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The dynamic stability of a cantilever beam attached to a translational/
rotational base is studied in this paper. Equations of motion for the simple
flexure cantilever beam with a tip mass are derived by Hamilton’s principle,
and then transformed into a set of ordinary differential equations by applying
variable transformation and the Galerkin method. Hsu’s method is extended to
investigate the instability regions of the non-homogeneous solutions. The main
objective of this paper is to identify instability regions of the system for various
combinations of the excitation frequencies and amplitudes of the oscillations.
The instability regions of the system with and without tip mass and effects of
the rotational angle velocities are compared and discussed by using Hsu’s and
Bolotin’s methods.
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1. INTRODUCTION

The dynamic problems of a cantilever beam attached to a moving base are
associated with various applications such as elastic linkages, rotating machinery,
robot manipulator arms, aircraft propellers, helicopter rotor blades, flexible
satellites, the textile industry, and flexible appendages of a spacecraft. The
dynamic stability of ordinary differential equations with periodic coefficients was
studied using Hsu’s method [1], wherein a first approximation analysis was
carried out and criteria for instability were derived. Most studies only considered
lateral deflection, and homogeneous solutions are solved using Hsu’s method.
Elmaraghy and Tabarrok [2] employed both Hsu’s and Bolotin’s [3] methods to
investigate the dynamic stability of an axially oscillating Euler beam.

Numerous studies have used different theories and techniques to investigate
the dynamic stability of belts and chains in mechanical machinery [4-6].
Tsuchiya [7] analyzed the attitude behavior of a spacecraft with a rotor during
extension of flexible appendages. Wang and Wei [8] studied a flexible robot arm
as a moving slender prismatic beam. Kane et al. [9] investigated a Timoshenko
beam built into a rigid base undergoing general three-dimensional motion.
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In order to obtain the deployment responses of a flexible beam, Creamer [10]
presented a model using Timoshenko beam theory in conjunction with base
oscillatory motion. Yuh and Young [l11] derived a time-varying partial
differential equation and boundary conditions for an axially moving beam with
rotation. Tadikonda and Baruh [12] presented a complete dynamic model for a
translating flexible beam with a prismatic joint. Stylianou and Tabarrok [13, 14]
solved an axially moving beam problem by using finite element method in which
elements are functions of time. Lee [15] exploited the properties of eigenfunctions
of a uniform fixed—free beam. The equations of motion were formulated in
matrix form for the dynamic responses of an orthotropic rotating shaft moving
longitudinally over a spring support.

In this paper, Hamilton’s principle is appled to derive the governing equations
of a cantilever beam attached to a translational/rotational base. The variable
transformation and Galerkin method are employed to discretize the distributed
system to a set of ordinary differential equations. In this study, Hsu’s method is
extended to solve the non-homogenecous problems. The main objective of this
paper is to identify the regions of instability for various combinations of the
excitation frequencies and amplitudes of the oscillations using both Hsu’s and
Bolotin’s methods.

2. EQUATION FORMULATION

In this section, Hamilton’s principle is employed to derive the governing
equations of a cantilever beam attached to a translational/rotational base, which
is shown in Figure 1. A point mass m, is attached at the tip end of the cantilever
beam. Material properties of the beam are length ¢, mass density p, flexural
rigidity E7 and uniform cross-section area A.. The beam is attached to a rigid
base which moves translationally and rotationally in the XY-plane. The co-
ordinate system OXY is a fixed inertia one. The moving co-ordinate system oxy

Figure 1. Schematic of a cantilever beam attached to translational/rotational base.
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is attached to the rigid base which has the translational/rotational motion. The
origin o is located at the rotating point and its potion vector r, is (a(f), b(f)) and
is measured from the fixed co-ordinate. In Appendix A, Timoshenko beam
theory is used to derive the governing equations. A reduction process of the
system equations through various theories is also presented.

2.1. SIMPLE FLEXURE MODEL

The simple flexure model assumes that the axial deformation can be ignored
but the inertia effect of the translational and rotational motions of the base is
retained. The geometric stiffening effects caused by the coupling between the
axial and transverse deformations are not included. From Appendix A one has
the resultant equation of motion

¢
Elviyo. + pAv, — pA{Hz[v — XV + %(82 — x| — 20 (V,vx - J

X

ViVir dx>

¢
— 9<x + vy, — J Wiy dx) + [=by + au(vy — (£ — x)vyy)] cOs 0

+ [ay + bu(vy — (£ — X)vyy)] sin 0}

+ MeVx|ay cos 0 + by sin @ — 20v,(¢, 1) — Ov(£, 1) — 6*4] = 0, (1)
and the boundary conditions

V(O’ t) = Vx(O> t) = Vxx(ga t) = 0» (2a—c)

EDveec (0, 1) — mo[vi (£, 1) + 000+ v(£, O)ve (4, 1)) 4 07 (vel — v(L, 1))
+ 2QVXV[ + (b[[ — vxan) COS 0 _— (a[[ + bel[) SlIl 0] == 0 (2d)

Equation (2d) is the dynamic equilibrium equation for the tip mass, which
includes elastic shear force and inertia force due to motions of both translation
and rotation of the base.

