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A simple and systematic choice of admissible functions, which are the
eigenfunctions of the closest, simple problem extracted from the one considered, is
proposed. The extracted problem must be &&less-constrained'' than the original one;
in other words it must be a problem where some constraints or other complications
(e.g. added masses) are eliminated. Elastic constraints replace the eliminated rigid
ones. The convergence is also analyzed. This approach has practical applications
when it is possible to extract a problem with eigenfunctions expressed in closed
form. It also allows a very simple calculation of the potential energy of the system.
Solutions for several cases involving beams are given in order to show the power of
the method. Application of the method to circular plates and shells is also
addressed. ( 1999 Academic Press
1. INTRODUCTION

The Rayleigh}Ritz method [1] assumes de#ection shapes in the form of a linear
combination of functions which satisfy at least the geometrical boundary
conditions of the vibrating structure. Courant [2] addressed the method for solving
problems having rigid boundaries by treating such problems as limiting cases of
free boundary problems, for which the admissible functions can be simpler. This
technique introduces arti"cial translational and rotational springs at the free
boundaries; the sti!ness of these springs can be assumed su$ciently high to
simulate rigid constraints with the required accuracy. Applications of this
technique were made, e.g., by Kao [3], Mizusawa et al. [4], Yuan and Dickinson
[5] and Cheng and Nicolas [6]. Additional references are given by Laura [7].
Warburton and Edney [8], Gorman [9], Gelos and Laura [10], and Laura and
Gutierrez [11] applied the Rayleigh}Ritz method to structures with elastic
constraints. In these studies, a large number of di!erent admissible functions were
used. In fact, the most critical aspect of the Rayleigh}Ritz method is regarding the
choice of appropriate admissible functions. If these functions form a complete set,
computed natural frequencies converge to actual ones from above. The nature of
natural frequencies obtained by using the Rayleigh}Ritz method and their
dependence on the nature of the assumed shape functions was investigated by Bhat
[12]. Dickinson and Li [13] introduced a set of admissible functions derived from
0022-460X/99/280519#21 $30.00/0 ( 1999 Academic Press
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the mode shapes of vibration of plates instead of using the beam functions. They
observed that the use of functions for simply supported plates gave better results for
a rectangular plate supported in some way, but yielded poor results for plates with
some free edges.

The present work proposes a simple and systematic choice of admissible
functions which are the eigenfunctions of the closest, simple problem extracted from
the one considered. In particular, the problem extracted must be &&less-constrained''
than the original one; in other words, with less-constrained is indicated a problem
where some constraints or other complications (e.g. added masses) are eliminated.
The rigid constraints eliminated are replaced by elastic ones. The convergence of
the method has been analytically investigated. The approach has practical
applications when it is possible to extract a problem having eigenfunctions (mode
shapes) that are expressed by analytical expressions in closed form. Moreover, the
proposed approach allows a very simple calculation of the potential energy of the
system, based on the use of the reference kinetic energy. Several cases with beams
are solved in order to show the possibilities of the method. These examples are
thought in a way that they can be easily combined to solve more complex cases.
Application of the method to circular plates and shells is also addressed.

Another possibility of the proposed approach is in conjunction with the arti"cial
spring method, originally introduced by Yuan and Dickinson [5] and Cheng and
Nicolas [6]. In fact, the admissible functions must satisfy all the geometrical
boundary conditions or, if the extended Rayleigh}Ritz method (e.g. see reference
[14]) is utilized, admissible functions must satisfy geometrical boundary conditions
of the unconstrained structure, and the sum of the series of functions must satisfy
the additional constraints. When the Rayleigh}Ritz method is applied to
a structure obtained by joining several components together, the boundary
conditions require the continuity of translational and rotational displacements
between all the rigid junctions of the substructures. This continuity condition gives
rise to many problems in the choice of the correct admissible functions to be used
for each single component.

The use of arti"cial springs at the junctions allows one to overcome this
di$culty. In particular, the joints between the components of the structure are
substituted by translational and rotational arti"cial springs that are distributed
along the whole joint length or area. Obviously, each degree of freedom involved in
the joint must be simulated by a distributed spring. Then, the spring sti!ness is
chosen very high with respect to the structure sti!ness in order to simulate a rigid
junction in the numerical computations. The proposed choice of admissible
functions presented in this paper can be repeated for each component from which it
is possible to extract the simpler, less-constrained, con"guration; consequently, by
using the arti"cial spring method it is possible to study the whole structure.

