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The "nite-element method is limited either to small geometries or to the
low-frequency range, whereas geometrical approaches are best applied at medium
and high frequencies, but do not take vibrating surfaces into account. When the
vibrating boundaries of a volume are only a small part of the total boundary it is
worth combining the two methods. By using geometrical methods to compute
a Green function that includes all wave re#ections on the surfaces of the volume, it
is possible to restrict the integral representation of the pressure "eld to the
vibrating surfaces. The surfaces to be meshed will be reduced to surfaces with
known velocity "elds. This approach o!ers a means of reducing computation times.
It has been applied to large volumes corresponding to a room with a vibrating
concrete wall and to a train with a vibrating window. ( 1999 Academic Press
1. INTRODUCTION

The study of acoustical "elds in closed volumes concerns not only rooms such as
concert halls, but also smaller volumes in transportation vehicles such as trains,
buses or cars. The "rst class of problem is well suited to geometrical approaches,
which have proved to be convenient and precise means of predicting the solution,
including binaural e!ects [1}3]. Fast algorithms have been developed, and the
acoustical "eld can be computed in the medium and high-frequency ranges for
volumes of arbitrary shape with locally reacting boundaries.

In the case of transportation vehicles, the acoustical "eld is usually coupled to
vibrating surfaces which must be included in the prediction models. The "nite and
boundary-element techniques [4, 5] are precise ways to do this, but are limited to
low frequencies. The use of an integral representation is a good means of coupling
velocity and pressure "elds. When the vibrating surfaces are a minor part of the
total boundary, it is more computationally e$cient to limit the discretized surface
to the coupled boundary. Therefore, in this paper, a method consisting of an
integral representation of the pressure "eld, combined with a geometrical approach,
is proposed.

The Green functions are computed for the associated purely acoustical
problem with no vibrating surfaces but with absorbent boundaries, for which
022-460X/99/280475#13 $30.00/0 ( 1999 Academic Press
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geometrical techniques are available. These functions must be evaluated between
every nodal point on the coupled surface and the two points representing the
ears of a listener. Rather than putting the source at the nodal points and the
receiver at the entrances to the ears, the reverse is done, based on reciprocity. Thus,
the computation is limited to two source positions. Binaural computations require
the introduction of source directivities to represent the head-related transfer
functions.

The proposed method [6, 7] has been validated in two cases of rectangular volumes
by using the image-source method which, although time-consuming, gives results very
close to the exact solution. In practice, fast computations are obtained with more
sophisticated geometrical methods. The program EBINAUR [1], which combines
deterministic, semi-statistical and statistical approaches, enables computation times to
be signi"cantly reduced while controlling the precision of the solution.

2. THE INTEGRAL REPRESENTATION

Figure 1 shows the geometry of the general problem P
1
. The analysis is done for

the harmonic time dependence e~+ut. The closed volume X contains, on part of its
boundary S, a surface S

V
of known velocity <. On the remaining part of S, S

A
, the

boundary conditions are assumed to be locally reacting and are de"ned either by
a mobility >, or by an absorption coe$cient a. The acoustical response in X is the
solution of

(D#k2)P(M)"t(M), (1)
Figure 1. Geometry of the problem. n normal directed inwards volume X. Acoustical boundary S
A
,

vibrating boundary S
V
.
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LP(M)/Ln"juo<(M), M3S
V
, (2)

<(M)">(M)P(M), M3S
A
, (3)

where P(M) is the acoustical pressure at any point M inside X, k is the acoustical
wavenumber, t(M) is the free-"eld contribution at M of an acoustical source
located inside the volume and n represents the normal to the boundaries directed
towards the interior of X. < is described by an elastic linear operator which
represents the behavior of S

V
. If S

V
is a vibrating plate, classical thin-plate theory

can be used.
Using the Green integral, P can be expressed as

P(M)"P
SV
CP(Q)

LG(M,Q)
Ln

Q

#juo<(Q)G(M,Q)DdS(Q)

#P
SA
C
LG(M,Q)

Ln
Q

#juo>(Q)G (M,Q)D dS(Q)#t(M), (4)

where G(M, Q) is the Green solution of the problem; it gives the elementary solution
at any point M for a unit point source at Q in the free "eld.

Now consider P
2
, the problem similar to P

1
, but with surface S

V
assumed rigid.

Let G
V

be the elementary solution of this second problem: G
V
(M,Q) is, therefore,

the pressure at any point M for a unit point source Q including all re#ections on the
S
A

boundaries. If we introduce G
V

instead of the free-"eld Green solution G,
equation (4) reduces to

P(M)"PS
V

juo<(Q)G
V

(M,Q) dS(Q)#t (M) (5)

since by the de"nition of G
V

the second integral in equation (4) is identically equal
to zero on S

A
and LG

V
/Ln

Q
is equal to zero on S

V
.