The merit of the simple flexure model is that only one governing equation will
be solved and the effect of translational/rotational base is still retained in the
governing equation (1) and boundary condition (2d). However, the boundary
condition (2d) is non-homogeneous, and a special variable transformation is
required before the Galerkin method is applied.

2.2. VARIABLE TRANSFORMATION
First, one introduces some non-dimensional quantities as follows:

V=v/l, t=wrt, E=x/l, O=0/or Al)=a(l)/l,

_ _— (3)
B(t) =b(t)/t, m,=m,/pAL,

where w3 = EI/pAA*.
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Substituting (3) into equation (1) and assuming 0 is constant, one has the
dimensionless governing equation

1
Vetee + Ve = [02(V = EVe +3(1 = E)Vee)] + 20 [Vr Ve — J VeVee dé]
¢
— {—Bn + A”[Vét — (1 — f) Vié]}COS Ot
- {Arr + Brr[Vf - (1 - 5) Vgg]} sin Ot
+ 711, Ve (Arr €08 O1 + B sin Ot — 20V, — 02) =0, (4)
and the boundary conditions become
Veee(1, 1) — me{ Vee (1, 7) +20Ve(1, 1) Vo (1, 1) + O [Ve(1, 1) — V(1, 7))
+ [Bir — Ve(1, 1) Arc] cos OT — [Arr + Vie(1, 1) By sin Ot} = 0, (5)
V(0,7) = V:(0,7) = Vee(1, 1) = 0. (6a-c)

In order to apply the Galerkin method, it is necessary to simplify the non-
homogeneous boundary condition (5) by using the following variable
transformation [16] as

V(& 1) = V(& 1) + F(Eh(r). (7)

where F(&) :ﬁé“ —%62 and A(t) = Vege(1, 7). Substituting equation (7) into
equations (4), (5) and (6a, b, ¢), one obtains the following equation of motion

Vieeee 4 Mo(Ag €08 O + By sin Ot + 20V, + 20 Fh, — )V

+ (@2 — B, sin @1t — A, cos O1) f/g + Ve — OV + h F
+ B cos Ot — A, sin Ot

+ h[—@*(F — F:) + 1 — A F: cos Ot — B, F: sin O1]
+ MeFrz(Ay c0s OT + By, sin Ot + 20V, + 20Fh, — 6?)
+20(V.Ve+ hF:Vy + hFVe + hh FF:) = 0, (8)
and the homogeneous boundary conditions
I_/(O, ‘L') = 175(0, ’E) = I_/g’g(l, ‘E) = 17555(1, ‘C) = 0, (921— d)
thus equation (5) becomes
MeVee(1, T) 4 Mt Fhey — (A c0s OT + By, sin Ot — 02 Ve(1, 1) — m,0°V (1, 1)
— h[Fzee + m,O@*(F — F:) + i F:( Ay, cos Ot + B, sin O1)]
+ 711(Br; €08 OT — A, sin O1)
+20m,[V:(1, 1)V (1, 7) + hee FVe(1, 7) + hF: Vo (1, 1) + hh FF: ) = 0. (10)

After the variable transformation (7), the non-homogeneous boundary condition
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(5) is changed to homogeneous boundary condition (9) and one additional
equation (10).

3. THE DISCRETIZED EQUATION

The governing equation (8) of the cantilever beam attached to a translation/
rotational base does not lend itself to a closed-form solution. To obtain the
approximate solutions, the displacement V(, t) can be expressed as a series in
terms of a given shape function ¢(¢&) with an undetermined coefficient f(7),
where ¢/&) satisfies the kinematical boundary conditions (9a—d). To obtain the
approximate solutions, n terms of the assumed modes are used to expand the
continuous displacement field V(&, 1) as

V(e D) =3 A (1)
i=1

To obtain the instability regions by applying both Hsu’s and Bolotin’s
methods, by substituting equation (11) into equation (8) and applying the
Galerkin method in the linearized system, one obtains the governing equation

J

+ By cos Ot — A, Sin Ot + z, (12)

fitalfi=—

n

n
Nj— Z Ql.’/) (A cos Ot + B, sin O1) | f;
=1 7=l

where

w?l = 0*(Qy — m,Ni — Dyi) + My,

2= —hF— h[—@*(F — F:) + 1 — A,.F: cos Ot — B, F:sin Ot
+ M Fee (A €08 OT + By sin Ot — @2)],

and Q;, Ny, D; and M;; are shown in Appendix B.

