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DISCRETE TIME MODEL OF ACOUSTIC WAVES
TRANSMITTED THROUGH LAYERS
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This paper describes a rapid solution of transmitted acoustic waves through
a multiplicity of layers. The layers are considered lossless and have parallel
interfaces, which are at normal incidence to the ®eld. The force transfer across
the layers is evaluated in discrete form using the z-transform technique. The
discrete time response is developed and this is applied in the manner of a
digital ®lter to a variety of excitation functions. The method has the advantage
that the response to any real input can be evaluated.
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1. INTRODUCTION

The transmission of acoustic waves through a multiplicity of layers has been
analyzed by transmission line analogies. The transmission line model is normally
Fourier transform representations of the piezoelectric element and therefore
yields solutions in terms of angular frequency. Redwood [1] and Steutzer [2] have
used equivalent circuits based on the Laplace transform and have derived the
time domain transient response for certain basic excitation functions by inverse
transformation. The mathematical treatment is complicated when more than two
layers are considered and the technique is restricted to certain excitation
functions. Also, Lewis [3] has found a closed form solution in the frequency
domain for the transmitted signal, but he assumed the sound propagation time is
constant for each layer.
In this paper, the similarly analogous electrical transmission line equivalent

circuits can be employed to represent acoustic propagation through layers of
non-piezoelectric material, plane-wave propagation being assumed throughout.
The z-transform technique [4] is applied to the Laplace model to yield a discrete
time model of transmitted acoustic wave through ten layers. Computer programs
based on a model described by Ali [5, 6] have been developed to calculate the
force transfer across these layers.

2. TRANSFER OF FORCE ACROSS AN ARBITRARY NUMBER OF LAYERS

When using the analogy between electrical and mechanical transmission lines
[7] it is known that the transmission matrix of two transmission lines connected
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in tandem is equal to the product of the individual matrices [8]. This can be
generalized to obtain the expression of the transmission matrix for any number
of transmission lines connected in tandem (cascade). From this, the transfer of
force across an arbitrary number of layers can be obtained.
The transfer of force from one material of acoustic impedance Zc to another

of acoustic impedance Zr can be described in simple terms (analogous to voltage)
as shown in Figure 1(a) with the equivalent circuit as shown in Figure 1(b).
From this ®gure, the received force, F0 is given in terms of the incident force, Fi,
by the expression

F0 � ZrFi=�Zc � Zr�, �1�
or

F0 � Fi�1� r0�=2: �2�
Here r0= (ZrÿZc)/(Zr+Zc) is the re¯ection coef®cient in terms of force at the
boundary between the two media.
The transfer of force from a material of impedance Zc, through a layer of

impedance Z1, to a material of impedance Zr can be represented as shown in
Figure 1(c) with the equivalent circuit as shown in Figure 1(d). In this diagram
ZA1 and ZB1 represent the distributed components of the familiar ``T'' equivalent
circuit of a transmission line, however in this case ZA1 and ZB1 have a
mechanical interpretation,

ZA1 � 2Z1=�e�SX1=V1� ÿ e�ÿSX1=2V1�� �3�
and

ZB1 � Z1�e�SX1=2V1� ÿ e�ÿSX1=2V1��=�e�SX1=2V1� � e�ÿSX1=2V1��: �4�
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Figure 1. Representation of the transfer of force across a single boundary and a single layer
(double boundary) (a) schematic representation of a boundary, (b) the equivalent circuit, (c)
schematic representation of a layer, and (d) the equivalent circuit of a mechanical layer.
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Here X1 is the thickness of the acoustic layer, V1 is the velocity of the
compression wave in the layer material of acoustic impedance Z1 and the
Laplace variable S is the complex frequency. The term X1/V1=Tp represents the
time delay for an acoustic wave to propagate from one face of the acoustic layer
of impedance Z1 to the other.
For digital computers it is convenient to consider continuous time as being

sampled at regular intervals of T seconds, where T is the sampling period. It is
clear that a number of discrete time intervals could approximately represent the
time delay mT where m is an integer. In terms of the Laplace transform [9] the
time delay eÿSX

1=V1

approximates to eSm
1T � zÿm

1

; where the substitution z=eST

has been made and the approximate time delay is given in terms of the z-
transform [10]. By using this substitution ZA1 and ZB1 can be written as