This expression permits the introduction of a vibrating boundary into a
room-acoustical problem. The use of a geometrical algorithm to compute the
Green function G

V
is the key idea of this approach. In general situations,

geometrical methods are not valid in the low-frequency range, and this approach is,
therefore, complementary to more straightforward "nite-element computations
[4, 5]. Furthermore, geometrical methods o!er a means to reduce computation
times signi"cantly.

In equation (5) the velocity < is related to the acoustical pressure on S
V

through
equation (2) and the vibration of the plate is coupled to the pressure "eld in the
volume. A simpli"cation consists of uncoupling this problem by assuming the
velocity< on S

V
to be known and, therefore, not in#uenced by the pressure "eld in

the volume. This assumption leads to an explicit problem instead of an implicit one.
The evaluation of P with equation (5) is then straightforward.
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3. NUMERICAL IMPLEMENTATION

3.1. GREEN FUNCTIONS

The evaluation of the Green function is central to this method. Several
geometrical algorithms can be used. Image-source methods are easy to implement
for rectangular geometries. In this particular case, and for rigid walls, it even leads
to exact solutions [8], but it rapidly becomes very computationally expensive to use
when the order of re#ection increases. Furthermore, in practical and complex
volumes with complex e!ects such as di!use surface re#ection, such deterministic
approaches do not give the exact solution.

In the past years, dedicated techniques have been developed which permit
statistical modelling which is closer to reality and results in a more accurate
auralized perceived acoustics. For instance, the combination of a deterministic
computation of the "rst re#ections with a semi-statistical approach, and then
a purely statistical evaluation of the re#ections of higher order, is now a
well-validated means of controlling both computation times and the precision of
the results [1, 2]. The program EBINAUR [1], based on such a methodology, uses
a variant of the cone-tracing approach for the lowest order re#ections and
introduces a minimum phase in the re#ection coe$cients. The cones do not have
a "nite circular cross-section, but rather an in"nite Gaussian pro"le assuring
optimized overlapping between cones. This deterministic description is used up to
orders 5}10 of re#ection. At higher orders, the re#ections are computed in the same
manner, using a statistically established set of parameters which are re-evaluated
for every problem. At the highest orders of re#ections, the number of contributions
is high enough to be described using statistical laws. Di!use re#ection e!ects are
included in the model. As a result of the computations, impulse responses or
transfer functions are generated. The acoustical behaviour of a volume can be
assessed by several criteria well known in room acoustics and it is possible to listen
to the resultant auralized acoustics of any volume. The user still has the possibility
to use deterministic re#ections up to very high orders but, apart from a signi"cant
increase in computation times, the method will not give results closer to reality than
are obtained using statistical re#ections for high orders, and by modelling di!use
surface-re#ection e!ects.

3.2. INTEGRATION

The computation of equation (5), for a known velocity "eld <, is done using
classical discretization techniques. Surface S

V
is decomposed into elements with

dimensions less than or equal to one-third of the highest wavelength involved
(acoustical and structural wavelengths). The velocity is known at the nodal points
and linear interpolation functions are used. Each integral can be evaluated using
a classical Gaussian integration technique so that, for each receiver point M, the
Green functions G

V
(M,Q) must be computed for source points Q inside the

elements. In the next examples, a simple linear integration has been used so that the
G

V
function are evaluated at the same nodal points as the velocity. An alternative,
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based on the reciprocity principle, is to interchange the source and receiver
points so that only one source at M is considered. This signi"cantly reduces the
computation times when using geometrical approaches such as EBINAUR [1].
Two source points, at the ear positions, are needed to evaluate binaural responses;
head-related transfer functions are introduced as source directivities. Binaural
responses must be evaluated in the time domain, either by using a Fourier
transform of the pressures at the ears or by using a temporal alternative to equation
(5), such as

p(M, t)"!o P
SV

c(Q, t)* g
v
(M,Q, t) dS(Q)#t (M, t). (6)

Here p, c, t and g
v

are functions of time representing the acoustical pressure, the
acceleration, the source excitation and the Green function or impulse response of
problem P

2
.

3.3. VALIDATION PROCEDURE

The proposed method has been tested in rectangular volumes having a constant
speci"ed impedance on all parts of S

A
. A known velocity is applied on S

V
and the

acoustical pressure is sought inside the volume. The resulting pressure on S
V

is not
required, since it is assumed that the velocity < is not a!ected by the pressure "eld.
As a "rst step, the Green function has been computed using only the deterministic
part of the geometrical approach: the image-sources are easy to compute in
rectangular volumes and they lead to exact solutions if the walls are rigid [8].
Gensane and Santon [9] showed a very good agreement between calculations using
a modal approach and a source-image calculation with plane-wave re#ection
coe$cients, in the case of a rectangular volume with walls having real impedances.
If an imaginary part was added, the agreement was not very good. Jean [10] found
that, by using a spherical re#ection coe$cient, the correspondence between modal,
"nite elements and image-source calculations was very good. In the following
examples, only real impedances were used and the image-source results can be
considered as very precise.