4. STABILITY ANALYSIS BY HSU’S METHOD

Hsu’s method [1] is a special perturbation method and combines the method
of variation of parameters and the series expansion of the perturbation method.
The origin position, (A(t), B(t)), of the translational/rotational base is assumed
to be a small perturbation parameter as follows:

A(t) = ecos @1, B(1) = esin O, (13a, b)

where @ is the frequency of translational motion in the X and Y directions and
&> 0 is a small parameter.

By substituting equation (13a, b) into equation (12), and using trigonometric
identities, one gets a different equation with small periodic perturbations as:
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TABLE 1
Results from application of Hsu’s method

wie 25O — 0) O + 0220 — O w3 —01,xO — O

Unstable i, < 2, < B 23, <7
Neutrally stable /lie =0 }é(, =p /lge =y
A;, and B,, are periodic e > A5, > P 130>
dzf' B n n n B
dr2l + w, f; = —£6* Z Z Q; —m, ZN,-]- cos(®@ — O)1| f;
=1 \ j=1 j=1

+¢0?sin(O — O)1 + z. (14)
As ¢ = 0, the non-homogeneous solution of equation (14) is

fi(t) = Aiy(t) cos ;T + Biy(t) sin it + 2/},

e’

(15a)

and the solution for ¢ >0 in a first order approximation is assumed to be of the
form

i(x) = Aiy(v) cos et + Biy (1) sin et + 2/, + ef ) (2), (15b)

where 4,,(7) and B;,(t) are the slowly varying functions of time.
From Hsu’s method [1], the particular integral in (15b) is obtained as

Wy _ 15 1 cos(6 — .
f[p (T) - 2. { (()126 _ (@ _ e + wj())z [T@/ COS(@ © + ('O./(?)T

i,j=1
+ V,j sin(@ -0 — U)je)‘[]
1

+ - Uiicos(O — @ — ;)T + Wi;sin(® — O — w;,)t
gy e e+ Wysin )7

1

_2 [m [Ejjcos(© — O)t + Fysin(O — @)r]}, (16)

where T, Vy, Uy, Wy, E; and Fj; are functions of 4; and B;. These coefficients
depend upon the physical properties of the system and are defined in Appendix
B.

4.1. STABILITY ANALYSIS OF BEAM WITH TIP MASS

For the homogeneous solutions, E; and Fj; must be deleted in equation (16).
Three cases using Hsu’s method will be discussed: (1) o, is near %(@ —0). In
this case the denominator w}, — (@ — @ — w;)* approaches zero in equation
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(16), a solution is sought for 2wy, + &4, = O — 0O, and 1, is a finite real number
(2) wy, + Wy, is near @ — O. In this case the denominators w}, — (O — @ — cuje)2
of the equation (16) approach zero as w;, = w, and w;— (0 — O — w;,)
approach zero as wj, = wle, a solution is sought for ® — @ = w, + Wy + &lse,
and the case is known as ““‘combination resonance of the sum type”. (3) @ — W1,
is near @ — . In this case the denommators wi, — (0 -6 — a)ﬂ,)2 of equation
(16) approach zero as wj = w,,, and w3 — (0 — 6O + cz)‘,e)2 approach zero as
;e = W, and a solution is sought for O — O = wy, — w1, + e3.. This case is
called “‘combination resonance of the difference type”. The following results are
found by using Hsu’s method:

o=k J4wt,, B = (ki)(kn) /4o, 7y = —(ka1)(ki2)/4®1002.

In this paper, Hsu’s method is extended to investigate the non-homogeneous
solutions of equatlon (14). The derivative can be seen in Appendix C. The
denominator o}, — (O — @) is nearly equal to zero, and a solution is found for
w1, + ¢4 = @ — O where / is a finite real number. Thus, one has

(e
wl {cOS[(@ )) V/L]T""COZ;M}
Sl == PO

where ¢ is a constant. From equation (17), By, is unstable only for A =0 or
¢ = 0. Similarly, one has

I cos[2( O) —¢l]t  cos(eir)
A1y = E‘f{_ 6-6) - T u }

qu——

€ sin2(@ — ©) — et sin(elr)
 Fd_ -
+ O1e U{ 2(0 - 0O) — ¢l T
z (11—} COS W], T
_ e[ — , 18
wle( w?, )(@—@—ei)+cl (18)

where ¢; is a constant and A4,, is unstable only for A =0 or ¢ = 0. Following
similar procedures, equations for 4,, and B,, are:

z 1 — w3, cos wyt z 1 — w3, sin wa,t
Azq = — 2 N qu = — 2 .
W2e w5, W2e W2e w3, @2,

(19, 20)
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4.2. STABILITY ANALYSIS FOR THE BEAM WITHOUT TIP MASS

As the system is without the tip mass, m, = 0 is substituted into the governing
equation (1) and boundary conditions. Equation (12) can be simplified as:

fi+ ol fi = —¢[6%[Q] cos(@ — O)1]f; + ¢67 sin(6 — O)x, (21)

where w7, = M;; + 0 (Qii — Dy).

