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Models of track vibration representing the rail as a beam are insu�ciently
detailed for high frequencies where the rail cross-sectional deformation is
signi®cant. A double Timoshenko beam model is developed for vertical
vibration analysis at high frequencies. Although simple, this model includes the
essential cross-sectional deformation of a rail in vertical vibration at high
frequencies. Based on this model, the dispersion relation of propagating waves
in a free and a continuously supported rail is studied. Vertical vibration
receptances of the rail are calculated using both continuously and discretely
supported models. The results show good agreement with an FE model and
measurement data in terms of frequency±wavenumber curves, point receptance
and vibration decay rate.
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1. INTRODUCTION

Models of the dynamic behaviour of track are required, amongst other things,
for predicting the noise emitted as a train passes. For such applications,
frequencies up to at least 5 kHz have to be considered [1]. It is more dif®cult
to study the dynamic behaviour of railway track at high frequencies than at
low frequencies because the cross-sectional deformation of the rail appears
in high frequency vibration. Simple beam models [2, 3] cannot represent the
cross-sectional deformation and thus are not appropriate to investigate high
frequency vibration of railway track. Some theoretical models were developed
by Scholl [4±6] for the analysis of dispersion relations in a free rail and allow
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consideration of rail foot and rail web deformations. Advanced models based
on the ®nite element method (FEM) or a derivative [7±12] have been developed
for analysing high frequency vibration properties of railway track. Most of them
are complicated models and thus numerical treatment is essential. For
identifying the wavenumber±frequency relation in a free rail, FE models are
straightforward. However, it is very time consuming to calculate high frequency
responses of the rail to external excitation using FE models, especially when the
discrete supports of the rail are taken into account, because a large number of
degrees of freedom have to be included.
This may be improved by using some simpli®ed rail models if such models can

properly represent the corresponding cross-sectional deformations. As the
vertical and lateral vibration behaviour of a rail are effectively uncoupled from
each other due to symmetry and are affected by different properties of the cross-
section, it is reasonable to study separately vertical and lateral vibration of a rail
by different simpli®ed models. In this paper only vertical vibration is taken into
account. The lateral vibration of a rail is studied in reference [13] by using a
multiple Timoshenko beam model. In principle, a simpli®ed rail model for high
frequency vertical vibration should allow the rail foot deformation of the cross-
section. Based on this, a double Timoshenko beam model is developed, with one
beam representing the rail head and web and another beam representing the rail
foot. They are connected by an elastic component. At low frequencies the two
beams vibrate together in the same way as a single Timoshenko beam, whereas
at high frequencies a relative motion between the two beams appears, which
represents the cross-sectional deformation between the rail head (and web) and
foot.
Several aspects of the vertical vibration behaviour of railway track are

investigated using the double beam model. Firstly, the dispersion relation of
waves in a free and a continuously supported rail is explored, and then the point
receptances of a continuously supported rail are studied. Lastly, the same
analysis of the point receptances is carried out but for a discretely supported rail.
Comparison with an FE model shows good agreement in terms of the
frequency±wavenumber relation. Again good agreement with measurement data
is reached in terms of both point receptance and vibration decay.

2. DOUBLE BEAM MODEL OF RAIL

The essential cross-sectional deformation of vertical vibration of a rail at high
frequencies consists of foot ¯apping [8] (foot bending as a cantilever). A
simpli®ed rail model for high frequency vertical vibration should allow this type
of cross-sectional deformation. The double beam model is schematically shown
in Figure 1. The rail is divided into two parts: the upper part representing the
head (and web), the lower part representing the foot. Although the foot has two
branches, they may be combined together due to symmetry. Both the head and
the foot are represented by in®nite Timoshenko beams in the rail axis direction.
These two beams are connected by continuously distributed springs to allow
relative motion between them, which represents the foot ¯apping. In fact the rail
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foot cross-section may be regarded as a cantilever beam. If considering the ®rst
order vibration mode only, this cantilever beam can be simpli®ed to a single-
degree-of-freedom (SDOF) system. The cross-section of the double beam model
is just a SDOF system (rigid body motion excluded), thus the cross-sectional
deformation±foot ¯apping can be represented by this model. It remains to be
shown whether appropriate parameters can be found which allow this model to
represent a rail across the required frequency range.
The material properties of the model are represented by E, the Young's