The Rayleigh}Ritz method and its extension to synthesize substructures can be
successfully applied to #uid}structure interaction problems. The Rayleigh}Ritz
method applied to #uid}structure interaction was studied by Zhu [15] and Amabili
[16]. In this case, it is possible to extract a less-constrained in vacuo problem. The
wet modes can be described as a sum of in vacuo modes. Applications are shown,
e.g. by Amabili [17] and Amabili et al. [18].
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2. ADMISSIBLE FUNCTIONS AND POTENTIAL ENERGY

The equation of motion for free harmonic vibrations of an undamped structure
can be written in the following form:

N(u)"u2mu, (1)

where N is a self-adjoint di!erential operator, u is the displacement vector of the
mean line (for a beam) or surface (for plates and shells) of the structure that gives the
mode shape, u is the corresponding radian frequency and m is the mass per unit
length or area. For the system considered, it is possible to write the Rayleigh
quotient

u2"
PX

u )N(u)dS

PX

mu ) udS
, (2)

X being the domain where u is de"ned. The numerator on the right-hand side of
equation (2) equals twice the maximum potential energy and the denominator twice
the reference kinetic energy of the system. The Rayleigh}Ritz method is used to "nd
natural modes of the system. In particular, u is expanded by using a sum of
admissible functions x

i
(vectorial functions in the case of a structure described by

displacements in di!erent directions) and appropriate unknown coe$cients a

u"
=
+
i/1

a
i
x
i
. (3)

The in"nite sum in equation (3) is truncated to N terms in the applications. The
choice of the admissible functions is very important to simplify the calculations and
to guarantee convergence to the actual solution. The choice of admissible functions
that are all the eigenfunctions, including eventually rigid-body modes, of the
closest, simple &&less-constrained'' problem extracted from the one considered, is
useful in many cases. In particular, it is applicable in all the cases where it is possible
to extract a less-constrained problem having mode shapes expressed by analytical
expressions in closed form.

In fact, the expansion theorem states that any function (or vectorial function) u,
de"ned in the structure, satisfying the homogeneous boundary conditions of the
system and for which N(u) is continuous can be represented by an absolutely and
convergent series of eigenfunctions of the system [19]. This theorem can be applied
to the present case where u is a mode of the considered system and the
eigenfunctions x

i
are those of the less-constrained system. In fact, u satis"es the

same boundary conditions of the less-constrained system, if all the additional
constraints are replaced by translational and rotational springs. The nature of the
convergence of the method and its rate in the case of a beam are discussed in
Section 4.
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The use of admissible functions, which are the natural modes of
a less-constrained problem, allows an interesting simpli"cation. In fact, the
maximum potential energy of the system can be obtained as the multiplication of
the reference kinetic energy of natural modes in the less-constrained problem by the
corresponding eigenvalue u2

i
(the squared radian frequency) of the same problem

and by the coe$cient a
i
, and then adding all the products [16}18]. For each term of

the expansion, it is possible to write

PX

x
i
)N(x

i
) dS"u2

i PX

mx
i
) x

i
dS. (4)

Equation (4) is obtained by equalizing the maximum potential and the maximum
kinetic energies of each natural mode of the less-constrained problem. Therefore,
twice the maximum potential energy of the system can be written as

PX

u )N(u)dS"
N
+
i/1

a2
i
u2

i PX

mx
i
) x

i
dS . (5)

In equation (5), the orthogonality of the eigenfunctions of the less-constrained
problem has been used.

3. APPLICATIONS

In order to illustrate the proposed approach, six di!erent cases, relative to beams,
are considered. They are: (a) simply supported beam with intermediate elastic or
rigid support and concentrated mass; (b) clamped beam; (c) simply supported beam
on an intermediate elastic foundation; (d) simply supported beam of varying
cross-section; (e) free-edge beam with two intermediate supports; and (f ) simply
supported beam. A simple combination of the cases presented can cover many of
the practical applications of beams; beams with intermediate hinges and stepped
beams can be studied by modelling the structure with substructures and using the
arti"cial spring method to obtain the solution. For simplicity, shear deformation
and rotary inertia are neglected in the following examples. At the end of this section,
applications to circular plates and shells with uniform and non-uniform constraints
are addressed without solving speci"c problems.