The homogeneous solution of equation (21) is substituted by using Hsu’s
method [1]. Three cases similar to section 4.1 are as follows: (1) @ — O =
2w14 + &41g; condition for the instability regions of the system is ﬂﬁg < df1/4a)%g.
(2) O —0 = wi, + wyg +ehyy; condition for the instability regions 1is
/lgg < (d2)(dn1)/4w1gm2,. (3) O — O = wyg — w14 + ed3g;  condition for the
instability regions is 13, < —(d12)(da1) /4w1g02,, where djj = 31| Oy

The non-homogeneous solutions are solved next via a similar method as set
out in Appendix C. One gets A,, = Ay, By = By, wWhere A,y and B, are
constants and the stability criterion depends on A4, and By If
w1+ &dg =0 — O or ¢ = J, = 0, one obtains

Aig = (e¢'/2014) [t — sin(2wig)t/2w14] + Cig, (22)

B = (8¢’ /2m14) cos(2mig)T + Cag, (23)
where C,, and Cs, are constants. When £ #0 or 4, #0,
Ay = (e¢'[20m1g)[sinedet/edg — sSiN(21g — €Ag)T/ (21 — €Ag)] + Clgs  (24)

Big = —(e¢'2m14)[— co8(Rwig + e24)T/ (214 + €Ag) — COS eAgT/eAe] + Caq. (25)
From equations (24) and (25), when 4, =0 or w,;, = @ — @, A4,, is unstable

but By, is stable as t increases.

4.3. AXIAL TRANSLATIONS ONLY

As the system is without the tip mass (m,=0) and only has the axial
translations in the x direction (0 = 0 = 0 = 0), the governing equation (1) of the
simple flexure beam can be reduced to

EIVxxxx + PA Vtt - pA{_btt + att[Vx - (L - X) VX‘C}} = 05 (26)
and boundary conditions are
V(0,1) = Vy(0, 1) = Vi(L, t) = Vixx(L, t) = 0. (27)

Then applying the Galerkin method, one obtains

n
co]zp + &0 cos Ot (Z P[,->
i=1

where wfp =M and P;j = —Q;+ N; — R;. From Hsu’s method [1], it is seen
that only P; have the effect on the instability regions of the system. The unstable

filr) + ft)=0, j=1,2,....,n,  (28)
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regions will be obtained as follows:

w1 is near 1/2, the system is unstable if 2], < @*P}, /40, (29)
w1, + Wy, 1s near 1, the system is unstable if Aﬁp < @4P12P21/4w1pa)2,,, (30)

), — W1, is near 1, the system is unstable if )ép < —@4P12P21/4w1pw2p, (31)

where 2w1, + ei1, = 1, w1, + wyp + €42y = 1 and wy, — w1, + &3, = 1.

5. STABILITY BOUNDARIES BY BOLOTIN’S METHOD

Bolotin’s method finds the boundaries of instability regions in the position
parameter ¢ vs. excitation frequency @ by virtue of the existence of a periodic
solution with periods 7 and 27. Thus, the solutions on these boundaries can be
represented in Fourier series form

{f}Y={a} + Z(ck cos kOT + di sin kOt + ¢xjr cos 3kOT + dy ) sintkO7), (32)
=1

where a, ¢, d, ¢, and dj ), are constants.
In the following cases we will discuss: (1) a cantilever beam with a tip mass
m,#0, (2) axial translation only.

Case I. substituting equation (32) into equation (14), the principal regions of
instability are obtained from the zeros of the central elements of the system as

(¢ /4)[1] + [M1] - (¢/2)[D1] 0 _o. ()
0 —(@ /) + M) + /(D] |

where ¢ =0 — 0, [M|]=w’ and [Di] = @*([Q] — m.[N]). These principal

ie

regions of instability are composed of single sine and cosine harmonics.

Case 2: equation (28) can be cast in the following first order form:

{X(0)} = [H@{X (1)}, (34)

where

{X(r)}—[j;((?)], [H(r)]—[g (ﬂ [D]——[éMiﬂ—s@cos@r(iPij)].