modulus, G, the shear modulus and r, the density. The geometric properties of
each cross-section are characterised by A, the cross-sectional area, I, the area
moment of inertia and k, the shear coef®cient. The subscripts h and f are used to
represent the rail head and foot respectively. kf represents the equivalent stiffness
(per unit length) for foot ¯apping. Applying Newton's second law of motion to
the upper Timoshenko beam (the rail head and web) gives

rAh�uh � GAhkh�F0h ÿ u00h� � kf�uh ÿ uf� � 0, �1�

rIh �Fh � GAhkh�Fh ÿ u0h� ÿ EIhF00h � 0, �2�
where u represents the transverse (vertical) motion of the beams, F the rotation
of the cross-sections and 0 indicates the derivative with respect to z. Similar
equations can be written for the lower Timoshenko beam (the rail foot).
Combining these equations gives

M�qÿDq00 ÿGq0 � KRq � 0, �3�
where

M � r
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If

2664
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Figure 1. Cross-section of the double beam model of rail.
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G �
0 ÿGAhkh

GAhkh 0
0 ÿGAf kf

GAf kf 0

2664
3775, �6�

KR �
kf 0 ÿkf 0
0 GAhkh 0 0
ÿkf 0 kf 0
0 0 0 GAf kf

2664
3775, �7�

q � �q1 q2 q3 q4�T � �uh Fh uf Ff�T: �8�
To use the double beam model an important aspect is to determine the cross-

sectional parameters. The foot area, Af , is an equivalent value related to the ®rst
order frequency of foot ¯apping (cantilever beam bending, from the view of the
cross-section). The equivalent mass of a uniform cantilever beam at its free end
in its ®rst bending mode of vibration is equal to (33/140)m, which can be
obtained using Rayleigh's method and assuming the static de¯ections of the
beam as its ®rst vibration mode. Here m is the mass of the whole cantilever
beam. The rail foot corresponds to approximately one third of the rail cross-
sectional area. Thus Af is roughly equal to 0.08Ar , where Ar represents the rail
cross-section area. The equivalent stiffness kf is determined according to the foot
¯apping cut-on frequency. This frequency can be found by using a two-
dimensional FE model of the cross-section. This is much simpler than the FE
models for the whole rail considered in references [7±12]. The foot ¯apping cut-
on frequency also can be determined by an experimental approach. The foot
area moment of inertia, If , is with respect to the local neutral axis of the foot
cross-section, so it is small and thus the head area moment of inertia, Ih , is
approximately equal to the whole rail cross-sectional area moment of inertia.
The head area, Ah , is equal to ArÿAf . In this paper UIC 60 rail is chosen as an
example. According to the principles listed above, the following parameters have
been derived for use in calculations: E=2�161011 N/m2; G=0�7761011 N/m2;
r=7850 kg/m3; Ah=7�09610ÿ3 m2; Ih=30�40610ÿ6 m4; kh=0�45;
Af=0�60610ÿ3 m2; If=0�118610ÿ6 m4; kf=0�85; kf=5�336109 N/m2. Af

and kf correspond to a foot ¯apping cut-on frequency of about 5600 Hz.

3. PROPAGATING WAVES IN FREE RAIL

3.1. EQUATION OF DISPERSION RELATION

Assuming the displacement vector q has the form of

q � q�z�eiot, �9�
where
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q�z� � �uh�z� Fh�z� uf�z� Ff�z��T, �10�
and substituting (9) into equation (3) and taking derivatives with respect to time
only, the results are given by

Dq00�z� �Gq0�z� � �o2Mÿ KR�q�z� � 0: �11�
Taking q(z)=Qeÿikz and substituting it into (11) gives

�ÿk2Dÿ ikG� �o2Mÿ KR��Q � 0: �12�
This is a quadratic eigenvalue problem. Since the matrices are of dimension
464, there are eight solutions for k at each frequency o, four of which apply to
each direction. The solutions for wavenumber k at a given frequency o are
usually complex and have the form of k=2(a2 ib), where a and b are real.
They appear in opposite pairs when k is purely real or purely imaginary or in
double pairs when k is complex. The imaginary part b represents the wave decay.
When b=0, the wave is propagating. The eigenvector Q represents the wave
shapes and it is also complex. When k=0, equation (12) becomes