3.1. CASE (a): SIMPLY SUPPORTED BEAM WITH INTERMEDIATE ELASTIC SUPPORT AND
CONCENTRATED MASS. FROM ELASTIC TO RIGID SUPPORT.

Figure 1 shows the considered problem. It concerns a simply supported beam of
uniform circular cross-section having an elastic support at distance x

1
from the

left-side support and carrying a concentrated mass M at distance x
2

from the
left-side support, where ¸ is the length of the beam. The problem is solved by using
the eigenfunctions of the &&analogue'' simply supported beam as admissible
functions. The simply supported beam is surely the closest, simple problem that can



Figure 1. Simply supported beam with intermediate elastic support and concentrated mass.
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be extracted from the one considered. In particular, the transverse displacement
w can be written as

w(x)"
=
+
n/1

a
n
sin (nnx/¸), (6)

where n is the number of longitudinal half-waves, a
n
are the appropriate coe$cients

and x is the longitudinal co-ordinate (see Figure 1). The natural radian frequencies
u

n
of the simply supported beam are given by

u
n
"

n2n2

¸2 S
EI
m

, (7)

where I is the cross-sectional area moment of inertia, E is the Young's modulus, A is
the cross-sectional area and m"oA is the mass per unit length. The reference
kinetic energy of the beam is

¹*
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The maximum potential energy of the beam can be computed by using equation (5),
so that it is given by

<
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2
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n
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The maximum potential energy stored by the elastic intermediate support is
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The reference kinetic energy due to the concentrated mass M is
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By introducing a vectorial notation and truncating all the in"nite sums to N terms,
it is possible to write

¹*
B
"

1
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m
¸

2
qTM

B
q. (12)

where qT"Ma
1
, 2 , a

n
N, M

B
is the N]N matrix of elements (M

B
)
n, i
"d

n, i
and

d
n, i

is the Kronecker delta. Similarly, it is useful to write
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where
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n
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and
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with

(K
K
)
n, i
"sin (nnx

1
/¸) sin (inx

1
/¸), n, i"1, 2 , N. (16)

Then, for the concentrated mass, it gives
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M
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where

(M
M
)
n, i
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2
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2
/¸), n, i"1, 2, N. (18)

The natural frequencies and mode shapes are obtained from the solution of the
eigenvalue problem associated with the following Galerkin equation:

[m(¸/2) K
B
#kK

K
]q!K2[m(¸/2) M

B
#MM

M
]q"0, (19)

where K are the natural radian frequencies of the studied beam.



Figure 2. First three natural frequencies of the beam with intermediate elastic support and
concentrated mass, Case (a), versus the sti!ness of the intermediate support k; N"30.
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The geometrical and material properties of the system are: length ¸"1 m,
x
1
"¸/n, x

2
"2¸/n, radius of cross-section r"10mm, concentrated mass

M"1 kg, material density o"7850 kg/m3 and Young's modulus E"206GPa.
All the numerical results are obtained by using the software Mathematica [20].

In Figure 2, the three lower natural frequencies, obtained by using N"30 terms
in the expansion of w, are given versus the sti!ness of the intermediate support k. It
is shown that, for large k values, the curves in Figure 2 reach horizontal asymptotes.
In particular, a rigid intermediate support is well simulated with
¸3k/(EI)"6.18]106 (k"1010N/m), at least for the three modes considered in
Figure 2. Figure 3 shows the "rst three mode shapes for k"1010 N/m and
N"100; it is clearly shown that, in this case, there is no movement of the beam at
the intermediate support. Table 1 shows the rate of convergence of the natural
frequencies versus the number of terms used in the expansion of w. It is clear that 10
terms give a very good evaluation of the "rst three natural frequencies and that
there is no signi"cant di!erence in the results obtained using 30 and 100 terms.