From equation (32), Bolotin’s method is used to find the regions of unstable
solutions. As a first approximation, the periodic solutions have period 27 with
T = 27/w; thus these boundaries must be represented in Fourier series form. One
has coefficients of sin(@1/2) as

—(@*/4){a}[1] + [M|{a1} - 36*{a1}[P] =0, (35)
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and coefficients of cos(@1/2) as
~(©*/9){ax}[1] + [M{ar} + 160 {ar}[P] = 0. (36)

The principal regions of instability are obtained from the zeros of the central
elements of the system. Thus, one obtains

—(0%/4)[1] + [M] — 36°[P] 0

| =00 (37
0 —0%/4[I] + [M] + 10?[P)

Using Bolotin’s method, two sets of homogeneous algebraic equations are
obtained. These regions of instability are solved from the zeros of the central
matrix elements of equations (33) and (37).

6. NUMERICAL RESULTS

The stability analyses using both Hsu’s and Bolotin’s methods are illustrated
in Figure 2 for the system with a constant angular speed 6 = 1074-61 rad/s. The
instability regions given by Hsu’s method in the three cases of section 4.1 are
shown in Figure 2(a) for w,, being near (@ — ), i =1,2,..., 4; in Figure 2(b)

600 500 —
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400 - .~ 300

v} v '

200

200
100

1 | 1 | 1 1 1 | 1 1 | 1
0 002 004 006  0.08 0.1 0 002 004 006 008 0.1
£ £

100

Figure 2. Instability regions with the constant angular velocity 0 =1074-61 rad/s of a cantilever
beam with a tip mass by using Hsu’s method. (a) %(@ —0)2 W, i=1(—),i=2(——),i=3
(. : ) and i =4 (_-_)’ (b) 0—-0= Wie + Wije, W1e + Wy, (_)’7('01(1 + w3, (_ T ')’ W, T W3, (_"_ ')s
D1e + Wy, ('__)7 D2 + W4e ('__) and D3, + Wy, (" ')’ (C) O-0== Wje — Wije, Wre— W1, (7 T ')’
W3, — Wi, ( ’ .)s W3, — W2e ( ! .)’ W4 — W1e (7)3 Wye — W2, (7) and Wyge — W3¢ (7)
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Figure 4. Instability boundaries of the beam without the tip mass and the base has only the
axial translation. First (—), second (—-—-) and third (---) approximations obtained by equation
(39).

combination resonance of the sum type for w, + w, being near O — 0; in
Figure 2(c) combination resonance of the difference type for w;, + w,, being near
O —0.

Instability regions for different angular velocities of a cantilever beam
attached to a translational/rotational base are shown in Figure 3(a—). The
results are obtained from equation (33) for the first three principal regions in the
order of 1x1 (—), 2%2 (—-—-), 3%3 (---). A higher value of the order

corresponds to a larger instability region. The case of the beam is without tip

200

100

0.2

Figure 5. Instability regions for @ = (w;, + wj) for i, j=1(—), 2 (—-—-), 3 (---) of the beam
with the same parameters as in Figure 4 by using Hsu’s method.
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300

200

100

0 0.1 0.2 0.3

Figure 6. Instability regions compared by using Hsu’s (—) and Bolotin’s (---) methods for the
beam without tip mass and the base with axial translation only.

mass and the base only has the axial translations. The first principal instability
regions w;, + w,,, i, j =1, 2, 3 taking equation (37) in the order of 1*1 (—),
2%2 (—-—-) and 3 %3 (---) matrices are shown in Figure 4. It is seen that the
instability region enlarges as the order of the matrix increases. In Figure 5, the
instability regions with the same parameters in Figure 4 are obtained by using
Hsu’s method, 2w, (—), wi, + 0y (——-), 2wy, (— =), w1, T w3, (---),
W, + w3, (---) and 2ws), (---).

In Figure 6, the system has only the axial translation, and tip mass m, is zero.
The instability regions obtained by using Hsu’s (—) and Bolotin’s (—-—-)

400 -

300 - "

100

Figure 7. Instability regions compared by using Hsu’s (—) and Bolotin’s (—-—-) methods for
the beam with tip mass and 0 = 1074-61 rad/s.
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200

160

80

40[

Figure 8. The effect of tip mass on the instability regions of the beam. With tip mass (—-—-),
without tip mass (—).

methods are compared for the principal matrices in the order of 1 %1, 2% 2 and
3 % 3. Instability regions are compared in Figure 7 for the beam with the tip
mass. It is observed that the results obtained by using Hsu’s method (—) are not
in agreement with those by using Bolotin’s method (—-—-). The main reason is
that non-homogeneous terms are neglected in the first order approximations of
Bolotin’s method, and the principal matrices are only in the order of 1 %1, 2 %2
and 3 * 3.

The effect of tip mass on the instability regions is shown in Figure 8. The
instability regions for the cantilever beam with axial translations are obtained by
using Bolotin’s method in the order of the principal matrices 1% 1, 2 %2 and
3% 3. The presence of tip mass cuts off part of the instability regions, which
borders on the frequency axis, and renders impossible the onset of resonance for
sufficiently small coefficients of excitation.