�o2Mÿ KR�Q � 0: �13�
Then the cut-on frequencies can be obtained from (13). At a cut-on frequency
each cross-section in the rail vibrates in phase over the whole length.
To solve the quadratic eigenvalue problem, it is appropriate to convert

equation (11) into the state space form. Taking

X � q�z�
q0�z�
� �

, A � 0 I
ÿDÿ1�o2Mÿ KR� ÿDÿ1G
� �

, �14, 15�

equation (11) can be written in the state space form:

X0 � AX: �16�
This leads to a normal eigenvalue problem

det�lIÿ A� � 0, �17�
where l=ÿik. From equation (17) the dispersion relation of propagating waves
in the rail can be determined.

3.2. WAVES IN A FREE RAIL

To validate the double beam model a 3-D FE model representing UIC 60 rail
is also used. The FE mesh of the rail cross-section is shown in Figure 2. It is a
short length of rail (1 m) with symmetrical or antisymmetrical boundary
conditions at the ends to simulate the waves in an in®nite rail. Calculations are
carried out using ANSYS with 3-D linear solid elements. The results from the
double beam model and FE model are shown in Figure 3. Two waves are
extracted from the FE model for comparison, whereas three propagating waves
are predicted by the simpli®ed model in the frequency region studied. In fact
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there are four waves in each direction according to equation (12), but one of
them, the cross-sectional rotation of the ®rst beam, only becomes propagating at
very high frequencies (above 32 kHz). Wave I represents vertical bending at low
wavenumbers, but involving foot ¯apping at high wavenumbers. Wave II is
characterised by foot ¯apping. In the double beam model this wave starts at a
lower frequency and initially features cross-sectional rotation of the second
Timoshenko beam representing the foot. Wave III starts as foot ¯apping and
then transfers to the cross-sectional rotation of the second beam. A signi®cant
deviation for wave I between the simpli®ed model and FE model can be seen
starting at about 5000 Hz. This is not critical, however, because the foot ¯apping
characteristic wave becomes dominant in the response of a rail above this
frequency. Thus the simpli®ed model is expected to give satisfactory results in
later calculations. For comparison, the result from a single Timoshenko beam
model is also included in Figure 3. The wavenumber in the single Timoshenko
beam can be seen to be very close to the wave I of the double beam model, but
in the single Timoshenko beam model the whole cross-section of a rail vibrates
in the same way and there is no cross-sectional deformation at all.

Figure 2. FE mesh of cross-section of UIC 60 rail (3-D FE model).
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Figure 3. Dispersion relation of waves in a free rail for vertical vibration: ÐÐ, from the
double beam model; � � � � � � , from the 3-D FE model; ± � ± � ±, from the single Timoshenko beam
model.
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4. CONTINUOUSLY SUPPORTED RAIL MODEL

Although a realistic rail is discretely supported by pads and sleepers, a
continuously supported rail model can be used to explore the basic dynamic
properties of a railway track without involving the complication of the periodic
support. In this section a continuously supported rail model is employed to
calculate the dispersion relation of waves in the rail and the receptances of the
rail. The pad, sleeper and the ballast are represented by equivalent continuous
layers of mass and stiffness. The parameters of these layers and the rail are the
same as in the previous sections.

4.1. WAVES IN CONTINUOUSLY SUPPORTED RAIL

The continuously supported rail model is schematically shown in Figure 4,
where the pad stiffness kp is split into two components: kp= kp1+ kp2, with kp1
acting beneath the centre of the rail and kp2 beneath the foot, and taking
kp1= kp2. ms and kb represent sleeper mass and ballast stiffness respectively. In
the rest of the paper, it will be assumed that forces and responses are harmonic,
so the eiot term will usually be omitted. The equation of motion for the
continuously supported rail is

ÿDq00�z� ÿGq0�z� ÿ �o2Mÿ KR�q�z� � �ÿkp1�uh ÿ us� 0 ÿ kp2�uf ÿ us� 0�T,
�18a�

and for the sleeper

ÿmso2us � ÿkp1�us ÿ uh� ÿ kp2�us ÿ uf� ÿ kbus: �18b�
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Figure 4. Cross-section of continuously supported rail.
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From (18b) us can be written as follows:

us � �kp1uh � kp2uf�=�kp � kb ÿmso2�: �19�
Substituting (19) into (18a) gives

ÿDq00�z� ÿGq0�z� ÿ �o2Mÿ KR�q�z�

� �ÿZ11uh ÿ Z13uf 0 ÿ Z31uh ÿ Z33uf 0�T, �20�

where Z11, Z13, Z31 and Z33 are the dynamic stiffnesses of the continuous
foundation:

Z11 � kp1�kp2 � kb ÿmso2�=�kp � kb ÿmso2�, �21a�

Z33 � kp2�kp1 � kb ÿmso2�=�kp � kb ÿmso2�, �21b�

Z13 � Z31 � ÿkp1kp2=�kp � kb ÿmso2�: �21c�
Thus equation (18) can be simpli®ed to

Dq00�z� �Gq0�z� � �o2Mÿ K�q�z� � 0, �22�
where

K � KR �
Z11 0 Z13 0
0 0 0 0
Z31 0 Z33 0
0 0 0 0

2664
3775: �23�

To calculate the frequency±wavenumber relation in a supported rail, the
following parameters of the track foundation are used which are based on
values from reference [14] for track C: kp=583�3 MN/m2; kb=83�3 MN/m2;
ms=270 kg/m.
The frequency±wavenumber relation in the supported rail can be seen from

Figure 5 to be almost the same as in the free rail except wave I at low
frequencies. There is a branch for this vertical bending wave I at about 80±
250 Hz. In this frequency region the rail vibration is coupled with the
foundation mass. In the higher frequency region the wavenumber±frequency
relation of waves I, II and III are the same as in the free rail.
For a realistic railway track, damping should be taken into consideration. It

can be added by means of a loss factor to the pad and ballast stiffnesses to make
them complex. Here Zp=0�25 and Zb=1�0 are taken for the pad and ballast
respectively. No damping is added to the rail. Damping will make the
wavenumber k always complex with the form of k=2(aÿ ib), which represent
two waves propagating in opposite directions with exponential decay. The decay
rate D (in dB/m) of various waves is determined by their imaginary part of k and
can be calculated using
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D � 20 log10�eb� � 8�686b: �24�
The frequency±wavenumber relation in a supported rail with damping is

shown in Figure 6 where the solid lines represent the real part of the
wavenumber and the dotted lines the imaginary part. The curves of the real part
can be seen to be similar to the case of no damping, apart from near the cut-on
frequencies. The wave of cross-sectional rotation of the foot forms a single curve
in Figure 6, whereas in Figure 5 this wave is separated in waves II and III. The
imaginary parts can be seen to be higher near the cut-on frequencies and much
lower thereafter. The decay rates of various waves in Figure 7 show this more
noticeably. They can be seen to decrease dramatically after the cut-on
frequencies.
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Figure 5. Dispersion relation of waves in a continuously supported rail without damping for
vertical vibration.
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Figure 6. Dispersion relation of waves in a continuously supported rail with damping for verti-
cal vibration: ÐÐ, real part of the wavenumber; � � � � � � , imaginary part of the wavenumber.
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4.2. RECEPTANCES

Supposing a harmonic external force Feiot acting on the rail head at z=0, the
equation of motion is given as:

ÿDq00�z� ÿGq0�z� ÿ �o2Mÿ K�q�z� � �Fd�z� 0 0 0�T: �25�
Equation (25) can be written in the state space form:

X0 � AX� Pd�z�, �26�
where A has the same form as in equation (15) but KR is replaced by K which is
the sum of rail stiffness matrix KR and foundation dynamic stiffness matrix, see
equation (23), and

P � �0 ÿDÿ1F�T, F � �F 0 0 0�T: �27a, b�
Taking the Laplace transform of equation (26) gives

�sIÿ A�X�s� � P: �28�
The Laplace transform of the rail head and foot displacements, respectively, has
the form of

Uh�s� � D1�s�=D�s�, Uf�s� � D3�s�=D�s�, �29, 30�
where, D(s) is the determinant of matrix (sIÿA). D1(s) and D3(s) are the
determinants of the matrices which are obtained from (sIÿA) by replacing its
®rst column and third column by P respectively. The vertical responses of the
rail head and foot are found by performing the Laplace inverse transform using
contour integration:
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Figure 7. Decay rates of different waves in a continuously supported rail: ÐÐ, wave I, ± �± � ±,
wave II; � � � � � � , wave III.
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uh�z� � 1