ZA1 � 2Z1z
ÿml=�1ÿ zÿm1�, ZB1 � Z1�1ÿ zÿm1�=�1� zÿm1�: �5, 6�

By using standard circuit analysis techniques and with the appropriate z-
transform expression substituted for ZA1 and ZB1, the force transfer across one
layer can be described as

F1 � 2Z1Zrz
ÿm1Fi

�Z1 � Zc��Z1 � Zr� � �Z1 ÿ Zc��Zr ÿ Z1�zÿ2m1
, �7�

or

F1 � Fi�1� r0��1� r1�zÿm1=2�1� r0r1z
ÿ2m1�: �8�

Equation (8) can be interpreted as a recurrence relationship between the sampled
versions of F1(t) and Fi(t). The relationship is

F1�n� � 0�5��1� r0��1� r1�Fi�nÿm1�� ÿ 2r0r1F1�nÿ 2m1�: �9�

Similarly, the expression for two layers is

F2 � Fi�1� r0��1� r1��1� r2�zÿ�m1�m2�

2�1� r1r2zÿ2m2 � r0�r1 � r2zÿ2m2 �zÿ2m1� : �10�

Equation (10) can be interpreted as a recurrence relationship which represents a
digital ®lter relating the nth sample of the transmitted force to the nth and
previous samples of the input force waveform and previously calculated force
output values:

F2�n� � 0�5��1� r0��1� r1��1� r2�Fi�nÿ �m1 �m2��� ÿ r1r2F2�nÿ 2m2�
ÿ r0r1F2�nÿ 2m1� ÿ r0r2F2�nÿ 2�m1 �m2��: �11�

The digital ®lters representing the transfer of force across three and four layers
can be written as
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F3�n� � 0�5��1� r0��1� r1��1� r2��1� r3�Fi�nÿ �m1 �m2 �m3���
ÿ r2r3F3�nÿ 2m3� ÿ r1r2F3�nÿ 2m2� ÿ r1r3F3�nÿ 2�m2 �m3��
ÿ r0r1F3�nÿ 2m1� ÿ r0r1r2r3F3�nÿ 2�m1 �m3��
ÿ r0r2F3�nÿ 2�m1 �m2�� ÿ r0r3F3�nÿ 2�m1 �m2 �m3��, �12�

F4�n� � 0�5��1� r0��1� r1��1� r2��1� r3��1� r4�Fi�nÿ �m1 �m2 �m4���
ÿ r3r4F4�nÿ 2m4� ÿ r2r3F4�nÿ 2m3� ÿ r2r4F4�nÿ 2m2�
ÿ r1r2r3r4F4�nÿ 2�m2 �m4�� ÿ r1r3F4�nÿ 2�m2 �m3��
ÿ r1r4F4�nÿ 2�m2 �m3 �m4�� ÿ r0r1F4�nÿ 2m1�
ÿ r0r1r3r4F4�nÿ 2�m1 �m4�� ÿ r0r1r2r3F4�nÿ 2�m1 �m3��
ÿ r0r1r2r4F4�nÿ 2�m1 �m3 �m4�� ÿ r0r2F4�nÿ 2�m1 �m2��
ÿ r0r2r3r4F4�nÿ 2�m1 �m2 �m4�� ÿ r0r3F4�nÿ 2�m1 �m2 �m3��
ÿ r0r4F4�nÿ 2�m1 �m2 �m3 �m4��, �13�

A(N)=1.0

B(N)=r(N)z–2m(N)

T=(1+r(N))

mT=m(N)
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Figure 2. Recursive algorithm ¯owchart for the force transfer across an arbitrary number of
layers. N number of layers; A(N), B(N) vectors; r1, r2, � � � ,rN, the re¯ection coef®cients refer to the
interface between the layers; m1, m2, � � �, mN integer numbers.
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where r0, r1, r2, r3 and r4 are the re¯ection coef®cients. The recursive algorithm
¯owchart described in Figure 2 is essentially a recursive digital ®lter. This
algorithm can easily be implemented on a computer using polynomial algebra
routines. It is clear that a recursive algorithm can be used to obtain the
expression for the force transfer across an arbitrary number of layers.