3.2. CASE (b): CLAMPED BEAM

The clamped beam presents a simple and well-known solution. However, it is
possible to obtain the solution using the admissible functions of a simply supported
beam, which can be seen as a simple problem extracted from the clamped beam.
This case is interesting for comparison of the method with an exact solution and
because the eigenfunctions used seem to be quite far from the clamped ones, thus
making it an interesting test. All the calculations made for the previous case can be



Figure 3. First three mode shapes of the beam with intermediate elastic support and concentrated
mass, Case (a), for k"1010 N/m and N"100. * First mode; } } } second mode; !)!)! third
mode.

TABLE 1
Natural frequencies (Hz) of the ,rst three modes of the beam shown in Figure 1
[Case (a)] with k"1010 N/m versus the number N of terms used in the expansion

N 1st mode 2nd mode 3rd mode

4 76)15 354)2 501)3
10 75)93 354)0 495)1
30 75)90 353)9 494)2

100 75)90 353)9 494)2
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retained, setting k"0 and M"0. It is necessary to add at the edges two arti"cial
rotational springs whose sti!nesses must be very large.

The maximum potential energy stored by the rotational spring at the left edge is

<
R
"

1
2

cC
dw (0)
dx D
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"
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2

c
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+
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a
i
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where c is the sti!ness of the rotational spring. Similarly, for the rotational spring at
the right edge
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TABLE 2
Natural frequencies (Hz) of the ,rst three modes of the clamped beam [Case (b)] with

c"109 Nm versus the number N of terms used in the expansion

N 1st mode 2nd mode 3rd mode

5 108)0 322)9 615)5
10 100)2 275)3 549)5
30 94)10 259)3 509)2

100 92)25 254)3 498)6

RAYLEIGH}RITZ METHOD 527
The "rst three natural frequencies obtained by using the Rayleigh}Ritz method are
given in Table 2 for di!erent N up to 100 and are computed for ¸c/(EI)"6)18]105
(c"109 Nm). The exact solutions are: 91)5, 252)3, 494)5 Hz, that are close to those
obtained with 100 terms (less than 0)9% di!erence). It is clear that the rate of
convergence in this case is slower than in Case (a). In general, rotational constraints
require more terms than translational constraints (see Section 4 for the
explanation). In any case, the advantage of the method is that all the energy terms
are automatically generated and the computational e!ort is very limited, so that
a computation of a quite large number of terms in the expansion of mode shapes
does not present a problem.

Note that the present case can be immediately combined with the previous one to
give more complex cases where several translational and rotational springs (and
eventually concentrated and distributed masses) can be inserted.

3.3. CASE (c): SIMPLY SUPPORTED BEAM ON AN INTERMEDIATE ELASTIC FOUNDATION

Figure 4 shows the considered problem. It is a simply supported beam of uniform
circular cross-section having an elastic foundation from x

3
to x

4
, where ¸ is the

length of the beam. The closest, simple problem extracted from the one considered
is the simply supported beam. All the expressions obtained for Case (a) are retained,
setting k"0 and M"0. The additional maximum potential energy stored by the
elastic foundation is given by
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F
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k
FP

xË

xÊ
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2
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=
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=
+
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n
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iP

xË

xÊ

sin(nnx/¸) sin(inx/¸) dx, (22)

where the integral on the right-hand side is easily expressed in a closed form that is
not reported here for brevity and k

F
is the sti!ness of the elastic foundation.

However, the closed-form expression was inserted in the computer program to
speed up the computation. Numerical results are given in Table 3 for N"100
terms and for di!erent sti!nesses k

F
; all the values in Table 3 correspond to very

rigid foundations, that represent the more critical cases for convergence of the



Figure 4. Simply supported beam on an intermediate elastic foundation.