2pi

�g�i1
gÿi1

Uh�s�esz ds �
X

k with Re�sk�<0 or
Im�sk�<0 if Re�sk��0

Res�Uh�sk�eskz�, z > 0; �31�

uf�z� � 1

2pi

�g�i1
gÿi1

Uf�s�esz ds �
X

k with Re�sk�<0 or
Im�sk�<0 if Re�sk��0

Res�Uf�sk�eskz�, z > 0; �32�

where the residues at the poles sk are given by

Res�Uh�sk�eskz� � �D1�sk�=D0�sk��eskz, Res�Uf�sk�eskz� � �D3�sk�=D0�sk��eskz:
�33, 34�

The responses of the rail head and foot at z=0 to a unit harmonic excitation
at the same point are shown in Figure 8 in terms of amplitude and phase. Three
resonance peaks can be seen at about 80 Hz, 520 Hz and 5600 Hz. At 80 Hz the
whole track bounces on the vertical stiffness of the ballast, while at 520 Hz the
rail vibrates on the pad stiffness. These two peaks can be regarded as the cut-on
of the vertical bending wave (two branches, see Figure 5), and the peak at
5600 Hz is due to the cut-on of the foot ¯apping. The foot response can be
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Figure 8. Amplitude and phase of the point receptance (head response) and foot response
of the continuously supported rail for vertical vibration: ÐÐ, head response; � � � � � � , foot
response, ± � ± �±, point receptance of the single Timoshenko beam model.
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observed to be very similar to the head response below 2000 Hz, whereas at high
frequencies it is much higher than the head response, up to a factor 10. At the
peak area near the foot ¯apping cut-on frequency the foot response can be seen
to be very sharp and out of phase with the head. Comparing all these results
with those in reference [8], which shows the same trends from a more complex
model, one can see that the vertical vibration properties of a rail at high
frequencies are very well predicted using the double Timoshenko beam model.
The result from a single Timoshenko beam model is also shown in Figure 8. The
point receptance of the single beam model can be seen to be almost the same as
the head response of the double beam model except for the peak at the foot
¯apping cut-on frequency. Therefore, a conventional beam model may be used
for vertical vibration very well up to about 2000 Hz, but above this up to about
5000 Hz such a model may only be used for predicting the head response
because at high frequencies the deviation between the head and foot response
becomes more and more signi®cant. Moreover, the decay rate of the vertical
bending wave can be seen in Figure 7 to stabilise around 0�4 dB/m whereas the
result for a single Timoshenko beam is continuous to fall at high frequencies
(refer to Figure 13). The higher decay rate found with the double beam model,
which corresponds qualitatively to that found in reference [8], is due to the
higher amplitudes of vibration on the foot acting on the rail pad.

5. DISCRETELY SUPPORTED RAIL MODEL

A more realistic model for railway track should be an in®nite rail with
periodic supports. Such a model will introduce the complication of the periodic
support nature and thus dif®culties in dealing with it, but some important
characteristics, for example, pinned±pinned resonances can only be obtained
using a discretely supported model. In this section the complication of the
discretely supported model is addressed using Green's function and the
superposition principle.

5.1. EQUATION OF MOTION

An in®nite periodically supported rail model is shown in Figure 9. The
supports are characterised by pad stiffnesses, Kpn , sleeper mass, Ms and ballast

uh, uf

z–1z–2
–

zF

Fei   t

z1
z, +

z2

d d d

°°°°

Figure 9. Discretely supported rail model.
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stiffness, Kbn . The pad stiffness Kpn is also split into two components as in the
continuously supported model: Kpn=Kpn1+Kpn2, with Kpn1 acting beneath the
centre of the rail and Kpn2 beneath the foot, and taking Kpn1=Kpn2. Damping is
considered by introducing loss factors Zr into the Young's modulus E and shear
modulus G of the rail and the equivalent stiffness kf of foot ¯apping, Zp into the
pad stiffnesses Kpn , Zb into the ballast stiffness Kbn , and making E, G, kf , Kpn ,
and Kbn complex with the appropriate factor (1+ iZ). In fact the rail damping is
very small, usually less than 0�0001. The main reason for adding extra damping
to the rail is to suppress the pinned±pinned resonance peaks on which the track
foundation damping has very little effect. In reality, the pinned±pinned
resonance peaks are not as sharp as in theoretical analysis because of the
variable sleeper spacing and the distributed contact between the rail and pads. In
the theoretical model, however, the sleeper spacing is chosen as constant and the
rail is assumed as ideally point-supported. Assuming the nth support is at the
position z= zn and a single external harmonic force Feiot acts on the rail head at
z= zF , the equation of motion of the discretely supported rail is given as