3. RESULTS

The computer implementation of the discrete time model of transmitted
acoustic waves was investigated by studying the performance of the digital ®lter
algorithm described in Figure 2. A digital Dirac impulse of unit amplitude was
input to the ®lter. It is useful to use a Dirac type impulse waveform since the
Fourier transform of a Dirac function is ¯at for all frequencies, so it is possible
to test the response of the ®lter to all frequencies simultaneously.
Table 1 shows the materials layers data that have been used in this technique

and these materials are arranged in this table according to the impedance
materials. Each layer was assumed to have the same thickness of 1 mm, but the
sound propagation time is different for each layer according to the velocity of
longitudinal waves. The ten layered acoustic structure is assumed to be bounded
on either side by materials of different characteristic impedance and in®nite in
extent. The layers are surrounded on the front face by Perspex material and by
brass material on the back face.

TABLE 1

The materials data

Code number Materials
Acoustic impedance

(6106 kg/m2 s)
Velocity of longitudinal

waves (m/s)

M1 Quartz (fused) 13�13 5970

M2 Glass (Crown) 14�15 5660

M3 Aluminum 17�20 6374

M4 Titanium 27�28 6050

M5 Tungsten 28�80 2400

M6 Brass 36�94 4372

M7 Nickel silver 41�34 4796

M8 Hardened tool steel 45�64 5874

M9 Stainless steel 46�16 5980

M10 Devcon 57�00 2980
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The simulations were carried out with an effective sampling frequency of
6�25 MHz. Figure 3 shows the impulse time response function for the ten layers
arrangement respectively as described in Table 1. Once the time domain response
was obtained, a fast Fourier transform was performed on the data. The resulting
frequency response curve is plotted in Figure 4. From this ®gure, it can be seen
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Figure 3. Time domain impulse response for a pressure wave transmitted through ten layers of
materials.
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Figure 4. Impulse frequency response, derived from the time domain impulse response of
Figure 3.
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M1 M6 M2 M7 M4 M3 M5 M8 M10 M9
Fi F10

Figure 5. A ten layered acoustic structure having an arbitrary impedance pro®le as shown. An
incident pressure wave (Fi) travelling from left to right sets up transmitted waves (F10).
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Figure 6. Transmitted time sequence for pressure wave through the arbitrary acoustic impe-
dance layers as shown in Figure 5.
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Figure 7. The frequency domain spectrum of Figure 6.
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that the frequency response is periodic with a period equal to the ratio of the
velocity of sound propagation to the thickness of the layer. Figure 5 shows a
multilayered structure having arbitrary impedance materials. An incident
impulse pressure wave travelling from left to right has transmitted a time domain
signal given in Figure 6. The corresponding frequency response curve is shown in
Figure 7. It is clear from these ®gures that the magnitude and shape of the time
and frequency domain strongly depends on the acoustic impedance variation of
the adjacent layers. Lewis [3] used a matrix model for analyzing the transmitted
acoustic waves from layered structures of biological tissue. The matrix analysis
has a closed form solution in the frequency domain for the transmitted signal. It
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Figure 8. Calculated impulse response of transmitted wave through the arbitrary acoustic impe-
dance layer described in Figure 5. The exciting waveform is shown in (b).
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has been shown that the results of this paper agree very well with Lewis' results,
however, the present work extends the analysis of multilayered acoustic
structures with different sound propagation time for each layer.
In order to illustrate the great versatility of the technique, the response has

also been calculated for a ®nite duration function. The result is shown in Figure
8 for the system described in Figure 4. It is clear from all of these results that
calculation using the technique proposed in this paper yields an accurate
determination of the transmission of pressure waves through an arbitrary
acoustic impedance variation of the layers.

4. CONCLUSIONS

A discrete time model, which accurately describes the pressure time response
of multilayered acoustic structure, has been developed. The z-transform has been
applied to the Laplace model to yield the impulse response of force transfer
across arbitrary acoustic layers. The method has the advantage that the response
for transmission of acoustic waves through a multiplicity of practical material
layers and arbitrary input function can be estimated rapidly.
The multilayered acoustic structures with small and high impedance variations

have been analyzed. The model could be extended to incorporate the effects of
absorption of the layers.
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