TABLE 3
Natural frequencies (Hz) of the ,rst three modes of the beam shown in Figure 4

[Case (c)] with N"100 versus the sti+ness k
F

of the foundation

k
F
(N/m2) 1st mode 2nd mode 3rd mode

1010 225)7 480)8 730)0
1012 243)4 538)1 788)8
1014 249)9 559)9 810)0
1016 254)6 575)5 824)9
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method. In particular, ¸4k
F
/(EI)"6)18]1012 (k

F
"1016 N/m2) approximates

very well a beam completely "xed between x
3
to x

4
(beam on rigid foundation). The

last case corresponds to two clamped-simply supported beams; one between A and
B and the second between C and D. The exact natural frequencies are: 252)3Hz
("rst mode of the right-hand beam), 567)6Hz ("rst mode of the left-hand beam) and
824)9Hz (second mode of the right-hand beam); they are close to the ones
computed for k

F
"1016 (less than 1)4% di!erence). The relative mode shapes are

given in Figure 5. This case represents a very severe test for the accuracy of the
method.

3.4. CASE (d): SIMPLY SUPPORTED BEAM OF VARYING CROSS-SECTION

A simply supported beam of rectangular cross-section of constant height h and
width b(x) is considered. In the example, h"10mm, b (x)"bI ( f#x/¸), f"0.1 and
bI "10mm. The mass per unit length is m(x)"o h bI ( f#x/¸) and the
cross-sectional area moment of inertia is I (x)"(1/12) h3bI ( f#x/¸). The closest,
simple problem extracted is the simply supported beam; therefore the assumed
de#ection is still given by equation (6).



Figure 5. First three mode shapes of the beam on elastic foundation, Case (c), for k"1016 N/m2
and N"100. * First mode; } } } second mode; !)!)! third mode.
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The reference kinetic energy of the beam is
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where

W
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g
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¸/4 if n"i,

¸[!4in#(i#n)2(!1)i~n!(i!n)2(!1)i`n]
2(i!n)2(i#n)2n2

if nOi.

In this case, the maximum potential energy of the beam cannot be obtained by
using equation (5) anymore. It is given by
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n, iD.
(24)

The natural frequencies of the system are given in Table 4 versus the number of
terms used in the expansion. The convergence rate is high. Note that natural
frequencies of the present case are quite close to the ones of any simply supported
beam of rectangular cross-section having the same height h. In contrast, mode



TABLE 4
Natural frequencies (Hz) of the ,rst three modes of the beam with varying cross-

section [Case (d)] versus the number N of terms used in the expansion

N 1st mode 2nd mode 3rd mode

3 22)56 93)95 214)9
10 22)50 93)39 210)5

100 22)50 93)38 210)4

Figure 6. First three mode shapes of the beam of varying cross-section, Case (d), for N"100.
* First mode; } } } second mode; !)!)! third mode.
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shapes are sensibly di!erent, as shown in Figure 6. The narrow part (left side) of the
beam presents larger movement than the wide part (right side).

3.5. CASE (e): FREE-EDGE BEAM WITH TWO INTERMEDIATE SUPPORTS

Figure 7 shows the problem considered. It concerns a free-edge beam of uniform
circular cross-section having two intermediate supports at x

1
and x

2
. The same

dimensions x
1
, x

2
and cross-section of Case (a) are assumed. The closest, simple

problem extracted from the one considered is the free-edge beam. The transverse
displacement w can be written as

w(x)"
=
+
n/1

a
n
a
n
=

n
(x), (25)



Figure 7. Free-edge beam with two intermediate supports.
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where the eigenfunctions of the free-edge beam are

=
n
(x)"b

n
[cos(j

n
¸)!cosh(j

n
¸)][sin(j

n
x)#sinh(j

n
x)]

![sin(j
n
¸)!sinh(j

n
¸)][cos(j

n
x)#cosh(jx)], (26)

and j
n

are the roots of the following equation:

cos(j
n
¸) cosh(j

n
¸)"1, n"1, 2, 2 , (27)

including the "rst two zero roots associated with the two rigid-body modes, and

b
n
"[cos(j

n
¸)!cosh(j

n
¸)]/[sin(j

n
¸)!sinh(j

n
¸)]. (28)

In equation (25), a
n

are appropriate unknown coe$cients, as usual, and a
n

is
a normalization coe$cient introduced in order to have a2

n
:L
0
=2

n
dx"1. Equations

(27) and (28) must be evaluated with a very good accuracy. The natural frequencies
of the free-edge beam are given by u

n
"j2

n
JEI/m; the "rst two frequencies,

associated to rigid-body modes, are zero.
The reference kinetic energy of the beam is
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"

1
2

mP
L
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m
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+
n/1

a2
n
. (29)

The maximum potential energy of the beam can be evaluated by using equation (5),
so that it is given by

<
B
"

1
2

m
=
+
n/3

a2
n
u2

n
. (30)

In equation (30), the sum starts at 3 because the "rst two frequencies are zero.