7. CONCLUSIONS

The governing equations of a cantilever beam attached to a translation/
rotational base are derived and reduced into the simple flexible beam model for
dynamic stability analysis. The velocity and acceleration of the translational
motion of the base are included in the formulation. In order to apply the
Galerkin method, variable transformation is necessary to make the boundary
conditions homogeneous. Periodic solutions composed of sine and cosine
harmonics are used in Bolotin’s method. The instability conditions are obtained
from the zeros of the central elements of the system. Hsu’s method is extended
successfully to investigate the instability regions of the nonhomogeneous
solutions. The effects of rotational angular speed and tip mass on the instability
regions are investigated and compared by using both Hsu’s and Bolotin’s
methods.
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APPENDIX A

A.l. TIMOSHENKO BEAM THEORY

A position vector of any material point P(x, y) before deformation is

r(x, y, t) = [a(t) + xcos 0 — ysin O]1 + [b(z) + xsin 0 + ycos 0]J, (A1)
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where I, J are the unit vectors of the fixed co-ordinate; a(f) and b(¢) are time
dependent.
The displacement field is

U(x, y, 1) = [(u— y)cosO — vsin O] + [(u — yf) sin O + vcos 0]J, (A2)

where u(x, t) and v(x, 7) represent the axial and transverse displacements of the
beam respectively; ¥(x, f) is the rotatory angle of cross section due to bending
alone.

Accordingly, the position vector of that point after deformation is

R(x, y, 1) =r(x, y, t) + U(x, y, 1). (A3)

Taking total derivative of R(x, y, ¢) with respect to time, one obtains

R(x, y, 1) = {a + [(us = yp,) = O(y + )] cos 0 + [=v; — O(x + u — )] sin O}i

+ {be 4 e+ 0(x +u— py)] cos 0 + [(ur — y,) — O(y + v)] sin 0}J.

(A4)
Therefore, the kinetic energy of the beam is
¢
KE. = %pJ (RR)dV = J T dx,
v 0
T=YpA{a, + [(u, — yy,) — 0(y + v)] cos 0 + [—v, — O0(x 4+ u — y)] sin 0}*
+ b+ [+ 00+ u— yp) cos 0+ [(u — ;) = O(y +v)]sin60}7),  (AS)

and of the tip mass is

T = 1m,(RR)|

x=/

= Ime({a; + [(u(€, 1) = (€, 1)) = O(y + v(L, 1))] cos O
+ [=vi (€, 1) = O(x + u(l, 1) — yy (L, 1))] sin 0}
+ by + (b, 1) + 0(x + u(t, t) — y (¢, 1)) cos 0

+ [0, 1) — 9, (6, 1)) = O(y + (¢, 1))] sin 0}%), (A6)

where p is mass density of the beam and m, is the tip mass.
The Lagrangian strains in the corresponding directions are

Exx = Uy — VY + %vi, Exy = %(—lﬁ +vy), &, =0, (A7)

where the higher order terms 1(u, — W )7 in ey, uap and b, in e, and L? in
¢,, are neglected. Hence, the total strain energy can be written as

¢
(Oxxbxx + Oxpbry + 0y08,,) dV = J U dx, (A8)

S.E. = %J
0

4
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where
U* = YEA(uy + 302 + ENJ? + KGA(vy — ¥)7), (A9)

and E is Young’s modulus of the material. Therefore, the Lagrangian density of
the system is

*C<xa t7 U, Uy, Uy Vs Vs Vi, wa lpxa lpt) =T- U* (Alo)
Hamilton’s principle for the system is
15 4
J U oL dx+5Tm] dr=0, (A11)
1 0

where the variation of kinetic energy of the tip mass is
15} 15) . .
J 0T, = J m.R(¢, 0, £)-0R(4, 0, 1) dt
151 h
. t2 X3
— mR(L. 0. 1)-3R(L, 0, 1)]" j mR(4, 0, 1)0R(, 0, 1)) dr. (A12)

14

Taking variation, applying the technique of integration by parts, substituting
(A10) and (A12) into (A11) and collecting the like terms, one obtains

LlrroL 9oL 0 oL oL 09L 0 IL
0= il Y VRN (dadi i had ot I,
nJo L\Ou 0tdu Ox0uy ov  0tdv 0Ox0vy

oL 00L 0 0L
*(W‘m‘aa—déﬂdm

J’Z <8£ oL oL
+
141

0 0

aus " o " oy,
After substituting equations (AS), (A6) and (A9) into (Al3), one has the
following governing equations

l
51//)0—%1&(@, 0, 1)-0R(¥, 0, z)] de.  (A13)

u: EA(tyy + vivyy) — pAuy + pA[Qz(x +u)+ 20v, + 0v — a,,cos 0 — b,, sin 0] =0,
(A14)