In equation (5), G
V

must be computed for S
V

assumed rigid. At "rst, the
computations were done omitting S

V
altogether. Introduction of rigid S

V
was then

tested and little di!erence was observed. Using a spherical re#ection coe$cient
rather than a plane-wave re#ection coe$cient also lead to little modi"cations of the
results.

A modal approach [11] was used to obtain both the known velocity "eld on
S
V

and a reference solution at a chosen observation point. The modal approach can
be considered as exact in the sense that it will converge towards the exact solution
provided that enough modes are taken into account. In practice, this number
rapidly becomes very large with increasing frequency, so that selection criteria must
be used. As a result, the errors in the solution may become quite signi"cant.
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4. APPLICATION: VOLUME WITH A CONCRETE PLATE

The method is "rst applied to the case of a rectangular volume with dimensions
4]3]2)5 m3. The z"0 side (4]3 m2) is a simply supported concrete plate
(E"28]109N/m2, o"2300 kg/m3, l"0)15 and thickness"13 cm) excited by
a point force of 1 N perpendicular to the surface at point (2, 1, 0). The remaining
walls have a speci"c impedance Z"16 at all frequencies, corresponding to
a di!use-"eld absorption coe$cient of 0)35 [12]. This problem is "rst studied using
an analytical modal approach [11] in order to obtain a reference solution and the
velocity "eld on the plate. The pressure is computed at point M (1, 1, 1) by using
equation (5). A 50]30 element meshing of S

V
is used. This corresponds to 3)4

elements per acoustical wavelength, and 4.25 elements per #exural wavelength, of
the plate at 1 kHz. An image-source method is employed to compute the Green
function G

V
, with plane-wave re#ection coe$cient and a maximum order of

re#ection N
r
limited to 10. For a chosen value of N

r
, calculations are nominally

done up to N
r
, but are stopped whenever the contribution of the last three orders of

re#ection is less than 0)2 dB. Figure 2 compares the pressure levels and phases
obtained by the two methods and shows good agreement between the modal and
the present integral computations.

Figure 3 represents the error in the computation of G
V

as a function of N
r
, at 100

and 500 Hz. In this case, the source is at receiving point M and G
V

is calculated at
Figure 2. Sound pressure level at point (1, 1, 1). (a) Level; (b) phase. *, Modal solution; ,
integral solution N

r
"10.



Figure 3. Convergence of G
V
. Unit monopole at (1, 1, 1) and receptor at the centre of the plate

(2, 1)5, 0). *, 100 Hz; - - - , 500 Hz.
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the centre of the concrete plate. The computational error was obtained by referring
the calculations to results obtained with N

r
"200. Although full convergence is not

achieved with N
r
"10, the "nal results of Figure 1 compare well with the reference

solution, even at low frequencies. The parallelepiped is a particular case for which
geometrical methods converge even at low frequencies, provided that su$cient
re#ections are considered.

5. APPLICATION: CASE OF AN ELONGATED VOLUME WITH A WINDOW

The second application concerns a volume with dimensions close to those of
a train coach. Figure 4 shows the geometry of the problem. The coach has
dimensions of 10]2)2]2 m3 and one side has a glass window simply supported on
all sides. This window is 5 mm thick and has dimensions 1)2]0)8 m2 with
E"64]3 109N/m2, o"2500 kg/m3 and l"0)15. It is positioned 0)7m above the
ground, 1)9m away from the end of the car and is excited at point P (5)88, 0)7,0) by
a force of 1 N perpendicular to the surface. A receiver point M at (6)4, 0)9, 1)15) is
considered. A 30]20 element meshing of S

V
is used, corresponding to 4)25 elements

per acoustical wavelengths, and 3)81 elements per #exural wavelength of the plate,
at 2000 Hz.

5.1. ABSORBENT CONDITIONS

As a "rst step, all parts of S
A

have a speci"c impedance of Z"16 as in the
previous example and the rate of convergence of G

V
is similar to that obtained in



Figure 4. Geometry of the train with a window Distances in cm. Unit force F at (7)08, 1)04, 0).
Observation point at (6)4, 0)9, 1)15).