TABLE 5
Natural frequencies (Hz) of the ,rst three modes of the beam shown in Figure 7 [Case

(e)] with k"1010 N/m versus the number N of terms used in the expansion

N 1st mode 2nd mode 3rd mode

5 69)74 103)6 477)5
10 69)49 101)2 474)0
30 69)47 101)0 473)7
50 69)47 101)0 473)7
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The maximum potential energy stored by the arti"cial translational spring of
sti!ness k placed at B to replace the support is given by

<
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2

kw2(x
1
)"

1
2

k
=
+
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a
n
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i
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1
) =

i
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1
). (31)

Similarly, for the arti"cial translational spring of sti!ness k placed at C
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2
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i
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2
). (32)

The solution is obtained via an eigenvalue problem, similar to Case (a). The natural
frequencies of the system are given in Table 5 versus the number of terms used in
the expansion for k"1010 N/m. The convergence rate is very high. The "rst three
mode shapes are shown in Figure 8.

3.6. CASE (f ): SIMPLY SUPPORTED BEAM

The simply supported beam also presents a simple and well-known solution.
However, it is possible to obtain the solution using the admissible functions of
a free-edge beam, which can be seen as a simple problem extracted from the simply
supported beam. This case, similar to Case (b), is interesting for comparison of the
method with an exact solution and because the eigenfunctions used are quite far
from the simply supported case. All the calculations made for the previous case can
be retained, setting k" 0. It is necessary to add at the edges two arti"cial
translational springs whose sti!nesses must be very high.

The maximum potential energy stored by the arti"cial translational spring of
sti!ness k

A
placed at the left edge to replace the support is given by
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i
(0). (33)



Figure 8. First three mode shapes of the free-edge beam with two intermediate supports, Case (e),
for k"1010 N/m and N"50. * First mode; } } } second mode; !)!)! third mode.

TABLE 6
Natural frequencies (Hz) of the ,rst three modes of the simply supported beam [Case

( f )] with k
A
"1010 N/m versus the number N of terms used in the expansion

N 1st mode 2nd mode 3rd mode

5 40)47 165)1 372)6
10 40)38 161)6 364)7
30 40)36 161)5 363)3
50 40)36 161)4 363)3
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Similarly, for the arti"cial translational spring of sti!ness k
A

placed at the right edge

<
KD

"

1
2

k
A
w2(¸)"

1
2

k
A

=
+
n/1

=
+
i/1

a
n
a
i
a
n
a
i
=

n
(¸)=

i
(¸). (34)

The natural frequencies of the "rst three modes are given in Table 6 versus the
number of terms used in the expansion for k

A
" 1010N/m; this sti!ness gives an

accurate approximation of the rigid support. The e!ect of the spring sti!ness on the
natural frequencies of the "rst three modes is shown in Table 7. The accuracy of the
solution is excellent, as can be veri"ed comparing it with the exact solutions (40)36,
161)4 and 363)3Hz). The rate of convergence of natural frequencies in this case is
very high.



TABLE 7
Natural frequencies (Hz) of the ,rst three modes of the simply supported beam [Case

( f )] with N"30 versus the sti+ness k
A

of the arti,cial spring

k
A

(N/m) 1st mode 2nd mode 3rd mode

108 40)35 161)3 362)3
1010 40)36 161)5 363)3
1012 40)36 161)5 363)3
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3.7. CIRCULAR PLATES AND SHELLS