Vi EA(tyyvy + UyVyy + %vivm) + KGA(vex — W) — pAvy,

+ pA[sz — 20u, — O(x + u) — by cos + a,sinf] =0, (A15)

Y ER + KGA(vy — ) — plp, + pI (0P — 0) = 0, (Al6)
and the associated boundary conditions

u(0, 1) =v(0,1) =y (0, 1) =y .(¢, 1) =0, (Al7a-d)
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EA[uy (4, £) + 26, )] + m{ay cos 0 + by, sin 0

+ [t (0, 1) — Ov(L, 1) = 20v,(0, 1) — > (L + u(l, 1)]} =0,  (AlB)

EAfuy (€, ) + W36, O]ve (L, 1) + KGA[v, (€, 1) — (¢, 1)]
+ me{by cos 0 — ay sin O + [v, (4, 1) + 00 + u(l, 1))

+ 20u,(¢, 1) — *v(¢, 1)]} = 0. (A19)

A.2. EULER BEAM THEORY

If the beam is slender, Euler beam theory can be used to describe the beam
system by setting y = v, and neglecting the shear deformation and rotary
moment of inertia. The governing equations become

u: EA(uyy + vyvyy) — pAuy + pA[@z(x +u) + 20v, + Ov — a,; cos O — by, sin 0] =0,
(A20)

Vi EA(ty vy + uyvyy + %vivxx) — pAvy — Elvyyyx
+ pA[0%y — 20u, — O(x + u) — by cos 0 + ay; sin 0] = 0, (A21)
and boundary conditions are

u(0, 1) =v(0, 1) = v(0, 1) = vy (4, 1) = 0, (A22a-d)

EA[ux(£, 1) + W24, 1)] + m{ay cos 0 + by, sin 0

+ [un(l, 1) — 0v(L, 1) — 20v,(0, 1) — > (€ + u(l, 1))]} =0,  (A23)

EAlu.(¢, 1) + %vi(ﬂ, D)ve(l, t) — Elvyyy (4, 1)
+ me{bicos 0 — ay sin O + [vy (€, 1) + 0 + u(l, 1))

+ 20u,(¢, 1) — 0*v(¢, 1)]} = 0. (A24)

A.3. SIMPLE FLEXURE MODEL

In the simple flexible mode, the axial displacement u(x, f) will be eliminated
but retain the inertia effect of the translational and rotational motions of the
base. Thus, one may define

p(x, 1) = EA(ux + %), p(€,t) = EA[uc (¢, 1) + 12(4, 7). (A25, A26)
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Neglecting u and u,, in equation (A20), one gets
pr(x, 1) = —pA(92x +20v, + Ov — a,, cos 0 — by, sin 0). (A27)

Sequentially, substituting equation (A27) into (A21) and neglecting u and u,, one
has

PVl — pAVy — EIvyyy + pA(@zv — 0x — by, c08 0 + ay sin 0) = 0. (A28)

From equations (A25) and (A26), one has

{
pv) = plt 1) = | 5Ll o) dx

= —me{a; cos O + by sin 0 + [—Ov(L, 1) — 20v,(¢, 1) — 6%¢)}
‘
+ pA[0PY( = x) + (£ — X)(—ay cos 0 — by, sin 0) + J (20v, + Ov) dx].

X

(A29)

The governing equation (A28) is simplified as equation (1), and the boundary
conditions (A22b—d) and (A24) become equations (2a—d).

APPENDIX B

1 1 1
Dy = j S{OB(E) de, My = L SOO)b(2) dE, Ny = j P1(0)h,() de,

0

1 1
szZJO#(f)cf?,-(é) dac. R,;,:J IO G(E) dE. Ty = Uy = kyd;,

0

Vi=kyBj, W= kB, Ej=—kjz/oj, F;=6"

APPENDIX C

Here, Hsu’s method is extended to investigate the non-homogeneous solutions
of equation (14). As ¢ = 0, the solution of equation (14) is

Ji = Ajgcos w;,T + Biysin w;,T + Z/(ufe. (C1)
Equation (14) can be written in the first order form:

df;/dr = F;, (C2)
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dF;/dt + a)fefi

S

z”: <i Qi — m, iN;,-) cos(@ — @)t

i=1 \j=1 =1

A proposed solution for the first order analysis is of the form:

Ji = Aig(1) cos wjeT + Bjy(7) sin w;eT + z/a)?e + sf,(;)(r).

fi 4+ ¢0*sin(0 — O)1 + z.