ÿDq00�z� ÿGq0�z� ÿ �o2Mÿ KR�q�z� � �Fd�zÿ zF� � F1 0 F3 0�T, �35�
where

F1 � ÿ
X1
n�ÿ1
n 6�0

�Z11nuh�zn� � Z13nuf�zn��d�zÿ zn�, �36a�

F3 � ÿ
X1
n�ÿ1
n 6�0

�Z31nuh�zn� � Z33nuf�zn��d�zÿ zn�, �36b�

where Z11n , Z13n , Z31n and Z33n are the dynamic stiffnesses at nth support:

Z11n � Kp1n�Kp2n � Kbn ÿMso2�=�Kpn � Kbn ÿMso2�, �37a�

Z33n � Kp2n�Kp1n � Kbn ÿMso2�=�Kpn � Kbn ÿMso2�, �37b�

Z13n � Z31n � ÿKp1nKp2n=�Kpn � Kbn ÿMso2�: �37c�

5.2. RESPONSE OF THE DISCRETELY SUPPORTED RAIL

The discretely supported track model can be treated in various ways. One
approach is developed by Heckl [15], see also reference [16]. In this approach,
the discrete rail supports are replaced by corresponding external forces, and thus
the railway track can be simply considered as an in®nite beam with many point
forces acting on it. Based on the Green's function and the superposition
principle the stationary response of the rail to the harmonic excitation can be
obtained. In addition the in®nite beam is modelled with a ®nite number of
supports, the number being chosen large enough to guarantee a reliable



342 T. X. WU AND D. J. THOMPSON

approximate solution. This approach is also employed here, but now for the
double beam model Green's function matrices have to be used instead of a single
Green's function. Moreover the symmetry of the railway track about the forcing
point for excitation above a sleeper or at mid-span is taken into account to
increase the ef®ciency of the calculation.
The Green's function gij(z, z

0) is de®ned as the response at z of the ith
component of the displacement vector q(z) caused by a unit harmonic force at z 0

which is the jth component of the excitation vector F. It can be obtained by
applying a similar method as used in section 4, but now to a free rail instead of
the continuously supported rail and with the force and response positions at
different values of z.
Using the superposition principle the displacements of the rail head and foot

are given by

uh�z� � ÿ
XN
n�ÿN
n6�0

f�Z11nuh�zn� � Z13nuf�zn��g11�z, zn�

� �Z31nuh�zn� � Z33nuf�zn��g13�z, zn�g � Fg11�z, zF�; �38a�

uf�z� � ÿ
XN
n�ÿN
n6�0

f�Z11nuh�zn� � Z13nuf�zn��g31�z, zn�

� �Z31nuh�zn� � Z33nuf�zn��g33�z, zn�g � Fg31�z, zF�; �38b�
or in matrix form

uh�z�
uf�z�

� �
� ÿ

XN
n�ÿN
n 6�0

Z11ng11�z, zn� � Z31ng13�z, zn� Z13ng11�z, zn� � Z33ng13�z, zn�
Z11ng31�z, zn� � Z31ng33�z, zn� Z13ng31�z, zn� � Z33ng33�z, zn�
� �

6
uh�zn�
uf�zn�

� �
� F

g11�z, zF�
g31�z, zF�
� �

: �39�

Equation (39) can be presented in a compact form:

u�z� � ÿ
XN
n�ÿN
n 6�0

Gu�z, zn�u�zn� � FGF�z, zF�: �40�

If Feiot acts at mid-span (z=0), the following symmetric relationship holds:

u�z� � u�ÿz�, Zijn � Zij�ÿn�, gij�z, z0� � gij�ÿz, ÿ z0�: �41a, b, c�
Equation (40) can be simpli®ed to

u�z� � ÿ
XN
n�1
�Gu�z, zn� �Gu�z, ÿ zn��u�zn� � FGF�z, 0�: �42�
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At each support point z= zm the displacements of the rail head and foot can
be written as:

u�zm� � ÿ
XN
n�1
�Gu�zm, zn� �Gu�zm, ÿ zn��u�zn� � FGF�zm, 0� m � 1, 2, . . . , N:

�43�
From equation (43) the displacements of the rail head and foot at each

support point can be solved in terms of F by taking the sum to the left side and
then inverting the matrix of coef®cients of u(zm). Substituting them into equation
(42), displacements of the rail head and foot at any point can be obtained.
For Feiot acting above a sleeper (this sleeper is now chosen as n=0 and also

z=0) the similar equations for the displacements of the rail head and foot can
be given as follows:

u�z� � ÿGu�z, 0�u�0� ÿ
XN
n�1
�Gu�z, zn� �Gu�z, ÿ zn��u�zn� � FGF�z, 0�, �44�

u�zm� � ÿGu�zm, 0�u�0� ÿ
XN
n�1
�Gu�zm, zn� �Gu�zm, ÿ zn��u�zn� � FGF�zm, 0�

m � 0, 1, 2, . . . , N �45�
In a similar way the displacements of the rail head and foot at each support

point can be solved from equation (45). Substituting them into equation (44),
displacements of the rail head and foot at any point can be obtained.

5.3. NUMERICAL RESULTS

The point receptance and the foot response at the forcing point are calculated
in the frequency range 50±6500 Hz for a unit vertical excitation acting at the rail
head either above a sleeper or at mid-span. Parameters for each support are
uniform and chosen as follows (to correspond to those used earlier for the
continuous support): Kp=350 MN/m; Kb=50 MN/m; Ms=162 kg/m. Other
parameters such as loss factors are the same as used in the previous sections. In
addition damping is added to the rail with loss factor Zr=0�01. The span length
(the distance between two sleepers) is chosen as d=0�6 m, and the number of
supports 2N=80 for the excitation acting at mid-span, 2N+1=81 for the
excitation acting above a sleeper.
The amplitude and phase of the point receptance are shown in Figure 10, and

the corresponding amplitude of the foot response is shown in Figure 11. Some
characteristic peaks or troughs are marked with numbers from 1 to 9 in Figures
10 and 11. In general the response at low frequencies up to about 800 Hz can be
seen to be similar for the excitation either acting at mid-span or above a sleeper.
At low frequencies the responses of the rail head are similar to those of the foot,
but at high frequencies the foot responses are higher than the head responses.
This observation has also been obtained from the continuously supported model
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(Figure 8). Two peaks at about 80 Hz and 520 Hz marked with 1 and 2 can be

identi®ed as the cut-on of the vertical bending wave (including its branch).

Another peak at about 5600 Hz marked with 6 is the cut-on of the foot ¯apping.

These three peaks are the same as those from the continuously supported model.

The main pinned±pinned resonance marked with 3 appears at about 1050 Hz.

Here the vertical bending wavelength is equal to twice the span length and this
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Figure 10. Amplitude and phase of the point receptance of the discretely supported rail for
vertical vibration: ÐÐ, for excitation acting at mid-span; � � � � � � , for excitation acting above a
sleeper (for meaning of numbers see text).
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Figure 11. Vertical vibration amplitude of the foot response at forcing point: ÐÐ, for exci-
tation acting at mid-span: � � � � � � , for excitation acting above a sleeper (for meaning of numbers
see text).
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corresponds to a wavenumber of 5�2 rad/m in Figure 5. The third pinned±pinned
resonance marked with 5 appears at about 4600 Hz when the vertical bending
wavelength is equal to two thirds of the span length (corresponding to a
wavenumber of 15�7 rad/m in Figure 5). The pinned±pinned resonances due to
the foot ¯apping wave appear at much higher frequencies. They may be
observed from the foot response in Figure 11, being marked with 7 and 9. When
the wavelength is equal to the span length (corresponding to a wavenumber of
10�4 rad/m in Figure 5), the second pinned±pinned resonance occurs. However,
for excitation at either mid-span or above a sleeper both the point receptances
and the foot responses at the forcing point should be minimum. For the vertical
bending wave the frequency corresponding to this minimum response is about
2800 Hz, whereas for the foot ¯apping it is about 5700 Hz. These two troughs
are marked with 4 and 8 in Figures 10 and 11. All these properties related to the
span length can only be observed using a discretely supported rail model and
were not seen in Figure 8.