Free-edge, simply supported and clamped circular plates and simply supported
shells present eigenfunctions given by simple analytical expressions. This allows the
use of the proposed method to solve many problems where these elements are
employed. An interesting case is given by a circular plate having non-homogenous
boundary conditions. This problem was initially addressed by Leissa et al. [21] by
employing a polynomial expansion in the Rayleigh}Ritz method. Amabili et al.
[22] solved the same problem by employing an expansion based on the
eigenfunctions of the free-edge plate; this expansion corresponds to the extraction
of the free-edge plate as a simple, less-constrained problem. This simple choice
allows one to use many terms and to study more practical applications, e.g. bolted
plates, with a su$cient accuracy. It is interesting to note that for an axisymmetric
structure, e.g. a circular plate, there exist two families of eigenfunctions rotated by
n/n, where n is the number of circumferential waves. Therefore, a double series
expansion must be used when the axial symmetry of the constraints is lost. In
particular, in order to study a plate with non-uniform elastic translational and
rotational constraints it is possible to employ the following mode expansion [22]:

w(r, h)"J2a
00
#

=
+
n/1

a
0n
=

0n
(r)#2

r
a

(a
10

cosh#b
10

sinh)

#

=
+
n/1

=
1n

(r) (a
1n

cosh#b
1n

sinh)

#

=
+

m/2

=
+
n/0

=
mn

(r) [a
mn

cos(mh)#b
mn

sin(mh)], (35)

where

=
mn

(r)"[A
mn

J
m
(j

mn
r/a)#C

mn
I
m
(j

mn
r/a)], (36)

m and n are the number of nodal diameters and circles in the mode shape of
a free-edge plate, a is the plate radius, J

m
and I

m
the Bessel and the modi"ed Bessel
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functions of the "rst kind, respectively, A
mn

and C
mn

are the mode shape constants
and j

mn
are the frequency parameters of a free-edge plate. In equation (35) the three

rigid-body modes are included.
It must be remarked that for circular plates elastically restrained at the edges

di!erent approaches have been used in the past; e.g., the use of polynomial
co-ordinate functions has been proved to be a convenient choice by Laura et al.
[23].

The present approach can be applied to study simply supported shells with
additional translational and rotational constraints, elastic bed and mass
distributions, even if it is not axisymmetric [24]. It is also useful to solve #uid}shell
interaction problems [25].

4. ON THE NATURE OF THE CONVERGENCE

For the sake of simplicity, the case analyzed is that of a beam with an
intermediate support simulated by an arti"cial translational spring, although this
extimation can be extended in a general form. Consider a beam of length ¸ and
assume harmonic, undamped free vibrations. The mode shapes of the system are
indicated with w, that is assumed to be a continuous function with continuous
derivative in all the interval (0, ¸) where w is de"ned; moreover, it is assumed that
w and its derivative respect the Dirichlet condition. The function w is expanded in
a series of admissible functions /

n
that are the eigenfunctions of the less-constrained

problem extracted from the one considered (e.g. the simply supported beam). It has
to be noted that, as a consequence of the former choice, /

n
constitute a complete set

of orthogonal, admissible functions. Therefore, it is possible to write

w(x)"
=
+
n/1

a
n
/

n
(nx), (37)

where n is the wave number. For the expansion theorem [19], the series on the
right-hand side of equation (37) is absolutely and uniformly convergent to w.
Moreover, the derivative of the right-hand side of equation (37) is absolutely and
uniformly convergent to w@, where the prime indicates the derivative with respect to
x. The coe$cients a

n
can be evaluated by using the following relation (if w is

known):

a
n
"P

L

0

w(x)/
n
(nx) dx, (38)

where the following normalization criterion has been used :L
0
/2

n
(nx) dx"1.

Equation (38) has been obtained by using the orthogonality of /
n
.

As a consequence of the hypotheses made on w and w@, the possible
discontinuities on w@@ are jumps and therefore w@@ respects the Dirichlet condition;
moreover, a "nite number of discontinuities of in"nite type but giving "nite integral
can be present on w@@@ and therefore this function also respects the Dirichlet
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condition. These properties of w and its derivatives allows one to write

w@@(x)"
=
+
n/1

a
n
n2/@@

n
(nx), (39)

where the series on the right-hand side of equation (39) is absolutely convergent to
w@@ [26]. Moreover, the coe$cients a

n
n2 have asymptotic behavior of the order 1/n2

[26] and therefore a
n
has an absolute value lower than k/n4, where k is a positive,

"nite number independent of n.
The reference kinetic energy of the beam is given by

¹*
B
"

1
2

m
=
+
n/1

a2
n
, (40)

where m is the mass per unit length. The maximum potential energy of the beam, by
using equation (5), is

<
B
"

1
2

m
=
+
n/1

a2
n
u2

n
, (41)

where u
n
is the radian frequency of the nth mode of the less-constrained problem.