(C3)

(C4)

The first three terms on the right-side are called the ‘‘variational” part of the
solution, and the fourth term is the ‘“‘perturbational” part of the solution.
Further details will be based upon the two-mode approximation. These are the

coefficients of &°,

(dA4,4/d7) cos wy.t + (dBy,/d7) sinw.t = 0,

(dA4,,/dt) cos wa,T + (dBy,/dt) sin waet = 0,

—w1,(dA4y,/d7) sin .t + @1,(dBy,/dt) cos 1,1 = —z/wl, + z,

—a)2€(dA2q/dr) sin 2,7 + wge(ngq/d‘L') COS 07,T = —Z/(D%e + z.

The perturbational equations are obtained from the coefficients of ¢!,

d
({l o, fi = [ZTl,cos@ @+cu,(r+ZU1]cos@ O — wi)T

J=1 J=1

2 2
+ Z Visin(@ — @ + wg )t + Z Wysin(@ — @ — wy,)t
J=1 J=1

2 2
- 2ZE1jcos((:) —0)t — 2ZF1jsin(@ — 01,
J=1 J=1

di |

2
e + ol fr= —%[ZTQJCOS@ @—i—wler—i-ZUz]cos@ O — wj)t

Jj=1

2 2
+ Z Vi sin(@ — O + w;e)T + Z Wysin(® — @ — w1
= =

2 2
-2 ZEzjcos(@ —0)r -2 ZFZ/ sin(@ — O)1.
= =

(C5)
(Co)
(C7)

(C8)

(C9)

(C10)
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The particular integrals to the perturbational equations by using Hsu’s
method are shown in equation (16). The non-homogeneous equation is stable
(perturbation part) in this case; the denominator w}, — (@ — @)2 in equation
(16) is nearly equal to zero. A solution is found for wi,~® — @ and described
by wi. + ¢4 = @ — @, where A is a finite real number.

The offending terms are then associated with the first perturbational equation
(C9), and the perturbational equations after removing the offending terms are

dZ 2 _ X _
?j;l + ol fi = —%{ Tijcos(® — O + wj.)t + Vijsin(O — O 4+ wje)t
J=1
2 —_ —
+ ) Ujjcos(@ — O — wj)t + Wy;sin(@ — @ — wj)t|, (Cl1)
J=1
d’f

d + @3, f» = —2[E5cos(@ — @)t + Fysin(0 — O)1]

2
- %[Z T2j COS(@ -0+ wje)f + Vz.f Sin(@ -0+ wj)T
J=1

2
+ ) " Unicos(@ — O — wjie)t + Wysin(@ — 0 — wp)t|.  (Cl2)
=1
The variational equations become

(dA4;y/dt) cos wjet + (dBj,/dt) sinw;et =0, i=1,2, (C13)

— cule(dAlq/dr) Sin w1,T + a)le(dqu/d‘c) COS 1,T

= &{—2[Ej;cos(® — O)t + Fy;sin(@ — O)t]} — z/wi, + 2z, (Cl4)

— . (dAa,/d7) sin .t + w2, (dBay/dt) cOs o, T = —z/w3, + Z. (C15)
From equations (C13-15), one finds
dAlq/dT = —dqu/d’L' tan 1,7, dAzq/d’L' = —deq/d’L' tan wy,1, (C16, C17)

dBy,/dt = —(2¢/wi.)[Ej cos(wi,T) cos(O — O)t + Fjcos(wy,1) sin(O — O)7]

— (1/w1.)(z/ @3}, — 2) cos T, (C18)

dB,,/dt = (l/wzq)(—z/wgq + z) COS 2, T. (C19)

Substituting wj, = @ — @ — &/ into equation (C18), and applying trigonometric
identities, one obtains



242 J. S. HUANG ET AL.
dBy,/dt = —(e/w1.)(Ej{cos[2(O — O) — el]t + cos(eit)}
+ Fy{sin[2(® — ©) — e]t + sin(eld1)})
— (1/one)(z/0}, — 2) cos .
From equation (C20), By, can easily be found for ¢ = 0 or A = 0 as
By = —&/w1Ey{sin[2(0 — 0)]1/2(6 — 0)}
+ (e/w10) Fii{cos[2(6 — O)]7/2(6 — 0)}
= (z/o1)((1 = w},) /e, [sin(6 — 0)1/(6 — 0)] + ¢
where ¢ is a constant. When ¢ £0 and A #£0, (C21) is simplified as
B, = —(&¢/w1) Eyj{sin2(0 — ©) — &l]t/[2(0 — O — ¢/)] + sinedt/el}

—0) —¢lt  cos e}vr}
+

From (C16) and (C20), one also has
Ay = (e/o1,) Eyj{—cos[2(0 — ©) — el]t/[2(O — ©) — &A] + cos(eit) /el}

Flj{ sin[2 (@@ ))_b;] +sinijm)}

2
—coh COS W[,T
+ ¢y,
w16< wle )[@ @—8/1] “l

where ¢, is a constant.

wle

(C20)

(C21)

(C22)

(C23)
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