5.4. COMPARISON WITH MEASUREMENT DATA

Some experimental results are available in reference [14] and comparisons are
made here with results from one track, track C, which had UIC 60 rail with
concrete monobloc sleepers. The measurements were carried out on unloaded
tracks by means of impact excitation using an instrumented hammer. For
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Figure 12. Comparison of predictions from the discretely supported double beam model and
measurements: (a) excitation acting at mid-span; (b) excitation acting above a sleeper: ÐÐ, from
measurements [14]; � � � � � � , from predictions.
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vertical vibration the excitation acted in the centre of the rail head and the
response was obtained from the analogue sum of two acceleration signals on
either side of the head. The measured and predicted vertical accelerances are
compared in Figures 12(a) and 12(b) which are for the excitation acting at mid-
span and above a sleeper respectively. The input parameters for the track are as
in previous sections. A good agreement can be seen from Figure 12 in the whole
frequency region, and especially in the region of 600±4000 Hz which is of most
importance for noise radiation. The main deviations can be seen to occur near
500 Hz and in the region of 4000±5000 Hz for excitation at mid-span, and in the
low frequency region up to about 500 Hz for excitation above a sleeper. The
deviations in the low frequency region may be improved by considering the
effect of sleeper vibration modes on the dynamic stiffness at the support point.
The decay rates of the vertical vibration along the rail from the continuous

and periodic models are also compared with measurement data. For the
continuous model the decay rate is represented by the imaginary part of the
vertical bending wavenumber and calculated by equation (24). For the periodic
model it is calculated from the attenuation in vibration level over a 25 span
length from the excitation point divided by this distance (15 m). The measured
decay rate is the average decay rate from the measurement in 1/3 octave bands.
The comparison is shown in Figure 13. It can be seen that the tendency of the
decay rates from the theoretical models is consistent with the measurement, that
is, the vertical vibration decay is generally higher at low frequencies and lower at
high frequencies. The periodic model gives a better result in the decay rate
throughout the whole frequency region from 100±5000 Hz, whereas the decay
rate from the continuous model without rail damping is underestimated at high
frequencies but better than that of the single Timoshenko beam model. This is
because the double beam model allows the foot ¯apping at high frequencies
which results in more energy being dissipated through the damping in the track
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Figure 13. Decay rates of vertical vibration along the rail: *Ð*, measured from [14]; ÐÐ,
from the discretely supported double beam model; ± ± ± ± , from the continuously supported
double beam model with rail damping (Zr=0�01); ± � ± �±, from the continuously supported double
beam model without rail damping; � � � � � � , from the continuously supported single Timoshenko
beam model without rail damping.
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foundation. The decay rate in the periodic model and continuous model with rail
damping is further enhanced by the assignment of a loss factor (0�01) to the rail.

6. CONCLUSIONS

A double beam model has been presented for analysing the vertical vibration
behaviour of railway track at high frequencies. This model is much simpler than
the commonly used FE or FE based models and allows the essential cross-
sectional deformation for the vertical vibration up to at least 6500 Hz. The
dispersion relation of propagating waves in a free and a continuously supported
rail has been studied. Vertical vibration receptances of the rail have been
calculated using both continuously and discretely supported rail models.
Comparison with an FE model has shown good agreement in terms of
frequency±wavenumber relation. Good agreement with measurement data has
also been reached in terms of point receptance and vibration decay rate along
the rail.
The results show that the conventional Timoshenko beam model may be used

only up to about 2000 Hz because the rail foot ¯apping occurs at high
frequencies which leads to the foot response being considerably larger than that
of the head at high frequencies, up to a factor 10 at about 5600 Hz. Compared
with the continuously supported rail model, the predictions from the discretely
supported rail model show that the track support has signi®cant effects on the
vertical vibration from about 1000 to 6500 Hz. Many peaks or troughs of the
receptance appear in this frequency region. Since these peaks reach relatively
high levels, neglecting them may cause signi®cant errors. Thus the discretely
supported rail model is more appropriate than the continuously supported model
for vertical vibration.
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