The maximum potential energy of the arti"cial, translational spring is

<
k
"

1
2

k
=
+
n/1

=
+
i/1

a
n
a
i
/

n
(nxN )/

i
(ixN ), (42)

where k is the sti!ness of the spring located at x"xN .
In order to guarantee the convergence of the method, it is necessary to verify that

the di!erence between the squared radian frequency X2
N

computed with N terms in
the expansion and the squared radian frequency X2

=
computed with in"nity terms is

as small as desired when a su$ciently large number N of terms is employed.
Moreover, for the inclusion principle [19] X2

N
'X2

=
. Therefore, it is possible to

write

X2
N
!X2

=
"

(<
B
)
N
#(<

S
)
N

(¹*
B
)
N

!

(<
B
)
=
#(<

S
)
=

(¹*
B
)
=

, (43)

where the subscripts N and R indicate the number of terms in the series. It can be
manipulated into

X2
N
!X2

=
(

[(<
B
)
N
#(<

S
)
N
]![(<

B
)
=
#(<

S
)
=

]
(¹*

B
)
=

. (44)
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Equation (44) can be easily transformed into

X2
N
!X2

=
(

m+=
n/N`1

a2
n
u2

n
#2k+=

n/1
+=

i/N`1
a
n
a
i
/
n
(nxN )/

i
(i xN )

(¹*
B
)
=

. (45)

Then, it is possible to write

u
n
"bn2, (¹*

B
)
=
"d, Max[/

n
(nxN ) /

i
(i xN )]"c ∀n, i, (46)

where b, d, and c are "nite numbers. The "rst of equations (46) is obvious for
a beam, the second one is due to the asymptotic behavior of a

n
and the last one is

based on the fact that the eigenfunctions are limited in (0, ¸) and respect the
normalization criterion. Substituting these equations into equation (45), gives

X2
N
!X2

=
(

mb2k+=
n/N`1

k/n4#2kc+=
n/1

k/n4+=
i/N`1

k/i4
d

(47)

If +=
n/1

k/n4"g, where g is a "nite number for the asymptotic behavior of a
n
,

equation (47) is transformed into

X2
N
!X2

=
(

(mb2k#2kc g) +=
n/N`1

k/n4

d
. (48)

Equation (48) shows that the di!erence (X2
N
!X2

=
) can be made as small as desired

if a su$ciently large number N of terms is chosen, even if k is assumed to be very
large in order to simulate a rigid support. In particular, the right-hand side of
equation (48) has an asymptotic order k/N3.

This analysis can be extended to rotational springs, where
MaxM[d/

n
(nxN )/dx][d/

i
(ixN )/dx]N"nic replaces the third expression in equation

(46). In this case, equation (48) has an asymptotic order k/N2. This last expression
explains the reason for a slower convergence in the case of a high sti!ness rotational
spring with respect to a high sti!ness translational spring. In fact, it is to be noted
that if rotational springs are not present in the system, in general the Dirichlet
condition is satis"ed by w@@@@ and therefore the asymptotic order of equation (48)
becomes k/N4.

5. DISCUSSION AND CONCLUSIONS

The present study shows that the use of eigenfunctions (including eventually
rigid-body modes) of a less-constrained problem extracted from the one considered
is a simple (and often smart) choice of admissible functions in the Rayleigh}Ritz
method. This choice has practical applications when it is possible to extract
a less-constrained problem having eigenfunctions expressed by analytical expres-
sions in closed form; the extracted problem should be the closest, simple problem in
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order to simplify calculations. The rigid constraints eliminated are replaced by
elastic ones. The rate of convergence is always su$ciently high; in particular, it is
higher for additional translational constraints added to the less-constrained
problem with respect to rotational constraints. This fact has been explained and the
convergence of the method has been analytically investigated. Speci"c examples
show the possibilities and potential of the method.
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