

TRANSVERSE VIBRATIONS OF A FREE-FREE CIRCULAR ANNULAR PLATE

S. A. VERA, P. A. A. LAURA AND D. A. VEGA

Departments of Physics and Engineering, Universidad Nacional del Sur and Institute of Applied Mechanics (CONICET), 8000 - Bahía Blanca, Argentina

(Received 16 December 1998)

1. INTRODUCTION

Previous, recent studies performed by the authors have dealt with the determination of accurate eigenvalues of circular annular plates for the following situations: (1) clamped or simply supported at the outer boundary and free at the inner contour [1]; (2) the four combinations of clamped and simply supported edge conditions at both boundaries [2].

Very recently the authors were confronted with the necessity of knowing accurate values of the lower frequency coefficients of transverse vibration of the free–free circular annular plate; see Figure 1, Case I. In view of this fact it was decided to obtain the solution for this case, as well as for Case II (simply supported inner boundary and free on the outside) and Case III (clamped inner edge and free outer boundary), see Figure 1.

After considering the numerical information depicted in references [1, 2] and in the present study it is felt that accurate eigenvalues are now available for the circular, annular plate. The authors gratefully acknowledge the valuable information contained in Leissa's classical treatise [3] which was obtained several decades ago and was used as a guide when obtaining the eigenvalues presented in references [1, 2] and the present study.

2. ANALYTICAL SOLUTION

The amplitude of a normal mode of vibration is described by [3]

$$W(r,\theta) = [AJ_n(kr) + BY_n(kr) + CI_n(kr) + DK_n(kr)]\cos n\theta, \tag{1}$$

where $k = \sqrt[4]{(\rho h/D)}\sqrt{\omega}$.

Figure 1. Vibrating circular annular plates executing transverse vibrations and considered in the present study: (a) Case I, (b) Case II, (c) Case III.

TABLE 1 reauency coefficients Ω₀₁. Ω₁₀. Ω20 of free—free circular annular plate (Case I

		Frequency cc	oefficients \$\langle \langle \	Ω ₁₀ , Ω ₂₀ of fr	ee_free circula	Frequency coefficients Ω_{01} , Ω_{10} , Ω_{20} of free-free circular annular plate (Case I)	e (Case 1)		
					b/a				
0.1	l	0.2	0.3	0.4	0.5	9.0	L·0	8.0	6.0
v = 0.3									
8-77454		8-44422	8.35347	8.61377	9.31348	10.65480	13·16304	18-47276	34.83311
20.40639		19·69460	18.29181	17-24282	17-19822	18.50431	21.91381	29.95546	55.71946
5-30338		5.14613	4.90598	4.60664	4.27111	3.92037	3.57250	3.24097	2.93379
v = 1/3									
8.81865		8.44189	8.31611	8.55104	9.22876	10.54555	13.01859	18·26227	34.42881
20.44368	1	19·67466	18.16998	17.04300	16.94318	18·19279	21.51835	29.39408	54.65605
5.19907		5.04975	4.82044	4.53248	4.20712	3.86465	3.52332	3.19706	2.89431
	1								

TABLE 2

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7379 3-99573 4-86159	8040 6.80406 7.98609	8657 3.62965 4.07006 4.80873	1598 3.92221 4.76829 6.04498
.273				
$0.1 \qquad 0.2 \\ = 0.3 \\ 3.44965 \qquad 3.33950$	2.43765 2.88641	5.42767 5.65193	3.44009 3.31314	2.40782 2.84251

TABLE 3

Coefficients O., O., O. of clamped-free circular annular plate (Case III)

	Ī	L	ETTE	RS T	O TI	HE E	DITO] I	K I		
		6.0		344·4022	345·1664	347-4657		344·7610	345-4734	347·6189
		8.0		84·49979	85·16191	87.19307		84.67757	85.28927	87.1738
te (Case III)		L:0		36-95263	37-49833	39.27686		37.0690	37.56655	39·2079
ar annular pla		9.0		20.52175	20.93595	22.50134		20.60663	20.97559	22-41361
coefficients Ω_{00} , Ω_{10} , Ω_{20} of clamped-free circular annular plate (Case III)	b/a	0.5		13.02425	13.28978	14-70381		13.08941	13-31333	14.60840
), Ω_{20} of clamp		0.4		9.02056	9.11549	10-46451		9.07188	9.12933	10.36553
cients Ω_{00},Ω_{10}		0.3		6.66036	6.55231	7-95648		6.70117	6.56013	7-85498
Frequency coeffi		0.2		5.18108	4.81302	6.44710		5.21350	4.81710	6.34306
Fr_0		0.1	v = 0.3	4.23737	3.47813	5.62270	v = 1/3	4.26294	3.47991	5.51642
		и		0	1	2		0	1	2
		и		0	1	2		0	1	,

As usual the frequency determinant is generated after imposing the boundary conditions, i.e.,

Case I:

$$M_r|_{r=a,b} = 0, \quad V_r|_{r=a,b} = 0.$$
 (2a, b)

Case II:

$$M_r|_{r=a,b} = 0, \quad V_r|_{r=a} = 0, \quad W(b,\theta) = 0.$$
 (3a-c)

Case III:

$$M_r|_{r=a} = 0$$
, $V_r|_{r=3} = 0$, $W(b, \theta) = 0$, $\partial W/\partial r(b, \theta) = 0$, (4a-d)

where Leissa's standard notation has been employed [3].

3. NUMERICAL RESULTS

The first three eigenvalues $\Omega = \sqrt{\rho h/D}\omega a^2$ have been computed for v (Poisson's ratio) equal to 0·3 and 1/3. Table 1 depicts values of Ω_{01} , Ω_{10} and Ω_{20} for the case of the free-free circular annular plate (Case I) while Tables 2 and 3 depict eigenvalues for Cases II and III respectively. The calculation procedure has been greatly facilitated by the use of MAPLE [4]. The tables contained in references [1, 2] and in the present study constitute improved data with respect to the one presently available in the open literature.

ACKNOWLEDGMENTS

The present study has been sponsored by CONICET Research and Development Program and by Secretaría General de Ciencia y Tecnología of Universidad Nacional del Sur (Departments of Physics and Engineering). S. A. Vera and D. A. Vega have been supported by CONICET Fellowships.

REFERENCES

- 1. D. A. VEGA, S. A. VERA, M. D. SÁNCHEZ and P. A. A. LAURA 1998 *The Journal of the Acoustical Society of America* **103**, 1225–1226. Transverse vibrations of circular, annular plates with a free inner boundary.
- 2. S. A. VERA, M. D. SÁNCHEZ, P. A. A. LAURA and D. A. VEGA. 1998 *Journal of Sound and Vibration* 213, 757–762. Transverse vibrations of circular, annular plates with several combinations of boundary conditions.
- 3. A. W. Leissa 1969 NASA SP160. Vibration of plates.
- 4. B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan and S. M. Watt 1991 *MAPLE V.5*, *Library Reference Manual*.