn, K Jacobean elliptic function and complete elliptic integral of the first

kind
R radius of convergence of the expansion series
P[M, N] Padé approximant
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