Figure 5. Sound pressure level at point (6)4. 0)9, 1)15). Absorbent conditions, 0}1000 Hz. (a) Level;
(b) phase. *, Modal solution; , integral solution N

r
"10.
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Figure 3. In Figures 5 and 6, the modal and present solutions are compared, "rst
below 1000 Hz and then between 1000 and 2000 Hz. The computations of G

V
was

done up to N
r
"10; a very good agreement is then obtained. Above 1000 Hz, the

agreement is slightly degraded. It has been established that convergence of the



Figure 6. Sound pressure level at point (6)4, 0)9, 1)15). Absorbent conditions, 1000}2000 Hz. (a)
Level; (b) phase. *, Modal solution; , integral solution N

r
"10.
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modal solution was not yet achieved in this frequency range; this could not be
further improved, due to a limit in the memory capacity of the computer that was
used. Conversely, the image-source solution has reached convergence with N

r
"10

and calculations with N
r
"20 did not show any signi"cant di!erence. The meshing

also seems su$cient since, even at 2000 Hz, a good comparison is obtained.

5.2. &REVERBERANT' CONDITIONS

All the surfaces in the volume have now di!use-"eld absorption coe$cients of
0)065, 0)073, 0)09, 0)107 and 0)115 in the octave bands 125, 250, 500, 1000 and
2000 Hz respectively. The convergence of G

V
, at the centre of the window, with the

maximum order of re#ections N
r
is plotted in Figure 7. Due to a lower absorption

than in the previous case, the solution converges for higher values of N
r
2typically

above N
r
"40.

Figures 8 and 9 compare, for two selected frequency ranges, the pressure "eld at
M computed by the two methods with the maximum order of re#ection limited to
N

r
"40. Again, good agreement is obtained with N

r
"40, especially for the phase.

Zoomed frequency ranges have been presented for the sake of clarity, but results at
other frequencies are equally good.



Figure 7. Convergence of G
V
. Unit monopole at (6)4, 0)90, 1)15) and receptor at the centre of the

window. *, 100 Hz; - - -, 500 Hz; , 2000 Hz.

Figure 8. Sound pressure level at point (6)4, 0)9,, 1)15). Reverberant conditions, 0}300 Hz. (a) Level;
(b) phase. *, Modal solution; , integral solution N

r
"40.
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Finally, Figure 10 compares the modal and integral solutions (N
r
"10 and 40) in

third-octave bands, showing the improvement when N
r
is increased. The di!erences

remaining between the modal and the integral approaches can be partly attributed



Figure 9. Sound pressure level at point (6)4, 0)9, 1)15). Reverberant conditions 1000}1200 Hz. (a)
Level; (b) phase. *, Modal solution; , integral solution N

r
"40.

Figure 10. Sound pressure level at point (6)4, 0)9, 1)15). Third-octave bands. *, modal solution;
- - -, integral solution N

r
"10; , integral solution N

r
"40.
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to an insu$cient value of N
r
. In the light of the results obtained for a more

absorbent volume*and since the image-source method is, in theory, more precise
for reverberant media*it can be inferred that the modal calculations are also
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somewhat approximate, since only a selection of the modes is retained in
the computation. At higher frequencies (Figure 9 compared to Figure 8)
the agreement between the modal and the integral results is not as good as for
lower frequencies. Again, an insu$cient number of modes might explain this
di!erence.

6. CONCLUSION

An integral representation has been used to compute pressures in volumes with
a vibrating boundary of known velocity. The integral is evaluated only on the
vibrating surface, and the acoustical volume e!ect is included in the Green function.
With this approach it is possible to solve problems in the medium- and
high-frequency ranges, since the Green function can be evaluated with e$cient
geometrical approaches. It is clear that this technique is mainly of interest in cases
when the vibrating boundary is a limited portion of the total surface of the volume.
The fact that prerequisite knowledge of the velocity "eld is required assumes that
the pressure "eld does not signi"cantly in#uence the behaviour of the vibrating
surfaces. This approach could be used, for instance, in the case of a train or an
aircraft, in which one or several windows contain a velocity "eld due to exterior air
#ow, and when another model can be used to estimate this input velocity "eld.
Machines or engines radiating noise in enclosures could be "rst studied using
a "nite-element technique, deducing velocity "elds thereafter used as input to the
proposed method. The reciprocity principle enables the receiver and source
positions to be interchanged so that only one source position need be considered at
each receiver point. The method has been validated in the case of a building
problem, and for a train-coach con"guration with a vibrating window. The
objective of the computations presented here was to verify the convergence of
the method; an image-source method has been used to calculate the necessary
Green functions. It is a computationally expensive way of evaluating the
Green functions, since all re#ections up to a given order are taken into account
in a deterministic way. Computations using the optimised algorithms
of the EBINAUR program permit deterministic, semi-statistical and statistical
approaches to be combined. Calculations have shown that similar results
are obtained with this program. Complex shapes with di!usely re#ecting
surfaces can be studied, and the introduction of ear transfer functions enables
the computation of binaural e!ects necessary to accurately evaluate the perceived
acoustical quality of volumes such as cars, aeroplanes or trains.
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